Residue rings of models of Peano Arithmetic

Paola D'Aquino

Università della Campania "L. Vanvitelli"

Z75 - Oxford

10 September 2024

joint work with A. Macintyre

In 2014 Zilber asked the following question:

If M is a nonstandard model of full Arithmetic ($M \equiv \mathbb{N}$), and n is a nonstandard element of M congruent to 1 modulo all standard integers, does the ring M/nM interpret Arithmetic?

NO

This motivated the model theoretic analysis of the residue rings $\mathcal{M}/n\mathcal{M}$ where $\mathcal M$ is a model of Peano Arithmetic, and $1 < n \in \mathcal M$ Let $\mathcal{L} = \{+, \cdot, 0, 1, \langle\}$. A model of PA is the positive part of a discretely ordered ring satisfying the induction for all definable subsets

$$
\forall \overline{y}((\theta(0,\overline{y})\wedge \forall x(\theta(x,\overline{y})\rightarrow \theta(x+1,\overline{y})))\rightarrow \forall x\theta(x,\overline{y}))
$$

for all formulas $\theta(x, \overline{y})$ in \mathcal{L} .

Clearly, $(N, +, \cdot, 0, 1, <)$ is a model of PA. If $\mathcal{M} \models P\mathcal{A}$ and $\mathcal{M} \not\cong \mathbb{N}$ then M is a nonstandard models of PA.

The positive part of $\prod_D \mathbb{Z}$, where D is a non principal ultrafilter, is a non standard model of PA.

- If $M = \mathbb{Z}$, and p is a prime in \mathbb{Z} , $k > 0$
- \bullet $\mathbb{Z}/p^k\mathbb{Z}$ is a Henselian local ring with maximal ideal $p\mathbb{Z}/p^k\mathbb{Z}$
- \bullet $\mathbb{Z}/p^k\mathbb{Z}$ is a finite chain ring, i.e. the ideals are linearly ordered
- $\mathbb{Z}/p^k\mathbb{Z}\cong \mathbb{Z}_p/p^k\mathbb{Z}_p$, where \mathbb{Z}_p is the ring of p -adic integers

Ax, Elementary theory of finite fields, in 1968:

- The theory of all $\mathbb{Z}/p\mathbb{Z}$ as p varies is decidable
- For fixed prime p the theory of $\mathbb{Z}/p^k\mathbb{Z}$ as k varies is decidable
- \bullet The theory of all ${\mathbb Z}/p^k{\mathbb Z}$ as p and k vary is decidable
- The existential theory of $\mathbb{Z}/m\mathbb{Z}$, $m \in \mathbb{Z}$, $m > 1$ is decidable
- If $M = \mathbb{Z}$, and p is a prime in \mathbb{Z} , $k > 0$
- \bullet $\mathbb{Z}/p^k\mathbb{Z}$ is a Henselian local ring with maximal ideal $p\mathbb{Z}/p^k\mathbb{Z}$
- \bullet $\mathbb{Z}/p^k\mathbb{Z}$ is a finite chain ring, i.e. the ideals are linearly ordered
- \bullet $\mathbb{Z}/p^k\mathbb{Z} \cong \mathbb{Z}_p/p^k\mathbb{Z}_p$, where \mathbb{Z}_p is the ring of p -adic integers

Ax, Elementary theory of finite fields, in 1968:

- The theory of all $\mathbb{Z}/p\mathbb{Z}$ as p varies is decidable
- For fixed prime p the theory of $\mathbb{Z}/p^k\mathbb{Z}$ as k varies is decidable
- \bullet The theory of all ${\mathbb Z}/p^k{\mathbb Z}$ as p and k vary is decidable
- The existential theory of $\mathbb{Z}/m\mathbb{Z}$, $m \in \mathbb{Z}$, $m > 1$ is decidable
- If $M = \mathbb{Z}$, and p is a prime in \mathbb{Z} , $k > 0$
- \bullet $\mathbb{Z}/p^k\mathbb{Z}$ is a Henselian local ring with maximal ideal $p\mathbb{Z}/p^k\mathbb{Z}$
- \bullet $\mathbb{Z}/p^k\mathbb{Z}$ is a finite chain ring, i.e. the ideals are linearly ordered
- \bullet $\mathbb{Z}/p^k\mathbb{Z} \cong \mathbb{Z}_p/p^k\mathbb{Z}_p$, where \mathbb{Z}_p is the ring of p -adic integers

