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Quantum mechanics crash course I

The world is probabilistic: nature can be in a state where the outcome of a
measurement is not determined before the measurement happens.

A physical model is not a simulation, it is a “prediction machine”.

The probabilities of possible outcomes are coded in a state or wave
function. This is often presented as a unit vector in complex Hilbert space.

In particular, the position of a particle is described by a function ψ of a
position variable x̄ ∈ Rn such that |ψ(x̄)|2 encodes probabilities:∫

Rn

|ψ(x̄)|2dx̄ = 1 and P(x̄ ∈ E ) =

∫
E
|ψ(x̄)|2dx̄ .
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Quantum mechanics crash course II

In general, observables are described by self-adjoint operators, and states
correspond to wave functions over their spectrum.

In beginning physics books, these operators are often presented in a
“generalised eigenvector decomposition”, pretending the space is spanned
by eigenvectors for the values in the spectrum, so called Dirac delta
functions, functions with point support and norm 1.

Note, that Dirac did not think of his deltas as being actual vectors.
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Time evolution

A quantum system evolves over time according to the Schrödinger equation

iℏ
d

dt
ψ = Hψ

where H is the Hamiltonian of the system, the self-adjoint operator
corresponding to the energy of the system (depends on system).

Knowing the Hamiltonian, one can – in theory – calculate later states of
the system

ψt = K tψ0

where
K t = e−itH/ℏ.

Here we assume H is time-independent.
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The Feynman propagator

The Feynman propagator is a function K (x , y , t) giving the probability
amplitude of the observable changing from value x to value y in time t.

With eigenstates |x⟩ and |y⟩

K (x , y , t) = ⟨y |K t |x⟩.

Without eigenvectors, we look at the kernel of the integral representation
of K t (if it exists)

(K tψ)(y) =

∫
R
K (x , y , t)ψ(x)dx
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A quest for eigenvectors

With Hyttinen we have been trying to
find structures where Dirac deltas exist (and behave like vectors)
justify approximations by finite dimensional spaces

A previous approach built eigenvectors as ultraproducts of eigenvectors in
finite dimensional spaces. These could be used to calculate kernels, but not
via the propagator formula.

Next, we’ll look at a distribution approach to Dirac deltas.
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Rigged Hilbert space

A rigged Hilbert space consists of a Hilbert space H and a subspace Φ of
“test functions”, with a finer norm on Φ.
One then has

Φ ⊂ H ⊂ Φ∗

where Φ∗ is the (anti-)dual of Φ, the set of anti-linear functionals over Φ.

For suitably chosen Φ, the functionals in Φ∗ act as “generalised
eigenvectors”.

(Φ,H,Φ∗) is also called a Gelfand triple.
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Example
Let H = L2(R), and let Φ the set of Schwartz functions, i.e., infinitely
differentiable functions φ : R → C whose derivatives tend to 0 at infinity
faster than any power of 1

|x | .
Then for every x ∈ R the functional fxφ = φ(x) acts as a Dirac delta
function corresponding to the value x .
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The spectral theorem

Definition
Let H be a separable Hilbert space, and A a bounded self-adjoint operator.
A vector φ is called cyclic for A if the vectors Anφ, n < ω, span a dense
subset of H.

Theorem
If A is a bounded self-adjoint operator on H with a cyclic vector, then there
exists a measure µ on σ(A) and a unitary operator U : H → L2(R, dµ)
such that

UAU−1φ(x) = xφ(x).

Note: in the non-cyclic case we get an orthogonal sum of such L2 spaces.
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A map ahead

We will
build a spectral representation for a bounded, self-adjoint operator
with a cyclic vector,

build the spectral measure as an ultraproduct of scaled counting
measures in finite dimensional spaces,
look closer at the ultraproduct, to find something resembling a rigged
Hilbert space
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Self-adjoint via unitary

Theorem (Stone)
There is a one-one correspondence between unitary operators U and
self-adjoint operators A with spectrum ⊆ [0, 1] and not having 0 in the
point spectrum, given by U = e2πiA.

