An ultraproduct approach to rigged Hilbert spaces

Åsa Hirvonen Joint with Tapani Hyttinen

Geometry from the model theorist's point of view Oxford, September 2024

Hirvonen	

Rigged Hilbert Spaces

The world is probabilistic: nature can be in a state where the outcome of a measurement is not determined before the measurement happens.

The world is probabilistic: nature can be in a state where the outcome of a measurement is not determined before the measurement happens.

A physical model is not a simulation, it is a "prediction machine".

The world is probabilistic: nature can be in a state where the outcome of a measurement is not determined before the measurement happens.

A physical model is not a simulation, it is a "prediction machine".

The probabilities of possible outcomes are coded in a *state* or *wave function*. This is often presented as a unit vector in complex Hilbert space.

The world is probabilistic: nature can be in a state where the outcome of a measurement is not determined before the measurement happens.

A physical model is not a simulation, it is a "prediction machine".

The probabilities of possible outcomes are coded in a *state* or *wave function*. This is often presented as a unit vector in complex Hilbert space.

In particular, the position of a particle is described by a function ψ of a position variable $\bar{x} \in \mathbb{R}^n$ such that $|\psi(\bar{x})|^2$ encodes probabilities:

$$\int_{\mathbb{R}^n} |\psi(ar{x})|^2 dar{x} = 1$$
 and $\mathbb{P}(ar{x} \in E) = \int_E |\psi(ar{x})|^2 dar{x}.$

In general, *observables* are described by self-adjoint operators, and states correspond to wave functions over their spectrum.

In general, *observables* are described by self-adjoint operators, and states correspond to wave functions over their spectrum.

In beginning physics books, these operators are often presented in a "generalised eigenvector decomposition", pretending the space is spanned by eigenvectors for the values in the spectrum, so called *Dirac delta functions*, functions with point support and norm 1.

In general, *observables* are described by self-adjoint operators, and states correspond to wave functions over their spectrum.

In beginning physics books, these operators are often presented in a "generalised eigenvector decomposition", pretending the space is spanned by eigenvectors for the values in the spectrum, so called *Dirac delta functions*, functions with point support and norm 1.

Note, that Dirac did not think of his deltas as being actual vectors.

Time evolution

A quantum system evolves over time according to the Schrödinger equation

$$i\hbar \frac{d}{dt}\psi = H\psi$$

where H is the *Hamiltonian* of the system, the self-adjoint operator corresponding to the energy of the system (depends on system).

Time evolution

A quantum system evolves over time according to the Schrödinger equation

$$i\hbar \frac{d}{dt}\psi = H\psi$$

where H is the *Hamiltonian* of the system, the self-adjoint operator corresponding to the energy of the system (depends on system).

Knowing the Hamiltonian, one can – in theory – calculate later states of the system

$$\psi_t = K^t \psi_0$$

where

$$K^t = e^{-itH/\hbar}$$

Here we assume H is time-independent.

The Feynman propagator

The *Feynman propagator* is a function K(x, y, t) giving the probability amplitude of the observable changing from value x to value y in time t.

The Feynman propagator

The *Feynman propagator* is a function K(x, y, t) giving the probability amplitude of the observable changing from value x to value y in time t.

With eigenstates $|x\rangle$ and $|y\rangle$

 $K(x, y, t) = \langle y | K^t | x \rangle.$

The Feynman propagator

The Feynman propagator is a function K(x, y, t) giving the probability amplitude of the observable changing from value x to value y in time t.

With eigenstates $|x\rangle$ and $|y\rangle$

$$K(x,y,t) = \langle y | K^t | x \rangle.$$

Without eigenvectors, we look at the *kernel* of the integral representation of K^t (if it exists)

$$(K^t\psi)(y) = \int_{\mathbb{R}} K(x, y, t)\psi(x)dx$$

A quest for eigenvectors

With Hyttinen we have been trying to

- find structures where Dirac deltas exist (and behave like vectors)
- justify approximations by finite dimensional spaces

A quest for eigenvectors

With Hyttinen we have been trying to

- find structures where Dirac deltas exist (and behave like vectors)
- justify approximations by finite dimensional spaces

A previous approach built eigenvectors as ultraproducts of eigenvectors in finite dimensional spaces. These could be used to calculate kernels, but not via the propagator formula.

A quest for eigenvectors

With Hyttinen we have been trying to

- find structures where Dirac deltas exist (and behave like vectors)
- justify approximations by finite dimensional spaces

A previous approach built eigenvectors as ultraproducts of eigenvectors in finite dimensional spaces. These could be used to calculate kernels, but not via the propagator formula.