Ax, Elementary theory of finite fields, in 1968:

- The theory of all $\mathbb{Z}/p\mathbb{Z}$ as p varies is decidable
- \bullet For fixed prime p the theory of $\mathbb{Z}/p^k\mathbb{Z}$ as k varies is decidable
- \bullet The theory of all ${\mathbb Z}/p^k{\mathbb Z}$ as p and k vary is decidable
- The existential theory of $\mathbb{Z}/m\mathbb{Z}$, $m \in \mathbb{Z}$, $m > 1$ is decidable

Open problem in Ax, Elementary theory of finite fields:

Is the elementary theory of $\{\mathbb{Z}/m\mathbb{Z} : m \in \mathbb{Z}, m > 1\}$ decidable?

YES due to Derakhshan and Macintyre in 2023. The proof uses the decidability of the ring of finite adèles

 $\mathbb{A}^\mathsf{f}_\mathbb{Q} = \{ f \in \prod_{\mathsf{p} \in \mathsf{P}} \mathbb{Q}_\mathsf{p} | f(\mathsf{p}) \in \mathbb{Z}_\mathsf{p} \text{ except for finitely many } \mathsf{p} \text{'s } \, \}$

p is prime iff p is irreducible iff p is maximal (i.e. M/pM is a field)

GOAL: Given $n \in \mathcal{M}$ what can we say on the model theory of $\mathcal{M}/n\mathcal{M}$?

- $n = p$ (Macintyre, 1982)
- \bullet $n=p^k$, where $p,k\in\mathcal{M},\ p$ is a prime and $k>1$ $(D'A.$ and Macintyre, $2017 < ... ?$

• $1 < n$ composite $(D'A.$ and Macintyre 2022 \lt ...?

For 2) we use mainly AKE principle in valuation theory.

p is prime iff p is irreducible iff p is maximal (i.e. M/pM is a field)

GOAL: Given $n \in \mathcal{M}$ what can we say on the model theory of $\mathcal{M}/n\mathcal{M}$?

- $n = p$ (Macintyre, 1982)
- \bullet $n=p^k$, where $p,k\in\mathcal{M},\ p$ is a prime and $k>1$ $(D'A.$ and Macintyre, $2017 < ... ?$

• $1 < n$ composite $(D'A.$ and Macintyre 2022 \lt ...?

For 2) we use mainly AKE principle in valuation theory.

p is prime iff p is irreducible iff p is maximal (i.e. M/pM is a field)

GOAL: Given $n \in \mathcal{M}$ what can we say on the model theory of $\mathcal{M}/n\mathcal{M}$?

• $n = p$ (Macintyre, 1982)

 \bullet $n=p^k$, where $p,k\in\mathcal{M},\ p$ is a prime and $k>1$ $(D'A.$ and Macintyre, $2017 < ... ?$

• $1 < n$ composite $(D'A.$ and Macintyre 2022 \lt ...?

For 2) we use mainly AKE principle in valuation theory.

p is prime iff p is irreducible iff p is maximal (i.e. M/pM is a field)

GOAL: Given $n \in \mathcal{M}$ what can we say on the model theory of $\mathcal{M}/n\mathcal{M}$?

- $n = p$ (Macintyre, 1982)
- \bullet $n=p^k$, where $p,k\in\mathcal{M},~p$ is a prime and $k>1$ (D'A. and Macintyre, $2017 < ... ?$)
- \bullet 1 $<$ n composite (D'A. and Macintyre $2022 < ... ?$)

For 2) we use mainly AKE principle in valuation theory.

1) If p is standard then $M/pM \cong \mathbb{F}_p$

2) If p is non standard then M/pM is a pseudofinite fields, i.e.

- characteristic 0 field, hence perfect
- \bullet has a unique extension of each degree $m \geq 1$
- p.a.c., i.e. every absolutely irreducible curve over M/pM has a M/pM -rational point

1) If p is standard then $M/pM \cong \mathbb{F}_p$

2) If p is non standard then M/pM is a pseudofinite fields, i.e.