Fact
We can modify the above, to consider spectra ⊂ [−π

2 ,
π
2 ], and a

correspondence U = e iA.

So, we start with a bounded self-adjoint operator A, with a cyclic vector φ
(of norm 1).

We assume σ(A) ⊂ [−π
2 ,

π
2 ], and consider U = e iA.

Now φ is cyclic also for U, in the sense that the vectors Ukφ, k ∈ Z, span
a dense set of H.
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Finding finite dimensional approximations of (H ,U)

Consider the spanning vectors

· · · U−nφ U−n+1φ · · · U−1φ φ Uφ · · · Un−1φ Unφ · · ·

Define finite dimensional spaces

HN = span{Ukφ : −N ≤ k ≤ N}

U−Nφ · · · U−1φ φ Uφ · · · UNφ
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Approximations of U

Let
H−
N = span{Ukφ : −N ≤ k < N}

and
H+
N = span{Ukφ : −N < k ≤ N}

and let W+ and W− be their corresponding orthogonal complements in HN

HN = H−
N ⊕W+ = W− ⊕ H+

N

Let UN be built from
U on H−

N

a unitary operator mapping W+ to W−
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Eigenvectors

In each HN

UN is unitary and has an eigenvector basis (uN(k))k<2N+1 with
corresponding eigenvalues λN(k),

the cyclic vector can be written as

φ =
2N∑
k=0

ξN(k)uN(k)

where each ξN(k) is a non-negative real, and
∑2N

k=0 ξN(k)
2 = 1.

Note: The spaces HN extend each other, but the bases do not.
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A first glimpse of the ultraproduct model

Let U be a non-principal ultrafilter on ω.

Our central model will be the metric ultraproduct of the spaces (HN ,UN).

As φ is cyclic, there is a natural embedding of H into Hm:

Definition
For P(X ,Y ) ∈ C[X ,Y ], let P(UN ,U

−1
N ) be natural interpretation as an

operator on HN , e.g.,

X 2Y (UN ,U
−1
N ) = UN ◦ UN ◦ U−1

N = UN .

Then P(UN ,U
−1
N )(φ) makes sense in almost all HN , and thus we can

define Gm : H → Hm by

Gm(P(UN ,U
−1
N )(φ)) = (P(UN ,U

−1
N )(φ))N<ω/U .
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Spectral measure in HN

Remember: in each HN , φ =
∑2N

k=0 ξN(k)uN(k)

Definition
For each N < ω, define a measure µN for subsets X ⊂ C:

µN(X ) =
∑

k<2N,λN(k)∈X

ξN(k)
2

Note that for all X ⊂ C, µN(X ) ≤ 1, as ∥φ∥ = 1.
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Spectral measure from ultraproduct
We construct a spectral measure for U in steps:

1 For each X ⊆ C, let µn(X ) be the ultralimit limU µN(X )

2 consider a set of nice vertical (Ir ) and horizontal (Jr ) lines for which
for all δ > 0 there is ε > 0 such that their “ε-thickenings” I εr and JεR
have small “measure”

µn(I εr ) < δ, µn(Jεr ) < δ

3 define an outer measure based on the µn-value of boxes bounded by
nice lines

µ∗(Y ) = inf

{ ∞∑
k=0

µn(Xk) | Xk a nice box,Y ⊆
⋃
k<ω

Xk

}

4 by Caratheodory’s construction, find a σ-algebra of sets for which µ∗

is a measure
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Spectral representation for U

Consider the space L2(S , µ
∗), where S is a suitable compact subset of C,

the complement of which has zero µ∗-measure.

Definition
Let D(S) be the subspace of C (S) that consists of functions

fP(λ) = P(λ, λ̄)

where P ∈ C[X ,Y ] and λ̄ is the complex conjugate of λ.
Define UD and U∗

D by

UD(fP) = fXP and U∗
D(fP) = fYP .

