Complex field with quasiminimal structure

Anna Dmitrieva

University of East Anglia

September 10, 2024

Anna Dmitrieva Complex field with quasiminimal structure

• The structure $\mathbb{C}_{\mathrm{field}} = (\mathbb{C}; +, \cdot)$ is strongly minimal.

Quasiminimality Conjecture

- The structure $\mathbb{C}_{\mathrm{field}} = (\mathbb{C}; +, \cdot)$ is strongly minimal.
- In $\mathbb{C}_{exp} = (\mathbb{C}; +, \cdot, exp)$ the ring of integers is definable.

Quasiminimality Conjecture

- The structure $\mathbb{C}_{\mathrm{field}} = (\mathbb{C}; +, \cdot)$ is strongly minimal.
- In $\mathbb{C}_{\text{exp}} = (\mathbb{C}; +, \cdot, \text{exp})$ the ring of integers is definable.

Definition

A structure ${\cal M}$ is quasiminimal if every definable subset of ${\cal M}$ is either countable or cocountable.

Quasiminimality Conjecture

- The structure $\mathbb{C}_{\mathrm{field}} = (\mathbb{C}; +, \cdot)$ is strongly minimal.
- In $\mathbb{C}_{\text{exp}} = (\mathbb{C}; +, \cdot, \text{exp})$ the ring of integers is definable.

Definition

A structure ${\cal M}$ is quasiminimal if every definable subset of ${\cal M}$ is either countable or cocountable.

Zilber's quasiminimality conjecture (1997)

 \mathbb{C}_{exp} is quasiminimal.

 Use Hrushovski's method to construct a quasiminimal exponential field B_{exp}.

- Use Hrushovski's method to construct a quasiminimal exponential field B_{exp}.
- Then \mathbb{B}_{exp} is a unique model of size continuum satisfying a list of axioms in $\mathcal{L}_{\omega_1,\omega}(Q)$.

- Use Hrushovski's method to construct a quasiminimal exponential field B_{exp}.
- Then \mathbb{B}_{exp} is a unique model of size continuum satisfying a list of axioms in $\mathcal{L}_{\omega_{1},\omega}(Q)$.
- Those axioms include:

- Use Hrushovski's method to construct a quasiminimal exponential field B_{exp}.
- Then \mathbb{B}_{exp} is a unique model of size continuum satisfying a list of axioms in $\mathcal{L}_{\omega_{1},\omega}(Q)$.
- Those axioms include:
 - Countable Closure Property,

- Use Hrushovski's method to construct a quasiminimal exponential field B_{exp}.
- Then \mathbb{B}_{exp} is a unique model of size continuum satisfying a list of axioms in $\mathcal{L}_{\omega_1,\omega}(Q)$.
- Those axioms include:
 - Countable Closure Property,
 - Schanuel Conjecture,

- Use Hrushovski's method to construct a quasiminimal exponential field B_{exp}.
- Then \mathbb{B}_{exp} is a unique model of size continuum satisfying a list of axioms in $\mathcal{L}_{\omega_1,\omega}(Q)$.
- Those axioms include:
 - Countable Closure Property,
 - Schanuel Conjecture,
 - Strong Exponential-Algebraic Closedness.

- Use Hrushovski's method to construct a quasiminimal exponential field B_{exp}.
- Then B_{exp} is a unique model of size continuum satisfying a list of axioms in L_{ω1,ω}(Q).
- Those axioms include:
 - Countable Closure Property,
 - Schanuel Conjecture,
 - Strong Exponential-Algebraic Closedness.

Theorem (Zilber, 2005)

If $\mathbb{C}_{\mathsf{exp}}$ satisfies SC and SEAC, then $\mathbb{C}_{\mathsf{exp}}$ is quasiminimal.

- Use Hrushovski's method to construct a quasiminimal exponential field B_{exp}.
- Then \mathbb{B}_{exp} is a unique model of size continuum satisfying a list of axioms in $\mathcal{L}_{\omega_1,\omega}(Q)$.
- Those axioms include:
 - Countable Closure Property,
 - Schanuel Conjecture,
 - Strong Exponential-Algebraic Closedness.

Theorem (Zilber, 2005)

If \mathbb{C}_{exp} satisfies SC and SEAC, then \mathbb{C}_{exp} is quasiminimal.

In 2018 Bays and Kirby introduced a method requiring only Countable Closure Property and Exponential-Algebraic Closedness. • What if we replace the map exp with another function (or a function-like object)?

- What if we replace the map exp with another function (or a function-like object)?
- Most cases seem to behave similarly, for example, $(\mathbb{C}; +, \cdot, \wp)$.

- What if we replace the map exp with another function (or a function-like object)?
- Most cases seem to behave similarly, for example, $(\mathbb{C}; +, \cdot, \wp)$.
- If we restrict to entire (holomorphic on C) functions, there are no known examples of f with (C; +, ⋅, f) non-quasiminimal.

