Residue rings of models of Peano Arithmetic

Paola D'Aquino

Università della Campania "L. Vanvitelli"

Z75 - Oxford

10 September 2024

joint work with A. Macintyre

In 2014 Zilber asked the following question:

If \mathcal{M} is a nonstandard model of full Arithmetic ($\mathcal{M} \equiv \mathbb{N}$), and *n* is a nonstandard element of \mathcal{M} congruent to 1 modulo all standard integers, does the ring $\mathcal{M}/n\mathcal{M}$ interpret Arithmetic?

NO

This motivated the model theoretic analysis of the residue rings $\mathcal{M}/n\mathcal{M}$ where \mathcal{M} is a model of Peano Arithmetic, and $1 < n \in \mathcal{M}$

Let $\mathcal{L} = \{+, \cdot, 0, 1, <\}$. A model of *PA* is the positive part of a discretely ordered ring satisfying the induction for all definable subsets

$$\forall \overline{y}((\theta(0,\overline{y}) \land \forall x(\theta(x,\overline{y}) \to \theta(x+1,\overline{y}))) \to \forall x\theta(x,\overline{y}))$$

for all formulas $\theta(x, \overline{y})$ in \mathcal{L} .

Clearly, $(\mathbb{N}, +, \cdot, 0, 1, <)$ is a model of *PA*. If $\mathcal{M} \models PA$ and $\mathcal{M} \not\cong \mathbb{N}$ then \mathcal{M} is a nonstandard models of *PA*.

The positive part of $\prod_D \mathbb{Z}$, where *D* is a non principal ultrafilter, is a non standard model of *PA*.

- If $\mathcal{M} = \mathbb{Z}$, and p is a prime in \mathbb{Z} , k > 0
- $\mathbb{Z}/p^k\mathbb{Z}$ is a Henselian local ring with maximal ideal $p\mathbb{Z}/p^k\mathbb{Z}$
- $\mathbb{Z}/p^k\mathbb{Z}$ is a finite chain ring, i.e. the ideals are linearly ordered
- $\mathbb{Z}/p^k\mathbb{Z} \cong \mathbb{Z}_p/p^k\mathbb{Z}_p$, where \mathbb{Z}_p is the ring of *p*-adic integers

Ax, Elementary theory of finite fields, in 1968:

- The theory of all $\mathbb{Z}/p\mathbb{Z}$ as p varies is decidable
- For fixed prime p the theory of $\mathbb{Z}/p^k\mathbb{Z}$ as k varies is decidable
- The theory of all $\mathbb{Z}/p^k\mathbb{Z}$ as p and k vary is decidable
- The existential theory of $\mathbb{Z}/m\mathbb{Z}$, $m \in \mathbb{Z}$, m > 1 is decidable

If $\mathcal{M} = \mathbb{Z}$, and p is a prime in \mathbb{Z} , k > 0

- $\mathbb{Z}/p^k\mathbb{Z}$ is a Henselian local ring with maximal ideal $p\mathbb{Z}/p^k\mathbb{Z}$
- $\mathbb{Z}/p^k\mathbb{Z}$ is a finite chain ring, i.e. the ideals are linearly ordered
- $\mathbb{Z}/p^k\mathbb{Z} \cong \mathbb{Z}_p/p^k\mathbb{Z}_p$, where \mathbb{Z}_p is the ring of *p*-adic integers

Ax, Elementary theory of finite fields, in 1968:

- The theory of all $\mathbb{Z}/p\mathbb{Z}$ as p varies is decidable
- For fixed prime p the theory of $\mathbb{Z}/p^k\mathbb{Z}$ as k varies is decidable
- The theory of all $\mathbb{Z}/p^k\mathbb{Z}$ as p and k vary is decidable
- The existential theory of $\mathbb{Z}/m\mathbb{Z}$, $m \in \mathbb{Z}$, m > 1 is decidable

If $\mathcal{M} = \mathbb{Z}$, and p is a prime in \mathbb{Z} , k > 0

- $\mathbb{Z}/p^k\mathbb{Z}$ is a Henselian local ring with maximal ideal $p\mathbb{Z}/p^k\mathbb{Z}$
- $\mathbb{Z}/p^k\mathbb{Z}$ is a finite chain ring, i.e. the ideals are linearly ordered
- $\mathbb{Z}/p^k\mathbb{Z}\cong\mathbb{Z}_p/p^k\mathbb{Z}_p$, where \mathbb{Z}_p is the ring of *p*-adic integers