Note that UD(fP)(λ) = λfP(λ), and U∗
D(fP)(λ) = λ̄fP(λ).
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∗), where S is a suitable compact subset of C,

the complement of which has zero µ∗-measure.
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Theorem
1 The measure µ∗ is zero outside the spectrum of U.
2 There is an isometry mapping L2(S , µ

∗) to H, and (the extension of)
UD to U. (We find it going via Hm.)

3 We can transfer the measure µ∗ from the unit circle to the real line to
get (from the isometry above) an isomorphism between L2(σ(A), µ)
and (H,A).
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Dissecting the ultraproduct construction

A metric ultraproduct is built in several steps:
1 form the product
2 throw out the infinite elements
3 find the subspace of infinitesimal elements and quotient them out

this last part can be split in two: mod out the zeros, then the (other)
infinitesimals
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Classical ultraproduct of Hilbert spaces

If we take the classical ultraproduct of the HN spaces, Hu =
∏

N HN/U we
get a vector space over Cu = Cω/U .

Via the canonical embedding

C ↪→ Cu, Hu can be seen as a vector space over C.

There is a pairing function ⟨·|·⟩u obtained as the ultraproduct of the inner
products.

For q = (qN)N<ω/U in Cu, let |q|u = (|qN |)N<ω/U .

If X is the range of this “absolute value”, then Ru = X ∪ {−r | r ∈ X} is a
real closed field containing the reals. In particular, it is linearly ordered and
can be used to compare the “norm” ∥v∥u of vectors v ∈ Hu and rational
numbers.

We den define ⟨u|v⟩ to be
q ∈ C such that ⟨u|v⟩ is infinitesimally close to q, if such a q exists
∞ otherwise

Åsa Hirvonen Rigged Hilbert Spaces September 12, 2024 21 / 23



Classical ultraproduct of Hilbert spaces

If we take the classical ultraproduct of the HN spaces, Hu =
∏

N HN/U we
get a vector space over Cu = Cω/U . Via the canonical embedding

C ↪→ Cu, Hu can be seen as a vector space over C.

There is a pairing function ⟨·|·⟩u obtained as the ultraproduct of the inner
products.

For q = (qN)N<ω/U in Cu, let |q|u = (|qN |)N<ω/U .

If X is the range of this “absolute value”, then Ru = X ∪ {−r | r ∈ X} is a
real closed field containing the reals. In particular, it is linearly ordered and
can be used to compare the “norm” ∥v∥u of vectors v ∈ Hu and rational
numbers.

We den define ⟨u|v⟩ to be
q ∈ C such that ⟨u|v⟩ is infinitesimally close to q, if such a q exists
∞ otherwise

Åsa Hirvonen Rigged Hilbert Spaces September 12, 2024 21 / 23



Classical ultraproduct of Hilbert spaces

If we take the classical ultraproduct of the HN spaces, Hu =
∏

N HN/U we
get a vector space over Cu = Cω/U . Via the canonical embedding

C ↪→ Cu, Hu can be seen as a vector space over C.

There is a pairing function ⟨·|·⟩u obtained as the ultraproduct of the inner
products.

For q = (qN)N<ω/U in Cu, let |q|u = (|qN |)N<ω/U .

If X is the range of this “absolute value”, then Ru = X ∪ {−r | r ∈ X} is a
real closed field containing the reals. In particular, it is linearly ordered and
can be used to compare the “norm” ∥v∥u of vectors v ∈ Hu and rational
numbers.

We den define ⟨u|v⟩ to be
q ∈ C such that ⟨u|v⟩ is infinitesimally close to q, if such a q exists
∞ otherwise

Åsa Hirvonen Rigged Hilbert Spaces September 12, 2024 21 / 23



Classical ultraproduct of Hilbert spaces

If we take the classical ultraproduct of the HN spaces, Hu =
∏

N HN/U we
get a vector space over Cu = Cω/U . Via the canonical embedding

C ↪→ Cu, Hu can be seen as a vector space over C.