- What if we replace the map exp with another function (or a function-like object)?
- Most cases seem to behave similarly, for example, $(\mathbb{C}; +, \cdot, \wp)$.
- If we restrict to entire (holomorphic on C) functions, there are no known examples of f with (C; +, ⋅, f) non-quasiminimal.

Open Question (Koiran)

Let \mathcal{F} be the set of all unary entire complex functions.

- What if we replace the map exp with another function (or a function-like object)?
- Most cases seem to behave similarly, for example, $(\mathbb{C}; +, \cdot, \wp)$.
- If we restrict to entire (holomorphic on C) functions, there are no known examples of f with (C; +, ⋅, f) non-quasiminimal.

Open Question (Koiran)

Let \mathcal{F} be the set of all unary entire complex functions. Is $(\mathbb{C}; +, \cdot, \mathcal{F})$ quasiminimal?

- What if we replace the map exp with another function (or a function-like object)?
- Most cases seem to behave similarly, for example, $(\mathbb{C}; +, \cdot, \wp)$.
- If we restrict to entire (holomorphic on C) functions, there are no known examples of f with (C; +, ⋅, f) non-quasiminimal.

Open Question (Koiran)

Let \mathcal{F} be the set of all unary entire complex functions. Is $(\mathbb{C}; +, \cdot, \mathcal{F})$ quasiminimal?

However, there are functions $f : \mathbb{C}^2 \to \mathbb{C}^2$ whose image is open but not dense, making $(\mathbb{C}; +, \cdot, f)$ non-quasiminimal.

• $\mathbb{C}_{\mathbb{Z}} = (\mathbb{C}; +, \cdot, \mathbb{Z})$ by having the same automorphisms as $\mathbb{C}_{\mathrm{field}}$;

C_Z = (C; +, ·, Z) by having the same automorphisms as C_{field};
C_{C-powers} = (C; +, ·, (Γ_λ)_{λ∈C}), where

$${\sf \Gamma}_\lambda=\{(\exp(z),\exp(\lambda z)):z\in{\Bbb C}\},$$

by proving analogues of CCP and EAC (Gallinaro-Kirby, 2024);

C_Z = (C; +, ·, Z) by having the same automorphisms as C_{field};
C_{C-powers} = (C; +, ·, (Γ_λ)_{λ∈C}), where

$${\sf \Gamma}_\lambda = \{(\exp(z),\exp(\lambda z)): z\in {\Bbb C}\},$$

by proving analogues of CCP and EAC (Gallinaro-Kirby, 2024); • $\mathbb{C}_{AE} = (\mathbb{C}; +, \cdot, \Gamma_{AE})$, where

$$\Gamma_{\mathrm{AE}} = \{(x, y) \in \mathbb{C}^2 : y = e^{x+q+2\pi i r} \text{ for some } q, r \in \mathbb{Q}\},$$

also by proving analogues of CCP and EAC (Kirby, 2019).

Correspondence between two elliptic curves

Let E_1 and E_2 be two complex elliptic curves with exponential maps \exp_1 and \exp_2 , and $\Gamma = \{(\exp_1(z), \exp_2(z)) : z \in \mathbb{C}\} \subseteq E_1 \times E_2$.

Correspondence between two elliptic curves

Let E_1 and E_2 be two complex elliptic curves with exponential maps \exp_1 and \exp_2 , and $\Gamma = \{(\exp_1(z), \exp_2(z)) : z \in \mathbb{C}\} \subseteq E_1 \times E_2$.

Correspondence between two elliptic curves

Let E_1 and E_2 be two complex elliptic curves with exponential maps \exp_1 and \exp_2 , and $\Gamma = \{(\exp_1(z), \exp_2(z)) : z \in \mathbb{C}\} \subseteq E_1 \times E_2$.

Theorem (AD)

The structure $\mathbb{C}_{corr} = (\mathbb{C}; +, \cdot, \Gamma)$ is quasiminimal.

• The structure \mathbb{C}_{corr} is a reduct of $(\mathbb{C}; +, \cdot, \wp_1, \wp_2)$.

- The structure \mathbb{C}_{corr} is a reduct of $(\mathbb{C}; +, \cdot, \wp_1, \wp_2)$.
- $\bullet\,$ The proof consists of showing analogues of CCP and EAC, similar to the proof for $\mathbb{C}_{AE}.$

- The structure \mathbb{C}_{corr} is a reduct of $(\mathbb{C}; +, \cdot, \wp_1, \wp_2)$.
- $\bullet\,$ The proof consists of showing analogues of CCP and EAC, similar to the proof for $\mathbb{C}_{AE}.$
- In the general case a fiber of Γ is countable and dense, serving as an analogue of $\mathbb{Q} + 2\pi i \mathbb{Q}$.