- characteristic 0 field, hence perfect
- \bullet has a unique extension of each degree $m \geq 1$
- p.a.c., i.e. every absolutely irreducible curve over M/pM has a M/pM -rational point

1) If p is standard then $M/pM \cong \mathbb{F}_p$

2) If p is non standard then M/pM is a pseudofinite fields, i.e.

- characteristic 0 field, hence perfect
- has a unique extension of each degree $m \geq 1$
- \bullet p.a.c., i.e. every absolutely irreducible curve over M/pM has a M/pM -rational point

1) If p is standard then $M/pM \cong \mathbb{F}_p$

2) If p is non standard then M/pM is a pseudofinite fields, i.e.

- characteristic 0 field, hence perfect
- has a unique extension of each degree $m \geq 1$
- p.a.c., i.e. every absolutely irreducible curve over M/pM has a M/pM -rational point

Remark. The expression p^k has an unambigous meaning in any model M of PA since there is a formula $\theta(x, y, z)$ (in fact a Δ_0 -formula) in the language of PA that defines the graph of exponentiation in any model of PA.

The p-adic valuation v_p on M induces in a natural way a valuation v (a truncated valuation) on M/p^k M which takes values in [0, k] which is a Presburger TOAG.

TOAG =Truncated Ordered Abelian Groups

- Axiomatization in the language containing $+,$ <, 0, τ
- Characterization of a Presburger TOAG

• A Presburger TOAG is completely determined by the type of the penultimate element.

 $n = p^k$

Remark. The expression p^k has an unambigous meaning in any model M of PA since there is a formula $\theta(x, y, z)$ (in fact a Δ_0 -formula) in the language of PA that defines the graph of exponentiation in any model of PA.

The p-adic valuation v_p on M induces in a natural way a valuation v (a truncated valuation) on M/p^k M which takes values in [0, k] which is a Presburger TOAG.

TOAG =Truncated Ordered Abelian Groups

- Axiomatization in the language containing $+,$ <, 0, τ
- Characterization of a Presburger TOAG

• A Presburger TOAG is completely determined by the type of the penultimate element.

 $n = p^k$

Remark. The expression p^k has an unambigous meaning in any model M of PA since there is a formula $\theta(x, y, z)$ (in fact a Δ_0 -formula) in the language of PA that defines the graph of exponentiation in any model of PA.

The p-adic valuation v_p on M induces in a natural way a valuation v (a truncated valuation) on M/p^k M which takes values in [0, k] which is a Presburger TOAG.

TOAG =Truncated Ordered Abelian Groups

• Axiomatization in the language containing $+,$ <, 0, τ

• Characterization of a Presburger TOAG

• A Presburger TOAG is completely determined by the type of the penultimate element.

 $n = p^k$

Remark. The expression p^k has an unambigous meaning in any model M of PA since there is a formula $\theta(x, y, z)$ (in fact a Δ_0 -formula) in the language of PA that defines the graph of exponentiation in any model of PA.

The p-adic valuation v_p on M induces in a natural way a valuation v (a truncated valuation) on M/p^k M which takes values in [0, k] which is a Presburger TOAG.

TOAG =Truncated Ordered Abelian Groups

- Axiomatization in the language containing $+, <, 0, \tau$
- Characterization of a Presburger TOAG
- A Presburger TOAG is completely determined by the type of the penultimate element.

 $\mathcal{M}/\mathsf{p}^k\mathcal{M}$ is a Henselian local ring for any $\mathsf{p},\mathsf{k}\in\mathcal{M}$

The residue field of $\mathcal{M}/\mathsf{p}^k\mathcal{M}$ is either \mathbb{F}_p if p is standard, or a characteristic 0 pseudofinite field if p nonstandard.

The principal ideals of $\mathcal{M}/p^k\mathcal{M}$ are generated by p^j for $0 < j \leq k,$ and are linearly ordered by the divisibility condition with minimum (0) and maximum (p)

 $\mathcal{M}/\mathsf{p}^k\mathcal{M} \cong \mathsf{R}/(x)$ where $\mathsf R$ is a henselian valuation domain of characteristic 0, unramified, the same residue field, and the value group Γ of R is a \mathbb{Z} -group (i.e. a model of Presburger), x a non unit in R.

