On Zilber's Trichotomy

Assaf Hasson

Department of Mathematics Ben Gurion University

Sept. 10, 2024

From conjecture to principle Toward a proof of the restricted conjectures Hausdorff Geometric Structures

Genesis

From theorems To a conjecture

• Łos' conjecture and Morley's theorem.

э

From conjecture to principle Toward a proof of the restricted conjectures Hausdorff Geometric Structures

Genesis

From theorems To a conjecture

- Łos' conjecture and Morley's theorem.
- Baldwin-Lachlan draws attention to the role of strongly minimal sets in the analysis of ℵ₁-categorical structures.

From conjecture to principle Toward a proof of the restricted conjectures Hausdorff Geometric Structures

Genesis

From theorems To a conjecture

- Łos' conjecture and Morley's theorem.
- Baldwin-Lachlan draws attention to the role of strongly minimal sets in the analysis of ℵ₁-categorical structures.
- Zilber's solution of the non-finite axiomatizability of totally categorical theories.

From conjecture to principle Toward a proof of the restricted conjectures Hausdorff Geometric Structures

Genesis

From theorems To a conjecture

- Łos' conjecture and Morley's theorem.
- Baldwin-Lachlan draws attention to the role of strongly minimal sets in the analysis of ℵ₁-categorical structures.
- Zilber's solution of the non-finite axiomatizability of totally categorical theories.

Zilber's proof uses, crucially, a weak trichotomy involving the geometry of strongly minimal sets.

From conjecture to principle Toward a proof of the restricted conjectures Hausdorff Geometric Structures From theorems To a conjecture

A quick reminder

Strongly minimal sets and their geometries

- A definable set *S* in a saturated structure *M* is strongly minimal if every definable set subset of *S* is either finite or co-finite.
- A strongly minimal structure satisfies the Exchange Principle (a ∈ acl(Ab) \ acl(A) ⇒ b ∈ acl(Aa))).
- So $(S, \operatorname{acl}(\cdot))$ is a pre geometry.
- A pre-geometry is disintegrated if $cl(A) = \bigcup_{a \in A} cl(a)$.
- A pre-geometry is locally modular if it is either trivial or the pre geometry of a linear space (affine, linear or projective) over a division ring.

From theorems To a conjecture

From conjecture to principle Toward a proof of the restricted conjectures Hausdorff Geometric Structures

Some parts of Zilber's proof

• A totally categorical strongly minimal set is locally modular.

From theorems To a conjecture

Some parts of Zilber's proof

- A totally categorical strongly minimal set is locally modular.
- Locally modular non-trivial strongly minimal sets are (close to) linear spaces.

From theorems To a conjecture

From conjecture to principle Toward a proof of the restricted conjectures Hausdorff Geometric Structures

Some parts of Zilber's proof

- A totally categorical strongly minimal set is locally modular.
- Locally modular non-trivial strongly minimal sets are (close to) linear spaces.
- A true (weak) trichotomy: A non locally modular strongly minimal set interprets a pseudo-plane.
- In Zilber's terminology: the geometry of a strongly minimal set is disintegrated, locally projective or field-like.

From theorems To a conjecture

From conjecture to principle Toward a proof of the restricted conjectures Hausdorff Geometric Structures

Some parts of Zilber's proof

- A totally categorical strongly minimal set is locally modular.
- Locally modular non-trivial strongly minimal sets are (close to) linear spaces.
- A true (weak) trichotomy: A non locally modular strongly minimal set interprets a pseudo-plane.
- In Zilber's terminology: the geometry of a strongly minimal set is disintegrated, locally projective or field-like.

Continuations include: Non-finite axiomizability of totally categorical theories, the theory of smoothly approximable structures, locally modular regular types...

From conjecture to principle Toward a proof of the restricted conjectures Hausdorff Geometric Structures From theorems To a conjecture

The Trichotomy Conjecture

Zilber's Conjecture

The geometry of any strongly minimal set is either trivial, that of a definable linear space, or that of a definable (pure) algebraically closed field.

