Pure morphisms

Kristóf Kanalas

Geometry from the model theorist's point of view \$2024\$

Kristóf Kanalas

1/12

• • = • • = •

Coherent categories

Definition

L is a finitary signature.

 $L^g_{\omega\omega} = \{ \forall \vec{x} (\varphi(\vec{x}) \rightarrow \psi(\vec{x})) : \varphi, \psi \text{ pos. ex.} \} \text{ (pos. ex.: atomic, } \land, \lor, \exists)$

Coherent categories

Definition

L is a finitary signature. $L^{g}_{\omega\omega} = \{ \forall \vec{x} (\varphi(\vec{x}) \rightarrow \psi(\vec{x})) : \varphi, \psi \text{ pos. ex.} \} \text{ (pos. ex.: atomic, } \land, \lor, \exists)$

Remark

coherent sequent = h-inductive formula

A (10) × (10)

Coherent categories

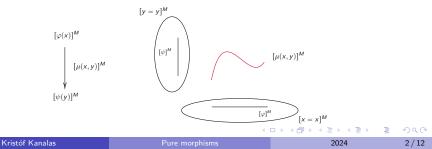
Definition

L is a finitary signature. $L^{g}_{\omega\omega} = \{ \forall \vec{x} (\varphi(\vec{x}) \rightarrow \psi(\vec{x})) : \varphi, \psi \text{ pos. ex.} \} \text{ (pos. ex.: atomic, } \land, \lor, \exists)$

Remark

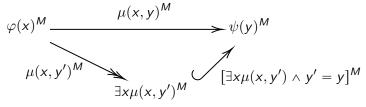
coherent sequent = h-inductive formula

M is an *L*-structure \longrightarrow *Def*(*M*): category of (pos. ex.) definable sets and (pos. ex.) definable functions.



Observation: Def(M) is closed under some universal constructions, e.g.:

- finite products: $([\varphi_i(\vec{x_i})]^M)_{i < n}$ their product is $[\bigwedge_i \varphi_i(\vec{x'_i})]^M$ (renamed variables).
- image factorization:

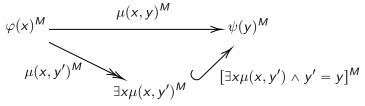


Also: equalizers, finite unions.

3/12

Observation: Def(M) is closed under some universal constructions, e.g.:

- finite products: $([\varphi_i(\vec{x_i})]^M)_{i < n}$ their product is $[\bigwedge_i \varphi_i(\vec{x'_i})]^M$ (renamed variables).
- image factorization:



• Also: equalizers, finite unions.

Idea: Def(M) is the ev_M -image of some abstract "category of formulas", these constructions live there, ev_M preserves them.

- $\ensuremath{\mathcal{C}}$ is coherent if it has
 - finite limits,
 - pullback-stable effective epi-mono factorization,
 - pullback-stable finite unions.

• • = • • = •

- $\ensuremath{\mathcal{C}}$ is coherent if it has
 - finite limits,
 - pullback-stable effective epi-mono factorization,
 - pullback-stable finite unions.

Fact: given $T \subseteq L^g_{\omega\omega}$ we can replace it with a small coherent category C_T , s.t. $Mod(T) = \mathbf{Coh}(C_T, \mathbf{Set})$, etc.

• < = • < = •

- $\ensuremath{\mathcal{C}}$ is coherent if it has
 - finite limits,
 - pullback-stable effective epi-mono factorization,
 - pullback-stable finite unions.

Fact: given $T \subseteq L^g_{\omega\omega}$ we can replace it with a small coherent category C_T , s.t. $Mod(T) = \mathbf{Coh}(C_T, \mathbf{Set})$, etc.

proof idea:

objects: formulas, arrows: *T*-provably functional formulas.

preserving limits/unions/images = preserving the formula constructors.

• • = • • = •

- $\ensuremath{\mathcal{C}}$ is coherent if it has
 - finite limits,
 - pullback-stable effective epi-mono factorization,
 - pullback-stable finite unions.

Fact: given $T \subseteq L^g_{\omega\omega}$ we can replace it with a small coherent category C_T , s.t. $Mod(T) = \mathbf{Coh}(C_T, \mathbf{Set})$, etc.

proof idea:

objects: formulas, arrows: *T*-provably functional formulas. preserving limits/unions/images = preserving the formula constructors.

Conversely: every small coherent category encodes a many-sorted coherent theory $Th(\mathcal{C}) \subseteq (L_{\mathcal{C}})^{g}_{\omega\omega}$ (s.t. $Mod(Th(\mathcal{C})) = Coh(\mathcal{C}, Set)$, etc).

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Mod(T) = Coh(C, Set) has the following properties:

- it has directed colimits
- for $\lambda = |L| \cdot \aleph_0$ every model is the λ^+ -filtered union of its $\leqslant \lambda$ -big elementary submodels.

• • = • • = •

Mod(T) = Coh(C, Set) has the following properties:

- it has directed colimits
- for $\lambda = |L| \cdot \aleph_0$ every model is the λ^+ -filtered union of its $\leqslant \lambda$ -big elementary submodels.

Idea: a category is λ -accessible if it has λ -directed colimits and every object is the λ -directed colimit of " < λ " objects.

• • = • • = •

Mod(T) = Coh(C, Set) has the following properties:

- it has directed colimits
- for $\lambda = |L| \cdot \aleph_0$ every model is the λ^+ -filtered union of its $\leqslant \lambda$ -big elementary submodels.