Next, we'll look at a distribution approach to Dirac deltas.

A rigged Hilbert space consists of a Hilbert space H and a subspace Φ of "test functions", with a finer norm on Φ . One then has

$$\Phi \subset H \subset \Phi^*$$

where Φ^* is the *(anti-)dual* of Φ , the set of anti-linear functionals over Φ .

A rigged Hilbert space consists of a Hilbert space H and a subspace Φ of "test functions", with a finer norm on Φ . One then has

$$\Phi \subset H \subset \Phi^*$$

where Φ^* is the *(anti-)dual* of Φ , the set of anti-linear functionals over Φ . For suitably chosen Φ , the functionals in Φ^* act as "generalised eigenvectors". A rigged Hilbert space consists of a Hilbert space H and a subspace Φ of "test functions", with a finer norm on Φ . One then has

$$\Phi \subset H \subset \Phi^*$$

where Φ^* is the *(anti-)dual* of Φ , the set of anti-linear functionals over Φ .

For suitably chosen $\Phi,$ the functionals in Φ^* act as "generalised eigenvectors".

 (Φ, H, Φ^*) is also called a *Gelfand triple*.

Example

Let $H = L_2(R)$, and let Φ the set of *Schwartz functions*, i.e., infinitely differentiable functions $\varphi : \mathbb{R} \to \mathbb{C}$ whose derivatives tend to 0 at infinity faster than any power of $\frac{1}{|x|}$. Then for every $x \in \mathbb{R}$ the functional $f_x \varphi = \varphi(x)$ acts as a Dirac delta function corresponding to the value x.

The spectral theorem

Åsa Hirvonen R	, ,				
----------------	--------	--	--	--	--

A B M A B M

Image: A matrix

The spectral theorem

Definition

Let *H* be a separable Hilbert space, and *A* a bounded self-adjoint operator. A vector φ is called *cyclic* for *A* if the vectors $A^n\varphi$, $n < \omega$, span a dense subset of *H*.

The spectral theorem

Definition

Let *H* be a separable Hilbert space, and *A* a bounded self-adjoint operator. A vector φ is called *cyclic* for *A* if the vectors $A^n\varphi$, $n < \omega$, span a dense subset of *H*.

Theorem

If A is a bounded self-adjoint operator on H with a cyclic vector, then there exists a measure μ on $\sigma(A)$ and a unitary operator $U : H \to L_2(\mathbb{R}, d\mu)$ such that

$$UAU^{-1}\varphi(x) = x\varphi(x).$$

Note: in the non-cyclic case we get an orthogonal sum of such L_2 spaces.

A map ahead

We will

• build a spectral representation for a bounded, self-adjoint operator with a cyclic vector,

A map ahead

We will

- build a spectral representation for a bounded, self-adjoint operator with a cyclic vector,
- build the spectral measure as an ultraproduct of scaled counting measures in finite dimensional spaces,

A map ahead

We will

- build a spectral representation for a bounded, self-adjoint operator with a cyclic vector,
- build the spectral measure as an ultraproduct of scaled counting measures in finite dimensional spaces,
- look closer at the ultraproduct, to find something resembling a rigged Hilbert space

Theorem (Stone)

There is a one-one correspondence between unitary operators U and self-adjoint operators A with spectrum $\subseteq [0, 1]$ and not having 0 in the point spectrum, given by $U = e^{2\pi i A}$.

Fact

We can modify the above, to consider spectra $\subset \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, and a correspondence $U = e^{iA}$.

Theorem (Stone)

There is a one-one correspondence between unitary operators U and self-adjoint operators A with spectrum $\subseteq [0, 1]$ and not having 0 in the point spectrum, given by $U = e^{2\pi i A}$.

Fact

We can modify the above, to consider spectra $\subset [-\frac{\pi}{2}, \frac{\pi}{2}]$, and a correspondence $U = e^{iA}$.

So, we start with a bounded self-adjoint operator A, with a cyclic vector φ (of norm 1).

Theorem (Stone)

There is a one-one correspondence between unitary operators U and self-adjoint operators A with spectrum $\subseteq [0, 1]$ and not having 0 in the point spectrum, given by $U = e^{2\pi i A}$.

Fact

We can modify the above, to consider spectra $\subset [-\frac{\pi}{2}, \frac{\pi}{2}]$, and a correspondence $U = e^{iA}$.