From conjecture to principle Toward a proof of the restricted conjectures Hausdorff Geometric Structures From theorems To a conjecture

The Trichotomy Conjecture

Zilber's Conjecture

The geometry of any strongly minimal set is either trivial, that of a definable linear space, or that of a definable (pure) algebraically closed field.

This conjecture would imply:

The algebraicity conjecture

A simple non-abelian group of finite Morley Rank is an algebraic group.

A wrong conjecture Refusing to leave the stage

Hrushovski's factory for counter examples

Hrushovski's constructions

- There is a continuum of non-locally modular geometries of *ab initio* strongly minimal sets where no group is interpretable.
- (Essentially) any two strongly minimal structure can be fused into a strongly minimal structure having both as reducts.

A wrong conjecture Refusing to leave the stage

Hrushovski's factory for counter examples

Hrushovski's constructions

- There is a continuum of non-locally modular geometries of *ab initio* strongly minimal sets where no group is interpretable.
- (Essentially) any two strongly minimal structure can be fused into a strongly minimal structure having both as reducts.

New questions -the road not taken

• Pillay conjectured: For all *n* there exists a strongly minimal set whose geometry is *n*-ample non-(n + 1)-ample.

A wrong conjecture Refusing to leave the stage

Hrushovski's factory for counter examples

Hrushovski's constructions

- There is a continuum of non-locally modular geometries of *ab initio* strongly minimal sets where no group is interpretable.
- (Essentially) any two strongly minimal structure can be fused into a strongly minimal structure having both as reducts.

New questions -the road not taken

- Pillay conjectured: For all *n* there exists a strongly minimal set whose geometry is *n*-ample non-(n + 1)-ample.
- e How to classify the hoard of geometries of *ab initio* strongly minimal structures?

A wrong conjecture Refusing to leave the stage

Hrushovski's factory for counter examples

Hrushovski's constructions

- There is a continuum of non-locally modular geometries of *ab initio* strongly minimal sets where no group is interpretable.
- (Essentially) any two strongly minimal structure can be fused into a strongly minimal structure having both as reducts.

New questions -the road not taken

- Pillay conjectured: For all *n* there exists a strongly minimal set whose geometry is *n*-ample non-(n + 1)-ample.
- e How to classify the hoard of geometries of *ab initio* strongly minimal structures?
- Is there any hope of an (intrinsic) classification of the geometries of "fused" strongly minimal theories.

A wrong conjecture Refusing to leave the stage

But not all is lost

Special cases

The trichotomy is true in many natural settings:

- **1** It is true in DCF_0 , in ACFA, in SCF.
- **②** Original proofs built on the Trichotomy in Zariski Geometries.

A wrong conjecture Refusing to leave the stage

But not all is lost

Special cases

The trichotomy is true in many natural settings:

- **1** It is true in DCF_0 , in ACFA, in SCF.
- **②** Original proofs built on the Trichotomy in Zariski Geometries.

Already the trichotomy for ${\rm SCF}$ and for ${\rm ACFA}$ deviate from the original conjecture:

- In SCF the result is obtained for thin minimal types.
- In ACFA the results go beyond the stable context, and even go through Robinson theories.

A wrong conjecture Refusing to leave the stage

But not all is lost

Special cases

The trichotomy is true in many natural settings:

- **1** It is true in DCF_0 , in ACFA, in SCF.
- **②** Original proofs built on the Trichotomy in Zariski Geometries.

Already the trichotomy for ${\rm SCF}$ and for ${\rm ACFA}$ deviate from the original conjecture:

- In SCF the result is obtained for thin minimal types.
- In ACFA the results go beyond the stable context, and even go through Robinson theories.

The o-minimal Trichotomy Theorem completely detaches the trichotomy from the stable setting.