Ax, Elementary theory of finite fields, in 1968:

- The theory of all $\mathbb{Z}/p\mathbb{Z}$ as p varies is decidable
- For fixed prime p the theory of $\mathbb{Z}/p^k\mathbb{Z}$ as k varies is decidable
- The theory of all $\mathbb{Z}/p^k\mathbb{Z}$ as p and k vary is decidable
- The existential theory of $\mathbb{Z}/m\mathbb{Z}$, $m \in \mathbb{Z}$, m > 1 is decidable

Open problem in Ax, Elementary theory of finite fields:

Is the elementary theory of $\{\mathbb{Z}/m\mathbb{Z}: m \in \mathbb{Z}, m > 1\}$ decidable?

YES due to Derakhshan and Macintyre in 2023. The proof uses the decidability of the ring of finite adèles

 $\mathbb{A}^{f}_{\mathbb{Q}} = \{ f \in \prod_{p \in P} \mathbb{Q}_{p} | f(p) \in \mathbb{Z}_{p} \text{ except for finitely many } p's \}$

Let $\mathcal{M} \models PA$ non standard, and $p \in \mathcal{M}$ then

p is prime iff p is irreducible iff p is maximal (i.e. $\mathcal{M}/p\mathcal{M}$ is a field)

GOAL: Given $n \in \mathcal{M}$ what can we say on the model theory of $\mathcal{M}/n\mathcal{M}$?

- *n* = *p* (Macintyre, 1982)
- $n = p^k$, where $p, k \in \mathcal{M}$, p is a prime and k > 1(D'A. and Macintyre, 2017 < ... ?)

• 1 < *n* composite (D'A. and Macintyre 2022 < ... ?)

For 2) we use mainly AKE principle in valuation theory.

Let $\mathcal{M} \models \mathit{PA}$ non standard, and $\mathit{p} \in \mathcal{M}$ then

p is prime iff *p* is irreducible iff *p* is maximal (i.e. $\mathcal{M}/p\mathcal{M}$ is a field)

GOAL: Given $n \in M$ what can we say on the model theory of M/nM ?

- *n* = *p* (Macintyre, 1982)
- $n = p^k$, where $p, k \in \mathcal{M}$, p is a prime and k > 1(D'A. and Macintyre, 2017 < ... ?)

• 1 < *n* composite (D'A. and Macintyre 2022 < ... ?)

For 2) we use mainly AKE principle in valuation theory.

Let $\mathcal{M} \models \mathit{PA}$ non standard, and $\mathit{p} \in \mathcal{M}$ then

p is prime iff *p* is irreducible iff *p* is maximal (i.e. $\mathcal{M}/p\mathcal{M}$ is a field)

GOAL: Given $n \in \mathcal{M}$ what can we say on the model theory of $\mathcal{M}/n\mathcal{M}$?

• *n* = *p* (Macintyre, 1982)

• $n = p^k$, where $p, k \in \mathcal{M}$, p is a prime and k > 1(D'A. and Macintyre, 2017 < ... ?)

• 1 < *n* composite (D'A. and Macintyre 2022 < ... ?)

For 2) we use mainly AKE principle in valuation theory.

Let $\mathcal{M} \models P\!A$ non standard, and $p \in \mathcal{M}$ then

p is prime iff *p* is irreducible iff *p* is maximal (i.e. $\mathcal{M}/p\mathcal{M}$ is a field)

GOAL: Given $n \in \mathcal{M}$ what can we say on the model theory of $\mathcal{M}/n\mathcal{M}$?

- *n* = *p* (Macintyre, 1982)
- $n = p^k$, where $p, k \in \mathcal{M}$, p is a prime and k > 1(D'A. and Macintyre, 2017 < ... ?)
- 1 < n composite (D'A. and Macintyre 2022 < ... ?)

For 2) we use mainly AKE principle in valuation theory.

1) If p is standard then $\mathcal{M}/p\mathcal{M} \cong \mathbb{F}_p$

2) If p is non standard then $\mathcal{M}/p\mathcal{M}$ is a pseudofinite fields, i.e.

- characteristic 0 field, hence perfect
- has a unique extension of each degree $m \ge 1$
- p.a.c., i.e. every absolutely irreducible curve over *M/pM* has a *M/pM*-rational point

1) If p is standard then $\mathcal{M}/p\mathcal{M}\cong\mathbb{F}_p$

2) If p is non standard then $\mathcal{M}/p\mathcal{M}$ is a pseudofinite fields, i.e.