If M is nonstandard then we have two cases

Case 1. If ρ is standard then $\mathcal{M}/\rho^k\mathcal{M}$ is isomorphic to $S/\alpha S$ where $S \equiv \mathbb{Z}_p$ and $\alpha \in S$ non unit

Case 2. If p is nonstandard then $\mathcal{M}/p^k\mathcal{M}$ is isomorphic to $S/\alpha S$ where $S \equiv k[[\Gamma]]$ where k is a pseudofinite field of characteristic 0 and Γ is a \mathbb{Z} -group and $\alpha \in S$ non unit

Conversely, any such $S/\alpha S$ is elementarily equivalent to some $\mathcal{M}/p^k\mathcal{M}$ for some $\mathcal M$ model of PA.

THEOREM

Suppose S is as in Cases 1 and Case 2 above, and α is a non-unit and $\alpha \neq 0$. Then $S/\alpha S$ is elementarily equivalent to an ultraproduct of $\mathbb{Z}/p^k\mathbb{Z}$, for p prime and $k > 0$.

COROLLARY

The elementary theories of the $\mathcal{M}/\mathsf{p}^k\mathcal{M}$ are exactly the elementary theories of the $S/\alpha S$ not a unit

THEOREM

- \mathbf{D} $\mathcal{M}/\mathsf{p}^k\mathcal{M}$ are pseudofinite (or finite) rings.
- **2** The theory of the class $\{M/p^k\mathcal{M}: p, k \in \mathcal{M}, p \text{ prime}, k > 0\}$ coincides with the theory of the class $\{ \mathbb{Z}/p^m \mathbb{Z} : p, m \in \mathbb{Z} \text{ } p \text{ prime}, \text{ } m > 0 \}.$
- **3** The theory of the class $\{M/p^k\mathcal{M}: p, k \in \mathcal{M}, p \text{ prime}, k > 0\}$ is decidable (by Ax)

n composite:

•
$$
n = p_1^{k_1} \cdot \ldots \cdot p_s^{k_s}
$$
 where *s* is standard

$$
p \quad n = p_1^{k_1} \cdot \ldots \cdot p_s^{k_s} \text{ where } s \text{ is nonstandard}
$$

Case 1: this is straightfoward since

$$
\mathcal{M}/n\mathcal{M}\cong \mathcal{M}/p_1^{k_1}\mathcal{M}\times \ldots \times \mathcal{M}/p_s^{k_s}\mathcal{M}
$$

Case 2: $\mathcal{M}/n\mathcal{M}\not\cong \prod_{i\leq \mathfrak{s}}\mathcal{M}/p_i^{k_i}\mathcal{M}$ but we proved

$$
\mathcal{M}/n\mathcal{M}\equiv\prod_{i\leq s}\mathcal{M}/p_i^{k_i}\mathcal{M}
$$

Question: When is a commutative unital ring R elementarily equivalent to $\prod_{i\in I}R_i$ for some commutative unital rings R_i 's?

We isolate a set of axioms in the ring language, whose models are exactly the rings which are elementarily equivalent to a product of connected unital rings (D'A. and Macintyre, 2023)

A commutative unital ring R is connected if the only idempotents $(x^2 = x)$ are 0 and 1, and $0 \neq 1$.

Examples: integral domains, local rings

It turns out that M/nM is a model of our axioms.

$\overline{\textsf{T}_{\text{HEOREM}}}$ (Fefermann-Vaught, 1959)

There is an effective procedure such that to any \mathcal{L} -formula $\theta(x_0,\ldots,x_k)$ it associates a formula $\Phi(y_0,\ldots,y_m)$ in the language of Boolean algebras \mathcal{L}_B and a *partition*

$$
(\theta_0(x_0,\ldots,x_k),\ldots,\theta_m(x_0,\ldots,x_k))
$$

of \mathcal{L} -formulas such that for any given family of \mathcal{L} -structures $(\mathcal{A}_i)_{i\in I}$ and any $\bar{f}\in\prod_{i\in I}\mathcal{A}_i$

$$
\prod_{i\in I} \mathcal{A}_i \models \theta(\bar{f}) \quad \text{ iff } \quad \mathcal{P}(I) \models \Phi([\![\theta_0(\bar{f})]\!], \ldots, [\![\theta_m(\bar{f})]\!]),
$$

where $[\![\varphi(f)]\!] = \{i \in I : \mathcal{A}_i \models \varphi(f(i))\}$ for any \mathcal{L} -formula φ .