A wrong conjecture Refusing to leave the stage

The Restricted Trichotomy Conjecture

Definition

Let \mathcal{M} be a structure. An \mathcal{M} -relic is a structure \mathcal{N} whose universe is definable in \mathcal{M}^{eq} and whose atomic sets are \mathcal{M} -definable,

Some restricted conjectures:

The Trichotomy was conjectured to hold of *strongly minimal* relics of the following structures:

- ACF (Zilber, \sim 1985)
- O-minimal (Peterzil, 2005).
- ACVF (Kowalski-Randriambololona, 2016)

A powerful strategy That is not quite powerful enough Topology!

Zilber's proof strategy

• First construct a group, a field will emerge in a similar way.

A powerful strategy That is not quite powerful enough Topology!

Zilber's proof strategy

- First construct a group, a field will emerge in a similar way.
- On local modularity implies large dimensional families of plane curves.

A powerful strategy That is not quite powerful enough Topology!

Zilber's proof strategy

- First construct a group, a field will emerge in a similar way.
- On local modularity implies large dimensional families of plane curves.
- Consider a strongly minimal family C of curves through (a, a).
 Show that tangency of a curve in C to a curve in C o C at the point (a, a) is definable (up to small enough errors).

A powerful strategy That is not quite powerful enough Topology!

Zilber's proof strategy

- First construct a group, a field will emerge in a similar way.
- On local modularity implies large dimensional families of plane curves.
- Consider a strongly minimal family C of curves through (a, a). Show that tangency of a curve in C to a curve in C o C at the point (a, a) is definable (up to small enough errors).
- In the use Hrushovski's group configuration to construct a group from the relation a * b → c if C_a ∘ C_b is tangent to C_c.

A powerful strategy That is not quite powerful enough Topology!

Zilber's proof strategy

- First construct a group, a field will emerge in a similar way.
- On local modularity implies large dimensional families of plane curves.
- Consider a strongly minimal family C of curves through (a, a).
 Show that tangency of a curve in C to a curve in C o C at the point (a, a) is definable (up to small enough errors).
- Then use Hrushovski's group configuration to construct a group from the relation $a * b \rightarrow c$ if $C_a \circ C_b$ is tangent to C_c .

Zilber's strategy is the only game in town. Definability of tangency is the key problem.

A powerful strategy That is not quite powerful enough Topology!

Some History

Preliminary results on ACF-relics

- The conjecture holds for certain polynomial reducts of ACF (Martin).
- **2** The conjecture holds for $(\mathbb{C}, +, X)$ (Marker-Pillay).
- Some the conjecture holds for reducts of ACF. (Rabinovich).
- The conjecture holds for reducts of algebraic curves (H.-Sustretov).

A powerful strategy That is not quite powerful enough Topology!

Some History

Preliminary results on ACF-relics

- The conjecture holds for certain polynomial reducts of ACF (Martin).
- **2** The conjecture holds for $(\mathbb{C}, +, X)$ (Marker-Pillay).
- The conjecture holds for reducts of ACF. (Rabinovich).
- The conjecture holds for reducts of algebraic curves (H.-Sustretov).

A major breakthrough:

Theorem (Castle)

The conjecture holds of ACF_0 -relics.

A powerful strategy That is not quite powerful enough Topology!

From algebraic geometry to topology

Why "A major breakthrough"?

- Rabinovich's result as well as H.-Sustretov use algebro-geometric intersection-theoretic tools.
- Such tools are ill equipped to deal with non-geometric objects.
- Proofs are hard, and don't generalise.

A powerful strategy That is not quite powerful enough Topology!

From algebraic geometry to topology

Why "A major breakthrough"?

- Rabinovich's result as well as H.-Sustretov use algebro-geometric intersection-theoretic tools.
- Such tools are ill equipped to deal with non-geometric objects.
- Proofs are hard, and don't generalise.