So, we start with a bounded self-adjoint operator A, with a cyclic vector φ (of norm 1).

We assume $\sigma(A) \subset \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, and consider $U = e^{iA}$.

イロト 不得 トイヨト イヨト 二日

Theorem (Stone)

There is a one-one correspondence between unitary operators U and self-adjoint operators A with spectrum $\subseteq [0, 1]$ and not having 0 in the point spectrum, given by $U = e^{2\pi i A}$.

Fact

We can modify the above, to consider spectra $\subset [-\frac{\pi}{2}, \frac{\pi}{2}]$, and a correspondence $U = e^{iA}$.

So, we start with a bounded self-adjoint operator A, with a cyclic vector φ (of norm 1).

We assume $\sigma(A) \subset \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, and consider $U = e^{iA}$.

Now φ is cyclic also for U, in the sense that the vectors $U^k \varphi$, $k \in \mathbb{Z}$, span a dense set of H.

Finding finite dimensional approximations of (H, U)

Consider the spanning vectors

$$\cdots \quad U^{-n}\varphi \quad U^{-n+1}\varphi \quad \cdots \quad U^{-1}\varphi \quad \varphi \quad U\varphi \quad \cdots \quad U^{n-1}\varphi \quad U^{n}\varphi \quad \cdots$$

Finding finite dimensional approximations of (H, U)

Consider the spanning vectors

$$\cdots \quad U^{-n}\varphi \quad U^{-n+1}\varphi \quad \cdots \quad U^{-1}\varphi \quad \varphi \quad U\varphi \quad \cdots \quad U^{n-1}\varphi \quad U^{n}\varphi \quad \cdots$$

Define finite dimensional spaces

$$H_N = \overline{\operatorname{span}\{U^k \varphi : -N \le k \le N\}}$$

$$U^{-N}\varphi \quad \cdots \quad U^{-1}\varphi \quad \varphi \quad U\varphi \quad \cdots \quad U^{N}\varphi$$

Approximations of \boldsymbol{U}

Let

$$H_N^- = \overline{\operatorname{span}\{U^k \varphi : -N \le k < N\}}$$

and

$$H_N^+ = \overline{\operatorname{span}\{U^k \varphi : -N < k \le N\}}$$

Åsa		

2

・ロト ・ 四ト ・ ヨト ・ ヨト

Approximations of U

Let

$$H_N^- = \overline{\operatorname{span}\{U^k\varphi: -N \le k < N\}}$$

and

$$H_N^+ = \overline{\operatorname{span}\{U^k\varphi: -N < k \le N\}}$$

and let W^+ and W^- be their corresponding orthogonal complements in H_N

$$H_N = H_N^- \oplus W^+ = W^- \oplus H_N^+$$

Approximations of \boldsymbol{U}

Let

$$H_N^- = \overline{\operatorname{span}\{U^k \varphi : -N \le k < N\}}$$

and

$$H_N^+ = \overline{\operatorname{span}\{U^k\varphi: -N < k \le N\}}$$

and let W^+ and W^- be their corresponding orthogonal complements in H_N

$$H_N = H_N^- \oplus W^+ = W^- \oplus H_N^+$$

Let U_N be built from

- U on H_N^-
- a unitary operator mapping W^+ to W^-

Eigenvectors

In each H_N

• U_N is unitary and has an eigenvector basis $(u_N(k))_{k < 2N+1}$ with corresponding eigenvalues $\lambda_N(k)$,

Eigenvectors

In each H_N

- U_N is unitary and has an eigenvector basis $(u_N(k))_{k<2N+1}$ with corresponding eigenvalues $\lambda_N(k)$,
- the cyclic vector can be written as

$$\varphi = \sum_{k=0}^{2N} \xi_N(k) u_N(k)$$

where each $\xi_N(k)$ is a non-negative real, and $\sum_{k=0}^{2N} \xi_N(k)^2 = 1$.

Eigenvectors

In each H_N

- U_N is unitary and has an eigenvector basis $(u_N(k))_{k<2N+1}$ with corresponding eigenvalues $\lambda_N(k)$,
- the cyclic vector can be written as

$$\varphi = \sum_{k=0}^{2N} \xi_N(k) u_N(k)$$

where each $\xi_N(k)$ is a non-negative real, and $\sum_{k=0}^{2N} \xi_N(k)^2 = 1$.

Note: The spaces H_N extend each other, but the bases do not.

A first glimpse of the ultraproduct model

Let \mathcal{U} be a non-principal ultrafilter on ω .