If $R = \prod_{i \in I} R_i$ where R_i are connected then the Boolean algebra $\mathcal{P}(I)$ is the set of idempotents of R (connectness of R_i is crucial), with a natural Boolean structure defined on it, and it is easily interpretable in R.

If R is a commutative unital ring

- \bullet $\mathbb B$ is the Boolean algebra of idempotents of R
- R_e (the fibers) for each idempotent e of R, and

 $R_{\rm e}$ is connected iff e is an atom

We work in a **one sorted** language, the ring language.

THEOREM (DM)

For every $\mathcal{L}_{\text{rings}}$ -formula $\theta(x_0, \ldots, x_k)$ there is a partition $(\theta_0(x_0,\ldots,x_k),\ldots,\theta_m(x_0,\ldots,x_k))$ of ring formulas, and a Boolean algebra formula $\psi(y_0, \ldots, y_m)$ so that for all $f_0, \ldots, f_k \in R$, where R is a ring satisfying $AXIOMS$, and $\mathbb B$ is the Boolean algebra of idempotents of R

$$
R \models \theta(\overline{f}) \quad \text{iff} \quad \mathbb{B} \models \psi([\![\theta_0(\overline{f})]\!], \dots, [\![\theta_m(\overline{f})]\!]) \tag{1}
$$

COROLLARY

 $where₁$

If R is a commutative unital ring and a model of $AXIOMS$ then $R \equiv \prod_e R_e$, e atoms of \mathbb{B} .

${\sf T}_{\rm HEOREM}$

 M/nM is a model of $AXIOMS$.

$T_{\rm HEOREM}$ (CRT)

Let M be a model of PA and A a bounded Δ_0 -definable set in M. Let f and r be Δ_0 -functions such that $f(a_1)$, $f(a_2)$ are pairwise coprime for all $a_1, a_2 \in A$ and $a_1 \neq a_2$, and $r(a) < f(a)$ for all $a \in A$. Suppose there exists $w \in M$ divisible by all elements of $f(A)$. Then there exists $u < \prod_{a \in A} f(a)$ such that $u \equiv r(a)$ (mod $f(a)$) for all $a \in A$.

Let Q be the set of maximal prime powers q dividing n .

 $r\in \mathcal{M}/n\mathcal{M}$ is an idempotent iff for each $q\in Q$, q divides r^2-r , so q divides one, and only one, of r or $r - 1$.

The atoms in $\mathbb B$ are those r s.t. for a unique $q \in Q$, $r \equiv 1 \pmod{q}$, and $r \equiv 0 \pmod{q'}$ for all other $q' \in Q$. By Δ_0 -CRT there are such r for each q.

The idempotents in $\mathbb B$ are identified with (Δ_0 -definable) subsets of Q

The atoms correspond to the subsets $Q - \{q\}$, as q varies in Q.

To each atom e we associate the unique prime power q_e such that q_e /e.

It is easy to show now that

$$
(\mathcal{M}/n\mathcal{M})_e \cong \mathcal{M}/q_e\mathcal{M}.
$$

So, the elements of the localized ring at e can be identified with elements of M which are $< q_e \le n$.

Note that $\mathcal{M}/n\mathcal{M}$ and the full product $\prod_{q\in Q}\mathcal{M}/q\mathcal{M}$ have the same idempotents.

CRT is crucial for showing that the ring M/nM satisfies our axioms. So,

$$
\mathcal{M}/\mathsf{n}\mathcal{M} \equiv \prod_{\mathsf{q}\in\mathsf{Q}}\mathcal{M}/\mathsf{q}\mathcal{M}
$$

An $\mathcal L$ -structure $\mathcal M$ is pseudofinite * if every $\mathcal L$ -sentence true in $\mathcal M$ i s true in some finite ℓ -structure.

This is equivalent to saying that M is elementarily equivalent to an ultraproduct of finite \mathcal{L} -structures.

T_{HEOREM} (D'A and Macintyre, 2024)

Let I be an index set (either finite or infinite). If $(M_i)_{i\in I}$ are pseudofinite * $\mathcal L$ -structures then $\prod_{i\in I}\mathcal M_i$ is pseudofinite * .

COROLLARY

 M/nM is a pseudofinite structure.