Castle's main idea

• Multiple intersections can be detected locally and topologically.

< ロ > < 同 > < 三 > < 三 >

A powerful strategy That is not quite powerful enough Topology!

From algebraic geometry to topology

Why "A major breakthrough"?

- Rabinovich's result as well as H.-Sustretov use algebro-geometric intersection-theoretic tools.
- Such tools are ill equipped to deal with non-geometric objects.
- Proofs are hard, and don't generalise.

Castle's main idea

- Multiple intersections can be detected locally and topologically.
- $\bullet~$ In ${\rm ACF}_0$ tangency and multiple intersections are the same.

(日)

.⊒ →

A powerful strategy That is not quite powerful enough Topology!

From algebraic geometry to topology

Why "A major breakthrough"?

- Rabinovich's result as well as H.-Sustretov use algebro-geometric intersection-theoretic tools.
- Such tools are ill equipped to deal with non-geometric objects.
- Proofs are hard, and don't generalise.

Castle's main idea

- Multiple intersections can be detected locally and topologically.
- $\bullet~$ In ${\rm ACF}_0$ tangency and multiple intersections are the same.
- \bullet Non-locally modular ${\rm ACF}_0\mbox{-}{\rm relics}$ can define just enough of the Euclidean topology to detect tangency.

< ロ > < 同 > < 三 > < 三 >

A powerful strategy That is not quite powerful enough **Topology!**

O-minimal influences

Castle's main technical result is a (hard) adaptation of

Theorem (Eleftheriou-H.-Peterzil)

Let \mathcal{M} be a strongly minimal non-locally modular 2-dimensional o-minimal relic expanding a group. Let $S \subseteq M^2$ be a plane curve. Then the (o-minimal) frontier of S is finite and \mathcal{M} -algebraic over [S].

A powerful strategy That is not quite powerful enough **Topology!**

O-minimal influences

Castle's main technical result is a (hard) adaptation of

Theorem (Eleftheriou-H.-Peterzil)

Let \mathcal{M} be a strongly minimal non-locally modular 2-dimensional o-minimal relic expanding a group. Let $S \subseteq M^2$ be a plane curve. Then the (o-minimal) frontier of S is finite and \mathcal{M} -algebraic over [S].

• Castle's proof is, at its core, topological with few (but crucial) touches of analytic geometry.

A powerful strategy That is not quite powerful enough **Topology!**

O-minimal influences

Castle's main technical result is a (hard) adaptation of

Theorem (Eleftheriou-H.-Peterzil)

Let \mathcal{M} be a strongly minimal non-locally modular 2-dimensional o-minimal relic expanding a group. Let $S \subseteq M^2$ be a plane curve. Then the (o-minimal) frontier of S is finite and \mathcal{M} -algebraic over [S].

- Castle's proof is, at its core, topological with few (but crucial) touches of analytic geometry.
- Nothing of the sort exists in ACF_p.

A powerful strategy That is not quite powerful enough **Topology!**

Another topological setting

Two similar results

- The proof of Marker-Pillay for (C, +, X) follows very closely Zilber's strategy, using the the argument principle.
- The exact same proof works for (*K*, +, *X*) for *K* an algebraically closed valued field of char. 0.

A powerful strategy That is not quite powerful enough **Topology!**

Another topological setting

Two similar results

- The proof of Marker-Pillay for (C, +, X) follows very closely Zilber's strategy, using the the argument principle.
- The exact same proof works for (*K*, +, *X*) for *K* an algebraically closed valued field of char. 0.

The theory of analytic functions in algebraically closed valued fields works in all characteristics.

A powerful strategy That is not quite powerful enough **Topology!**

Another topological setting

Two similar results

- The proof of Marker-Pillay for (C, +, X) follows very closely Zilber's strategy, using the the argument principle.
- The exact same proof works for (*K*, +, *X*) for *K* an algebraically closed valued field of char. 0.