Our central model will be the metric ultraproduct of the spaces (H_N, U_N) .

A first glimpse of the ultraproduct model

Let ${\mathcal U}$ be a non-principal ultrafilter on $\omega.$

Our central model will be the metric ultraproduct of the spaces (H_N, U_N) .

As φ is cyclic, there is a natural embedding of H into H^m :

Definition

For $P(X, Y) \in \mathbb{C}[X, Y]$, let $P(U_N, U_N^{-1})$ be natural interpretation as an operator on H_N , e.g.,

$$X^2Y(U_N,U_N^{-1})=U_N\circ U_N\circ U_N^{-1}=U_N.$$

A first glimpse of the ultraproduct model

Let \mathcal{U} be a non-principal ultrafilter on ω .

Our central model will be the metric ultraproduct of the spaces (H_N, U_N) .

As φ is cyclic, there is a natural embedding of H into H^m :

Definition

For $P(X, Y) \in \mathbb{C}[X, Y]$, let $P(U_N, U_N^{-1})$ be natural interpretation as an operator on H_N , e.g.,

$$X^2Y(U_N,U_N^{-1})=U_N\circ U_N\circ U_N^{-1}=U_N.$$

Then $P(U_N, U_N^{-1})(\varphi)$ makes sense in almost all H_N , and thus we can define $G^m: H \to H^m$ by

$$G^{m}(P(U_{N}, U_{N}^{-1})(\varphi)) = (P(U_{N}, U_{N}^{-1})(\varphi))_{N < \omega} / \mathcal{U}.$$

3

< □ > < 同 > < 回 > < 回 > < 回 >

Spectral measure in H_N

Remember: in each H_N , $\varphi = \sum_{k=0}^{2N} \xi_N(k) u_N(k)$

Definition

For each $N < \omega$, define a measure μ_N for subsets $X \subset \mathbb{C}$:

$$\mu_N(X) = \sum_{k < 2N, \lambda_N(k) \in X} \xi_N(k)^2$$

Note that for all $X \subset \mathbb{C}$, $\mu_N(X) \leq 1$, as $\|\varphi\| = 1$.

(日) (周) (日) (日) (日) (000

We construct a spectral measure for U in steps:

We construct a spectral measure for U in steps:

• For each $X \subseteq \mathbb{C}$, let $\mu^n(X)$ be the ultralimit $\lim_{\mathcal{U}} \mu_N(X)$

We construct a spectral measure for U in steps:

• For each $X \subseteq \mathbb{C}$, let $\mu^n(X)$ be the ultralimit $\lim_{\mathcal{U}} \mu_N(X)$

2 consider a set of *nice* vertical (I_r) and horizontal (J_r) lines for which for all $\delta > 0$ there is $\varepsilon > 0$ such that their " ε -thickenings" I_r^{ε} and J_R^{ε} have small "measure"

$$\mu^n(I_r^\varepsilon) < \delta, \quad \mu^n(J_r^\varepsilon) < \delta$$

(B)

We construct a spectral measure for U in steps:

- For each $X \subseteq \mathbb{C}$, let $\mu^n(X)$ be the ultralimit $\lim_{\mathcal{U}} \mu_N(X)$
- **2** consider a set of *nice* vertical (I_r) and horizontal (J_r) lines for which for all $\delta > 0$ there is $\varepsilon > 0$ such that their " ε -thickenings" I_r^{ε} and J_R^{ε} have small "measure"

$$\mu^n(I_r^\varepsilon) < \delta, \quad \mu^n(J_r^\varepsilon) < \delta$$

I define an outer measure based on the µⁿ-value of boxes bounded by nice lines

$$\mu^*(Y) = \inf \left\{ \sum_{k=0}^{\infty} \mu^n(X_k) \mid X_k \text{ a nice box}, Y \subseteq \bigcup_{k < \omega} X_k \right\}$$

We construct a spectral measure for U in steps:

- For each $X \subseteq \mathbb{C}$, let $\mu^n(X)$ be the ultralimit $\lim_{\mathcal{U}} \mu_N(X)$
- **2** consider a set of *nice* vertical (I_r) and horizontal (J_r) lines for which for all $\delta > 0$ there is $\varepsilon > 0$ such that their " ε -thickenings" I_r^{ε} and J_R^{ε} have small "measure"

$$\mu^n(I_r^\varepsilon) < \delta, \quad \mu^n(J_r^\varepsilon) < \delta$$

efine an outer measure based on the µⁿ-value of boxes bounded by nice lines

$$\mu^*(Y) = \inf\left\{\sum_{k=0}^{\infty} \mu^n(X_k) \mid X_k \text{ a nice box}, Y \subseteq \bigcup_{k < \omega} X_k\right\}$$

 by Caratheodory's construction, find a σ-algebra of sets for which μ* is a measure

Åsa Hirvonen

Spectral representation for U

Consider the space $L_2(S, \mu^*)$, where S is a suitable compact subset of \mathbb{C} , the complement of which has zero μ^* -measure.