• $T_{\rm gf}$ is the first-order theory axiomatizing an algebraically closed field of char 0 with a function g on it satisfying stronger versions of SC and SEAC:

- $T_{\rm gf}$ is the first-order theory axiomatizing an algebraically closed field of char 0 with a function g on it satisfying stronger versions of SC and SEAC:
 - Schanuel property: for distinct a_1, \ldots, a_n , we have $\operatorname{td}(a_1, \ldots, a_n, g(a_1), \ldots, g(a_n)/\mathbb{Q}) \ge n$,

- $T_{\rm gf}$ is the first-order theory axiomatizing an algebraically closed field of char 0 with a function g on it satisfying stronger versions of SC and SEAC:
 - Schanuel property: for distinct a_1, \ldots, a_n , we have $\operatorname{td}(a_1, \ldots, a_n, g(a_1), \ldots, g(a_n)/\mathbb{Q}) \ge n$,
 - Existential closedness: for any algebraic variety V over \bar{c} satisfying certain conditions there are distinct a_1, \ldots, a_n with $a_i \notin \bar{c}$ such that $(a_1, \ldots, a_n, g(a_1), \ldots, g(a_n)) \in V$.

- $T_{\rm gf}$ is the first-order theory axiomatizing an algebraically closed field of char 0 with a function g on it satisfying stronger versions of SC and SEAC:
 - Schanuel property: for distinct a_1, \ldots, a_n , we have $\operatorname{td}(a_1, \ldots, a_n, g(a_1), \ldots, g(a_n)/\mathbb{Q}) \ge n$,
 - Existential closedness: for any algebraic variety V over \bar{c} satisfying certain conditions there are distinct a_1, \ldots, a_n with $a_i \notin \bar{c}$ such that $(a_1, \ldots, a_n, g(a_1), \ldots, g(a_n)) \in V$.
- Zilber showed that T_{gf} is consistent and complete, ω -stable and has Quantifier Elimination in a certain language extension.

- $T_{\rm gf}$ is the first-order theory axiomatizing an algebraically closed field of char 0 with a function g on it satisfying stronger versions of SC and SEAC:
 - Schanuel property: for distinct a_1, \ldots, a_n , we have $\operatorname{td}(a_1, \ldots, a_n, g(a_1), \ldots, g(a_n)/\mathbb{Q}) \ge n$,
 - Existential closedness: for any algebraic variety V over \bar{c} satisfying certain conditions there are distinct a_1, \ldots, a_n with $a_i \notin \bar{c}$ such that $(a_1, \ldots, a_n, g(a_1), \ldots, g(a_n)) \in V$.
- Zilber showed that T_{gf} is consistent and complete, ω -stable and has Quantifier Elimination in a certain language extension.
- Wilkie and Koiran provided an explicit family of examples of entire generic functions on \mathbb{C} , inspired by Liouville numbers.

Theorem (AD) • Let $g : \mathbb{C} \to \mathbb{C}$ be a entire generic function. Then $\mathbb{C}_g = (\mathbb{C}; +, \cdot, g)$ is quasiminimal.

- Let $g : \mathbb{C} \to \mathbb{C}$ be a entire generic function. Then $\mathbb{C}_g = (\mathbb{C}; +, \cdot, g)$ is quasiminimal.
- ② If $g_1, g_2 : \mathbb{C} \to \mathbb{C}$ are entire generic functions, then \mathbb{C}_{g_1} and \mathbb{C}_{g_2} are isomorphic.

- Let $g : \mathbb{C} \to \mathbb{C}$ be a entire generic function. Then $\mathbb{C}_g = (\mathbb{C}; +, \cdot, g)$ is quasiminimal.
- ② If $g_1, g_2 : \mathbb{C} \to \mathbb{C}$ are entire generic functions, then \mathbb{C}_{g_1} and \mathbb{C}_{g_2} are isomorphic.
 - The proof roughly follows the strategy outlined by Zilber in 2005.

- Let $g : \mathbb{C} \to \mathbb{C}$ be a entire generic function. Then $\mathbb{C}_g = (\mathbb{C}; +, \cdot, g)$ is quasiminimal.
- ② If $g_1, g_2 : \mathbb{C} \to \mathbb{C}$ are entire generic functions, then \mathbb{C}_{g_1} and \mathbb{C}_{g_2} are isomorphic.
 - The proof roughly follows the strategy outlined by Zilber in 2005.
 - Quasiminimality follows from CCP and Quantifier Elimination.

- Let $g : \mathbb{C} \to \mathbb{C}$ be a entire generic function. Then $\mathbb{C}_g = (\mathbb{C}; +, \cdot, g)$ is quasiminimal.
- ② If $g_1, g_2 : \mathbb{C} \to \mathbb{C}$ are entire generic functions, then \mathbb{C}_{g_1} and \mathbb{C}_{g_2} are isomorphic.
 - The proof roughly follows the strategy outlined by Zilber in 2005.
 - Quasiminimality follows from CCP and Quantifier Elimination.
 - Categoricity follows from the uniqueness of prime models over sets.

- Zilber's quasiminimality conjecture
- 2 Replacing exp
- S Examples of quasiminimal structure
- Orrespondence between two elliptic curves
- **•** Theory of a generic function

Thank you!