The theory of analytic functions in algebraically closed valued fields works in all characteristics.

An idea

Prove Zilber's Trichotomy for ACVF_p to conclude the result for $\mathrm{ACF}_p.$

A topological version of transversality Purity of ramification A rushed conclusion

An axiomatic approach to relics

The slogan

- Zilber's Trichotomy tends to be true in tame topological structures.
- The above remains true even if the relic has no direct access to the ambient topology.

A topological version of transversality Purity of ramification A rushed conclusion

An axiomatic approach to relics

The slogan

- Zilber's Trichotomy tends to be true in tame topological structures.
- The above remains true even if the relic has no direct access to the ambient topology.

The goal

 Partition known proofs of the Trichotomy into self contained segments.

< A >

-

A topological version of transversality Purity of ramification A rushed conclusion

An axiomatic approach to relics

The slogan

- Zilber's Trichotomy tends to be true in tame topological structures.
- The above remains true even if the relic has no direct access to the ambient topology.

The goal

- Partition known proofs of the Trichotomy into self contained segments.
- **2** A first such segment is the *detection of closures* argument.

< A >

A topological version of transversality Purity of ramification A rushed conclusion

An axiomatic approach to relics

The slogan

- Zilber's Trichotomy tends to be true in tame topological structures.
- The above remains true even if the relic has no direct access to the ambient topology.

The goal

- Partition known proofs of the Trichotomy into self contained segments.
- 2 A first such segment is the *detection of closures* argument.
- Formulate an axiomatic framework covering each segment of the proof.

A (1) > A (2) > A

ヨート

A topological version of transversality Purity of ramification A rushed conclusion

Hausdorff Geometric Structures with enough open maps

Definition

An \aleph_1 -saturated *geometric* structure \mathcal{K} is a Hausdorff Geometirc Structure if:

- It is equipped with a Hausdorff topology τ (that need not be definable).
- ② If $X \subseteq K^n$ is definable and $a \in \overline{\operatorname{Fr}(X)}$ then dim $(a/[X]) \le \dim(X)$.
- For any definable X and countable parameter set B the set of B-generic points of X is dense.
- Finite correspondences are generically locally graphs of homeomorphisms.

A topological version of transversality Purity of ramification A rushed conclusion

Enough open maps

Hasson On Zilber's Trichotomy

э

< 同 × I = >

A topological version of transversality Purity of ramification A rushed conclusion

Enough open maps

 A technical condition aimed to assure, roughly, that non-transverse intersections can only occur for a good reason.

A topological version of transversality Purity of ramification A rushed conclusion

Enough open maps

- A technical condition aimed to assure, roughly, that non-transverse intersections can only occur for a good reason.
- Transverse intersections are identified by openness of the projection of the family of intersections onto the parameter space.

A topological version of transversality Purity of ramification A rushed conclusion

Enough open maps

- A technical condition aimed to assure, roughly, that non-transverse intersections can only occur for a good reason.
- Transverse intersections are identified by openness of the projection of the family of intersections onto the parameter space.
- verifying "enough open maps" directly seems hard.
- It is straightforward, e.g., if the structure admits a well behaved (abstract) notion of smoothness and an associated (abstract) notion of differential manifolds satisfying an appropriate version of Sard's Lemma.

A topological version of transversality Purity of ramification A rushed conclusion

Examples

Many natural examples

- $(\mathbb{C},+,\cdot)$ with the Euclidean topology.
- O-minimal expansions of fields.
- 1-h-minimal fields.
- Topological ez-fields (including ACVF).

In all examples, except the first, the topology is definable.

A topological version of transversality Purity of ramification A rushed conclusion

Examples

Many natural examples

- $(\mathbb{C},+,\cdot)$ with the Euclidean topology.
- O-minimal expansions of fields.
- 1-h-minimal fields.
- Topological ez-fields (including ACVF).

In all examples, except the first, the topology is definable.