Spectral representation for U

Consider the space $L_2(S, \mu^*)$, where S is a suitable compact subset of \mathbb{C} , the complement of which has zero μ^* -measure.

Definition

Let D(S) be the subspace of C(S) that consists of functions

 $f_P(\lambda) = P(\lambda, \bar{\lambda})$

where $P \in \mathbb{C}[X, Y]$ and $\overline{\lambda}$ is the complex conjugate of λ .

Spectral representation for U

Consider the space $L_2(S, \mu^*)$, where S is a suitable compact subset of \mathbb{C} , the complement of which has zero μ^* -measure.

Definition

Let D(S) be the subspace of C(S) that consists of functions

 $f_P(\lambda) = P(\lambda, \bar{\lambda})$

where $P \in \mathbb{C}[X, Y]$ and $\overline{\lambda}$ is the complex conjugate of λ . Define U_D and U_D^* by

 $U_D(f_P) = f_{XP}$ and $U_D^*(f_P) = f_{YP}$.

Note that $U_D(f_P)(\lambda) = \lambda f_P(\lambda)$, and $U_D^*(f_P)(\lambda) = \overline{\lambda} f_P(\lambda)$.

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

- The measure μ^* is zero outside the spectrum of U.
- There is an isometry mapping L₂(S, μ*) to H, and (the extension of) U_D to U. (We find it going via H^m.)
- We can transfer the measure μ* from the unit circle to the real line to get (from the isometry above) an isomorphism between L₂(σ(A), μ) and (H, A).

Dissecting the ultraproduct construction

A metric ultraproduct is built in several steps:

- form the product
- I throw out the infinite elements
- Ind the subspace of infinitesimal elements and quotient them out

Dissecting the ultraproduct construction

A metric ultraproduct is built in several steps:

- form the product
- throw out the infinite elements
- find the subspace of infinitesimal elements and quotient them out this last part can be split in two: mod out the zeros, then the (other) infinitesimals

If we take the classical ultraproduct of the H_N spaces, $H^u = \prod_N H_N / \mathcal{U}$ we get a vector space over $\mathbb{C}^u = \mathbb{C}^{\omega} / \mathcal{U}$.

イロト イポト イヨト イヨト 二日

If we take the classical ultraproduct of the H_N spaces, $H^u = \prod_N H_N / \mathcal{U}$ we get a vector space over $\mathbb{C}^u = \mathbb{C}^\omega / \mathcal{U}$. Via the canonical embedding

 $\mathbb{C} \hookrightarrow \mathbb{C}^{u}$, H^{u} can be seen as a vector space over \mathbb{C} .

If we take the classical ultraproduct of the H_N spaces, $H^u = \prod_N H_N / \mathcal{U}$ we get a vector space over $\mathbb{C}^u = \mathbb{C}^\omega / \mathcal{U}$. Via the canonical embedding

 $\mathbb{C} \hookrightarrow \mathbb{C}^{u}$, H^{u} can be seen as a vector space over \mathbb{C} .

There is a pairing function $\langle\cdot|\cdot\rangle^u$ obtained as the ultraproduct of the inner products.

If we take the classical ultraproduct of the H_N spaces, $H^u = \prod_N H_N / \mathcal{U}$ we get a vector space over $\mathbb{C}^u = \mathbb{C}^\omega / \mathcal{U}$. Via the canonical embedding

 $\mathbb{C} \hookrightarrow \mathbb{C}^{u}$, H^{u} can be seen as a vector space over \mathbb{C} .

There is a pairing function $\langle\cdot|\cdot\rangle^u$ obtained as the ultraproduct of the inner products.

For
$$q = (q_N)_{N < \omega} / \mathcal{U}$$
 in \mathbb{C}^u , let $|q|^u = (|q_N|)_{N < \omega} / \mathcal{U}$.

If we take the classical ultraproduct of the H_N spaces, $H^u = \prod_N H_N / \mathcal{U}$ we get a vector space over $\mathbb{C}^u = \mathbb{C}^\omega / \mathcal{U}$. Via the canonical embedding

 $\mathbb{C} \hookrightarrow \mathbb{C}^{u}$, H^{u} can be seen as a vector space over \mathbb{C} .