There is a pairing function ⟨·|·⟩u obtained as the ultraproduct of the inner
products.

For q = (qN)N<ω/U in Cu, let |q|u = (|qN |)N<ω/U .

If X is the range of this “absolute value”, then Ru = X ∪ {−r | r ∈ X} is a
real closed field containing the reals. In particular, it is linearly ordered and
can be used to compare the “norm” ∥v∥u of vectors v ∈ Hu and rational
numbers.

We den define ⟨u|v⟩ to be
q ∈ C such that ⟨u|v⟩ is infinitesimally close to q, if such a q exists
∞ otherwise

Åsa Hirvonen Rigged Hilbert Spaces September 12, 2024 21 / 23



Classical ultraproduct of Hilbert spaces

If we take the classical ultraproduct of the HN spaces, Hu =
∏

N HN/U we
get a vector space over Cu = Cω/U . Via the canonical embedding

C ↪→ Cu, Hu can be seen as a vector space over C.

There is a pairing function ⟨·|·⟩u obtained as the ultraproduct of the inner
products.

For q = (qN)N<ω/U in Cu, let |q|u = (|qN |)N<ω/U .

If X is the range of this “absolute value”, then Ru = X ∪ {−r | r ∈ X} is a
real closed field containing the reals. In particular, it is linearly ordered and
can be used to compare the “norm” ∥v∥u of vectors v ∈ Hu and rational
numbers.

We den define ⟨u|v⟩ to be
q ∈ C such that ⟨u|v⟩ is infinitesimally close to q, if such a q exists
∞ otherwise

Åsa Hirvonen Rigged Hilbert Spaces September 12, 2024 21 / 23



Classical ultraproduct of Hilbert spaces

If we take the classical ultraproduct of the HN spaces, Hu =
∏

N HN/U we
get a vector space over Cu = Cω/U . Via the canonical embedding

C ↪→ Cu, Hu can be seen as a vector space over C.

There is a pairing function ⟨·|·⟩u obtained as the ultraproduct of the inner
products.

For q = (qN)N<ω/U in Cu, let |q|u = (|qN |)N<ω/U .

If X is the range of this “absolute value”, then Ru = X ∪ {−r | r ∈ X} is a
real closed field containing the reals. In particular, it is linearly ordered and
can be used to compare the “norm” ∥v∥u of vectors v ∈ Hu and rational
numbers.

We den define ⟨u|v⟩ to be
q ∈ C such that ⟨u|v⟩ is infinitesimally close to q, if such a q exists
∞ otherwise

Åsa Hirvonen Rigged Hilbert Spaces September 12, 2024 21 / 23



Other norms
We look two functions from HN to C.

Definition (“L1-norm”)
Let X ⊆ S ⊆ C be a closed set. Define

∥
∑

k<2N+1

anuN(n)∥X∞ = sup{ξN(n)−1|an| | λN(n) ∈ X},

where 0−1 is interpreted as 0.

Definition (“∞-norm”)
Let

∥
∑

n<2N+1

anuN(n)∥0 =
∑

n<2N+1

ξN(n)|an|.

Considering ultraproducts of these, we get – on part of Hu – seminorms
that can be used for the “metric steps” of the ultraproduct construction:
throwing out “bad” elements and moding out infinitesimals.
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Distributions

For f ∈ C (S), ∥F u(f )∥0 ≤ ∥F u(f )∥2 ≤ ∥F u(f )∥∞, where F u is a
particular embedding of C (S) into Hu (used also to find the isometry
between L2(S , µ

∗) and H).
Distributions can be found as vectors in the space Hm0, the metric
ultraproduct built from the 0-norm.
Under extra assumptions, the distributions can be used to calculate
Feynman propagators in the physics style.
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