- characteristic 0 field, hence perfect
- has a unique extension of each degree $m \ge 1$
- p.a.c., i.e. every absolutely irreducible curve over $\mathcal{M}/p\mathcal{M}$ has a $\mathcal{M}/p\mathcal{M}$ -rational point

1) If p is standard then $\mathcal{M}/p\mathcal{M} \cong \mathbb{F}_p$

2) If p is non standard then $\mathcal{M}/p\mathcal{M}$ is a pseudofinite fields, i.e.

- characteristic 0 field, hence perfect
- has a unique extension of each degree $m \ge 1$
- p.a.c., i.e. every absolutely irreducible curve over $\mathcal{M}/p\mathcal{M}$ has a $\mathcal{M}/p\mathcal{M}$ -rational point

1) If p is standard then $\mathcal{M}/p\mathcal{M} \cong \mathbb{F}_p$

2) If p is non standard then $\mathcal{M}/p\mathcal{M}$ is a pseudofinite fields, i.e.

- characteristic 0 field, hence perfect
- has a unique extension of each degree $m \ge 1$
- p.a.c., i.e. every absolutely irreducible curve over $\mathcal{M}/p\mathcal{M}$ has a $\mathcal{M}/p\mathcal{M}$ -rational point

Remark. The expression p^k has an unambigous meaning in any model \mathcal{M} of PA since there is a formula $\theta(x, y, z)$ (in fact a Δ_0 -formula) in the language of PA that defines the graph of exponentiation in any model of PA.

The *p*-adic valuation v_p on \mathcal{M} induces in a natural way a valuation v (a *truncated valuation*) on $\mathcal{M}/p^k \mathcal{M}$ which takes values in [0, k] which is a Presburger TOAG.

TOAG = Truncated Ordered Abelian Groups

- \bullet Axiomatization in the language containing $+,<,0,\tau$
- Characterization of a Presburger TOAG
- A Presburger TOAG is completely determined by the type of the penultimate element.

Remark. The expression p^k has an unambigous meaning in any model \mathcal{M} of PA since there is a formula $\theta(x, y, z)$ (in fact a Δ_0 -formula) in the language of PA that defines the graph of exponentiation in any model of PA.

The *p*-adic valuation v_p on \mathcal{M} induces in a natural way a valuation v (a *truncated valuation*) on $\mathcal{M}/p^k \mathcal{M}$ which takes values in [0, k] which is a Presburger TOAG.

TOAG = Truncated Ordered Abelian Groups

- \bullet Axiomatization in the language containing $+,<,0,\tau$
- Characterization of a Presburger TOAG
- A Presburger TOAG is completely determined by the type of the penultimate element.

Remark. The expression p^k has an unambigous meaning in any model \mathcal{M} of PA since there is a formula $\theta(x, y, z)$ (in fact a Δ_0 -formula) in the language of PA that defines the graph of exponentiation in any model of PA.

The *p*-adic valuation v_p on \mathcal{M} induces in a natural way a valuation v (a *truncated valuation*) on $\mathcal{M}/p^k \mathcal{M}$ which takes values in [0, k] which is a Presburger TOAG.

TOAG = Truncated Ordered Abelian Groups

 \bullet Axiomatization in the language containing $+,<,0,\tau$

• Characterization of a Presburger TOAG

• A Presburger TOAG is completely determined by the type of the penultimate element.

Remark. The expression p^k has an unambigous meaning in any model \mathcal{M} of PA since there is a formula $\theta(x, y, z)$ (in fact a Δ_0 -formula) in the language of PA that defines the graph of exponentiation in any model of PA.

The *p*-adic valuation v_p on \mathcal{M} induces in a natural way a valuation v (a *truncated valuation*) on $\mathcal{M}/p^k \mathcal{M}$ which takes values in [0, k] which is a Presburger TOAG.

TOAG = Truncated Ordered Abelian Groups

- \bullet Axiomatization in the language containing $+,<,0,\tau$
- Characterization of a Presburger TOAG
- A Presburger TOAG is completely determined by the type of the penultimate element.

 $\mathcal{M}/p^k\mathcal{M}$ is a Henselian local ring for any $p,k\in\mathcal{M}$

The residue field of $\mathcal{M}/p^k \mathcal{M}$ is either \mathbb{F}_p if p is standard, or a characteristic 0 pseudofinite field if p nonstandard.