There is a pairing function $\langle\cdot|\cdot\rangle^u$ obtained as the ultraproduct of the inner products.

For
$$q=(q_N)_{N<\omega}/\mathcal{U}$$
 in \mathbb{C}^u , let $|q|^u=(|q_N|)_{N<\omega}/\mathcal{U}.$

If X is the range of this "absolute value", then $\mathbb{R}^u = X \cup \{-r \mid r \in X\}$ is a real closed field containing the reals. In particular, it is linearly ordered and can be used to compare the "norm" $||v||^u$ of vectors $v \in H^u$ and rational numbers.

If we take the classical ultraproduct of the H_N spaces, $H^u = \prod_N H_N / \mathcal{U}$ we get a vector space over $\mathbb{C}^u = \mathbb{C}^\omega / \mathcal{U}$. Via the canonical embedding

 $\mathbb{C} \hookrightarrow \mathbb{C}^{u}$, H^{u} can be seen as a vector space over \mathbb{C} .

There is a pairing function $\langle\cdot|\cdot\rangle^u$ obtained as the ultraproduct of the inner products.

For
$$q=(q_N)_{N<\omega}/\mathcal{U}$$
 in \mathbb{C}^u , let $|q|^u=(|q_N|)_{N<\omega}/\mathcal{U}.$

If X is the range of this "absolute value", then $\mathbb{R}^u = X \cup \{-r \mid r \in X\}$ is a real closed field containing the reals. In particular, it is linearly ordered and can be used to compare the "norm" $||v||^u$ of vectors $v \in H^u$ and rational numbers.

We den define $\langle u | v \rangle$ to be

- $q \in \mathbb{C}$ such that $\langle u | v
 angle$ is infinitesimally close to q, if such a q exists
- ullet ∞ otherwise

Other norms

We look two functions from H_N to \mathbb{C} .

Definition ("*L*₁-norm")

Let $X \subseteq S \subseteq \mathbb{C}$ be a closed set. Define

$$\|\sum_{k<2N+1}a_{n}u_{N}(n)\|_{\infty}^{X}=\sup\{\xi_{N}(n)^{-1}|a_{n}|\mid\lambda_{N}(n)\in X\},\$$

where 0^{-1} is interpreted as 0.

sa		

- 3

(B)

Other norms

We look two functions from H_N to \mathbb{C} .

Definition ("*L*₁-norm")

Let $X \subseteq S \subseteq \mathbb{C}$ be a closed set. Define

$$\|\sum_{k<2N+1}a_{n}u_{N}(n)\|_{\infty}^{X}=\sup\{\xi_{N}(n)^{-1}|a_{n}|\mid\lambda_{N}(n)\in X\},\$$

where 0^{-1} is interpreted as 0.

Definition (" ∞ -norm") Let $\|\sum_{n \leq 2N+1} a_n u_N(n)\|_0 = \sum_{n \leq 2N+1} \xi N(n)|a_n|.$

Hirvonen	

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Other norms

We look two functions from H_N to \mathbb{C} .

Definition ("*L*₁-norm")

Let $X \subseteq S \subseteq \mathbb{C}$ be a closed set. Define

$$\|\sum_{k<2N+1}a_{n}u_{N}(n)\|_{\infty}^{X}=\sup\{\xi_{N}(n)^{-1}|a_{n}|\mid\lambda_{N}(n)\in X\},\$$

where 0^{-1} is interpreted as 0.

Definition (" ∞ -norm")

Let

$$\|\sum_{n<2N+1}a_nu_N(n)\|_0=\sum_{n<2N+1}\xi N(n)|a_n|.$$

Considering ultraproducts of these, we get – on part of H^u – seminorms that can be used for the "metric steps" of the ultraproduct construction: throwing out "bad" elements and moding out infinitesimals.

Åsa Hirvonen

Rigged Hilbert Spaces

September 12, 2024

22 / 23

Distributions

- For $f \in C(S)$, $||F^u(f)||_0 \le ||F^u(f)||_2 \le ||F^u(f)||_\infty$, where F^u is a particular embedding of C(S) into H^u (used also to find the isometry between $L_2(S, \mu^*)$ and H).
- Distributions can be found as vectors in the space H^{m0} , the metric ultraproduct built from the 0-norm.
- Under extra assumptions, the distributions can be used to calculate Feynman propagators in the physics style.