Theorem (Castle-H.-Ye)

If (\mathcal{K}, τ) is a Hausdorff Geometric Structure with enough open maps then \mathcal{K} detects multiple intersections.

▲ 同 ▶ ▲ 三 ▶ ▲

A topological version of transversality **Purity of ramification** A rushed conclusion

Relics of wrong dimension

Another of Castle's crucial observations:

Fact

In ACF₀ the ramification locus of projections with finite fibres between smooth manifolds is empty or of pure co-dimension 1.

A topological version of transversality **Purity of ramification** A rushed conclusion

Relics of wrong dimension

Another of Castle's crucial observations:

Fact

- In ACF₀ the ramification locus of projections with finite fibres between smooth manifolds is empty or of pure co-dimension 1.
- ACF₀-relics detect multiple intersections, so they detect ramification, so they are 1-dimensional.

A topological version of transversality **Purity of ramification** A rushed conclusion

Relics of wrong dimension

Another of Castle's crucial observations:

Fact

- In ACF₀ the ramification locus of projections with finite fibres between smooth manifolds is empty or of pure co-dimension 1.
- ACF₀-relics detect multiple intersections, so they detect ramification, so they are 1-dimensional.

We axiomatise (a weaker version of) purity of ramification to get:

Theorem (Castle-H.-Ye)

- If K is a HGS with enough open maps and purity of ramification then any strongly minimal non-locally modular K-relic is 1-dimensional.
- **2** ACVF has purity of ramification.

A topological version of transversality **Purity of ramification** A rushed conclusion

O-minimal relics

Hasson On Zilber's Trichotomy

イロト イヨト イヨト

æ

O-minimal relics

Theorem (Castle)

The ramification locus of projections with finite fibres between smooth manifolds definable in o-minimal fields is either empty, of co-dimension 1 or of co-dimension 2.

Purity of ramification

O-minimal relics

Theorem (Castle)

The ramification locus of projections with finite fibres between smooth manifolds definable in o-minimal fields is either empty, of co-dimension 1 or of co-dimension 2.

Purity of ramification

Theorem (Castle)

Strongly minimal non-locally modular o-minimal relics are 2-dimensional.

O-minimal relics

Theorem (Castle)

The ramification locus of projections with finite fibres between smooth manifolds definable in o-minimal fields is either empty, of co-dimension 1 or of co-dimension 2.

Purity of ramification

Theorem (Castle)

Strongly minimal non-locally modular o-minimal relics are 2-dimensional.

Theorem

let \mathcal{M} by o-minimal.

 Strongly minimal non-locally modular *M*-relics are internal to an *M*-definable o-minimal field.

O-minimal relics

Theorem (Castle)

The ramification locus of projections with finite fibres between smooth manifolds definable in o-minimal fields is either empty, of co-dimension 1 or of co-dimension 2.

Purity of ramification

Theorem (Castle)

Strongly minimal non-locally modular o-minimal relics are 2-dimensional.

Theorem

let $\mathcal M$ by o-minimal.

 Strongly minimal non-locally modular *M*-relics are internal to an *M*-definable o-minimal field.

2 1-dimensional strongly minimal *M*-relics are locally modular.

A topological version of transversality Purity of ramification A rushed conclusion

Summary of known results

Theorem (Castle-H.-Ye, H.-Onshuus-Pinzon)

- **1** Zilber's Trichotomy holds of definable ACVF-relics.
- Consequently (using EOI in ACF) Zilber's Trichotomy holds of ACF-relics.
- **③** In residue char. 0, the Trichotomy holds of all relics.

Theorem

- Zilber's Trichotomy holds (vacuously) of definable relics of T-convex expansions of o-minimal fields of dimension ≠ 2.
- 2 Zilber's Trichotomy holds of 2-dimensional strongly minimal group relics of o-minimal structures.

< ロ > < 同 > < 三 > < 三