The principal ideals of $\mathcal{M}/p^k \mathcal{M}$ are generated by p^j for $0 < j \le k$, and are linearly ordered by the divisibility condition with minimum (0) and maximum (p)

 $\mathcal{M}/p^k \mathcal{M} \cong R/(x)$ where R is a henselian valuation domain of characteristic 0, unramified, the same residue field, and the value group Γ of R is a \mathbb{Z} -group (i.e. a model of Presburger), x a non unit in R.

If $\mathcal M$ is nonstandard then we have two cases

Case 1. If p is standard then $\mathcal{M}/p^k \mathcal{M}$ is isomorphic to $S/\alpha S$ where $S \equiv \mathbb{Z}_p$ and $\alpha \in S$ non unit

Case 2. If p is nonstandard then $\mathcal{M}/p^k \mathcal{M}$ is isomorphic to $S/\alpha S$ where $S \equiv k[[\Gamma]]$ where k is a pseudofinite field of characteristic 0 and Γ is a \mathbb{Z} -group and $\alpha \in S$ non unit

Conversely, any such $S/\alpha S$ is elementarily equivalent to some $\mathcal{M}/p^k \mathcal{M}$ for some \mathcal{M} model of PA.

THEOREM

Suppose S is as in Cases 1 and Case 2 above, and α is a non-unit and $\alpha \neq 0$. Then $S/\alpha S$ is elementarily equivalent to an ultraproduct of $\mathbb{Z}/p^k\mathbb{Z}$, for p prime and k > 0.

COROLLARY

The elementary theories of the $\mathcal{M}/p^k\mathcal{M}$ are exactly the elementary theories of the $S/\alpha S$ not a unit

Theorem

- $\mathcal{M}/p^k\mathcal{M}$ are pseudofinite (or finite) rings.
- Observe The theory of the class {M/p^kM : p, k ∈ M, p prime, k > 0} coincides with the theory of the class {Z/p^mZ : p, m ∈ Z p prime, m > 0}.
- The theory of the class $\{\mathcal{M}/p^k\mathcal{M}: p, k \in \mathcal{M}, p \text{ prime, } k > 0\}$ is decidable (by Ax)

n composite:

•
$$n = p_1^{k_1} \cdot \ldots \cdot p_s^{k_s}$$
 where s is standard

2
$$n = p_1^{k_1} \cdot \ldots \cdot p_s^{k_s}$$
 where s is nonstandard

Case 1: this is straightfoward since

$$\mathcal{M}/n\mathcal{M}\cong \mathcal{M}/p_1^{k_1}\mathcal{M} imes\ldots imes\mathcal{M}/p_s^{k_s}\mathcal{M}$$

Case 2: $\mathcal{M}/n\mathcal{M} \ncong \prod_{i \leq s} \mathcal{M}/p_i^{k_i}\mathcal{M}$ but we proved

$$\mathcal{M}/n\mathcal{M}\equiv\prod_{i\leq s}\mathcal{M}/p_i^{k_i}\mathcal{M}$$

Question: When is a commutative unital ring *R* elementarily equivalent to $\prod_{i \in I} R_i$ for some commutative unital rings R_i 's?

We isolate a set of axioms in the ring language, whose models are exactly the rings which are elementarily equivalent to a product of connected unital rings (D'A. and Macintyre, 2023)

A commutative unital ring R is connected if the only idempotents $(x^2 = x)$ are 0 and 1, and $0 \neq 1$.

Examples: integral domains, local rings

It turns out that $\mathcal{M}/n\mathcal{M}$ is a model of our axioms.

THEOREM (Fefermann-Vaught, 1959)

There is an effective procedure such that to any \mathcal{L} -formula $\theta(x_0, \ldots, x_k)$ it associates a formula $\Phi(y_0, \ldots, y_m)$ in the language of Boolean algebras \mathcal{L}_B and a *partition*

$$(\theta_0(x_0,\ldots,x_k),\ldots,\theta_m(x_0,\ldots,x_k))$$

of \mathcal{L} -formulas such that for any given family of \mathcal{L} -structures $(\mathcal{A}_i)_{i \in I}$ and any $\overline{f} \in \prod_{i \in I} \mathcal{A}_i$

$$\prod_{i\in I} \mathcal{A}_i \models \theta(\overline{f}) \quad \text{iff} \quad \mathcal{P}(I) \models \Phi(\llbracket \theta_0(\overline{f}) \rrbracket, \dots, \llbracket \theta_m(\overline{f}) \rrbracket),$$

where $\llbracket \varphi(\overline{f}) \rrbracket = \{i \in I : \mathcal{A}_i \models \varphi(\overline{f(i)})\}$ for any \mathcal{L} -formula φ .

If $R = \prod_{i \in I} R_i$ where R_i are connected then the Boolean algebra $\mathcal{P}(I)$ is the set of idempotents of R (connectness of R_i is crucial), with a natural Boolean structure defined on it, and it is easily interpretable in R.

If R is a commutative unital ring

- $\mathbb B$ is the Boolean algebra of idempotents of R
- R_e (the fibers) for each idempotent e of R, and

 R_e is connected iff e is an atom

We work in a **one sorted** language, the ring language.

THEOREM (DM)

For every \mathcal{L}_{rings} -formula $\theta(x_0, \ldots, x_k)$ there is a partition $(\theta_0(x_0, \ldots, x_k), \ldots, \theta_m(x_0, \ldots, x_k))$ of ring formulas, and a Boolean algebra formula $\psi(y_0, \ldots, y_m)$ so that for all $f_0, \ldots, f_k \in R$, where R is a ring satisfying *AXIOMS*, and \mathbb{B} is the Boolean algebra of idempotents of R

$$R \models \theta(\overline{f}) \quad \text{iff} \quad \mathbb{B} \models \psi(\llbracket \theta_0(\overline{f}) \rrbracket, \dots, \llbracket \theta_m(\overline{f}) \rrbracket) \tag{1}$$
$$\overline{f} = f_0, \dots, f_k.$$

COROLLARY

where

If R is a commutative unital ring and a model of AXIOMS then $R \equiv \prod_e R_e$, e atoms of \mathbb{B} .

THEOREM

 $\mathcal{M}/n\mathcal{M}$ is a model of AXIOMS.

THEOREM (CRT)

Let \mathcal{M} be a model of PA and A a bounded Δ_0 -definable set in \mathcal{M} . Let f and r be Δ_0 -functions such that $f(a_1), f(a_2)$ are pairwise coprime for all $a_1, a_2 \in A$ and $a_1 \neq a_2$, and r(a) < f(a) for all $a \in A$. Suppose there exists $w \in \mathcal{M}$ divisible by all elements of f(A). Then there exists $u < \prod_{a \in A} f(a)$ such that $u \equiv r(a) \pmod{f(a)}$ for all $a \in A$. Let Q be the set of maximal prime powers q dividing n.

 $r \in \mathcal{M}/n\mathcal{M}$ is an idempotent iff for each $q \in Q$, q divides $r^2 - r$, so q divides one, and only one, of r or r - 1.

The atoms in \mathbb{B} are those r s.t. for a unique $q \in Q$, $r \equiv 1 \pmod{q}$, and $r \equiv 0 \pmod{q'}$ for all other $q' \in Q$. By Δ_0 -CRT there are such r for each q.

The idempotents in ${\mathbb B}$ are identified with ($\Delta_0\text{-definable})$ subsets of Q

The atoms correspond to the subsets $Q - \{q\}$, as q varies in Q.

To each atom e we associate the unique prime power q_e such that $q_e \not| e$.

It is easy to show now that

$$(\mathcal{M}/n\mathcal{M})_e \cong \mathcal{M}/q_e\mathcal{M}.$$

So, the elements of the localized ring at e can be identified with elements of \mathcal{M} which are $< q_e \leq n$.

Note that $\mathcal{M}/n\mathcal{M}$ and the full product $\prod_{q \in Q} \mathcal{M}/q\mathcal{M}$ have the same idempotents.

CRT is crucial for showing that the ring $\mathcal{M}/n\mathcal{M}$ satisfies our axioms. So,

$$\mathcal{M}/n\mathcal{M}\equiv\prod_{q\in Q}\mathcal{M}/q\mathcal{M}$$

An \mathcal{L} -structure \mathcal{M} is pseudofinite^{*} if every \mathcal{L} -sentence true in \mathcal{M} is true in some finite \mathcal{L} -structure.

This is equivalent to saying that ${\cal M}$ is elementarily equivalent to an ultraproduct of finite ${\cal L}\mbox{-structures}.$

THEOREM (D'A and Macintyre, 2024)

Let *I* be an index set (either finite or infinite). If $(\mathcal{M}_i)_{i \in I}$ are pseudofinite^{*} \mathcal{L} -structures then $\prod_{i \in I} \mathcal{M}_i$ is pseudofinite^{*}.

COROLLARY

 $\mathcal{M}/\mathit{n}\mathcal{M}$ is a pseudofinite structure.