Idea: a category is λ -accessible if it has λ -directed colimits and every object is the λ -directed colimit of " < λ " objects.

 \leadsto need: category theoretic def. of size

5/12

• • = • • = •

Mod(T) = Coh(C, Set) has the following properties:

- it has directed colimits
- for $\lambda = |L| \cdot \aleph_0$ every model is the λ^+ -filtered union of its $\leqslant \lambda$ -big elementary submodels.

Idea: a category is λ -accessible if it has λ -directed colimits and every object is the λ -directed colimit of " < λ " objects.

 \leadsto need: category theoretic def. of size

Claim: accessible categories are precisely the categories of the form Mod(T) for some $T \subseteq L^g_{\mu\lambda}$. (Like AECs except: λ -version of Tarski-Vaught chain axiom & maps are not monos.)

(人間) トイヨト イヨト ニヨ

An object $x \in A$ is λ -presentable if A(x, -) preserves λ -directed colimits.

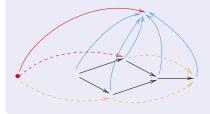
Remark

	nalas

イロト イヨト イヨト イヨト

An object $x \in \mathcal{A}$ is λ -presentable if $\mathcal{A}(x, -)$ preserves λ -directed colimits.

Remark



Example:

Set $\ni x$ is λ^+ -presentable iff it has cardinality $\leqslant \lambda$

Ab $\ni x$ is \aleph_0 -presentable iff it is finitely presentable, it is λ^+ -presentable iff it has cardinality $\leq \lambda$.

In **Top** the Sierpiński-space is not λ -presentable for any λ .

• • = • • = •

Proposition

 $T \subseteq L^{g}_{\mu\lambda} \rightsquigarrow Mod(T) \text{ is accessible with } \lambda \text{-directed colimits.}$ $\mathcal{A} \text{ is } \lambda \text{-accessible} \rightsquigarrow \mathcal{A} \simeq Mod(T) \text{ for } T \subseteq L^{g}_{\infty\lambda}.$

イロト 不得 トイヨト イヨト

Proposition

 $T \subseteq L^{g}_{\mu\lambda} \rightsquigarrow Mod(T) \text{ is accessible with } \lambda \text{-directed colimits.}$ $\mathcal{A} \text{ is } \lambda \text{-accessible} \rightsquigarrow \mathcal{A} \simeq Mod(T) \text{ for } T \subseteq L^{g}_{\infty\lambda}.$

Example

$$|L| \leq \aleph_0$$
. Then for any $T \subseteq L^g_{\omega\omega}$: $Mod(T)$ is \aleph_1 -accessible.

Example

- **0** Ab is \aleph_0 -accessible.
- ② Let L be countable and T ⊆ L^g_{ωω} be ℵ₀-categorical with no finite models. Then Mod(T) is not ℵ₀-accessible.
- Solution Let A be the category of (directed, simple) graphs, satisfying ∀x∃y : R(x, y). It is not ℵ₀-accessible.

Is it possible to characterize theories $T \subseteq L^g_{\omega\omega}$ (say, over countable *L*) for which Mod(T) is \aleph_0 -accessible?

イロト 不得 トイヨト イヨト

Pure maps

An injective map of Abelian groups $F : A \to B$ is pure if it reflects divisibility: $\exists x : F(a) = n \cdot x$ implies $\exists x : a = n \cdot x$.

This is the same as the following: if the square commutes then there is a lift, s.t. the upper triangle commutes.

Definition

 \mathcal{A} is λ -accessible. $F: X \to Y$ is λ -pure if for any A, B λ -presentable and comm. square

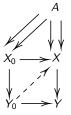
there is a lift $B \rightarrow X$ making the upper triangle commute.

Kristóf Kanalas

Proposition

λ -pure \Rightarrow monomorphism

Proof:



Kristóf Kanalas		

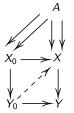
イロト イヨト イヨト イヨト

æ

Proposition

λ -pure \Rightarrow monomorphism

Proof:



History: [AR94]: "Is it true that λ -pure \Rightarrow regular monomorphism?" [AHT96]: "If \mathcal{A} has pushouts: yes. In general: no." [HP97]: "If \mathcal{A} has products: yes." goal: In **Coh**(\mathcal{C} , **Set**): yes (but with "strict" instead of "regular").

Immersions

A pure subgroup was: the validity of some pos. ex. formula is reflected. Immersion: the validity of any pos. ex. formula is reflected.

Definition

C is lex, $F, G : C \rightarrow$ **Set** lex. $\alpha : F \Rightarrow G$ is elementary (or: immersion) if the naturality squares at monos are pullbacks.

10 / 12

Immersions

A pure subgroup was: the validity of some pos. ex. formula is reflected. Immersion: the validity of any pos. ex. formula is reflected.

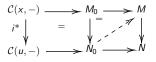
Definition

C is lex, $F, G : C \rightarrow$ **Set** lex. $\alpha : F \Rightarrow G$ is elementary (or: immersion) if the naturality squares at monos are pullbacks.

Proposition

If $Coh(\mathcal{C}, Set)$ is λ -accessible then λ -pure \Rightarrow elementary.

proof:



・ 同 ト ・ ヨ ト ・ ヨ ト …

Idea: $Coh(\mathcal{C}, Set) \subseteq Lex(\mathcal{C}, Set) = Pro(\mathcal{C})^{op}$.

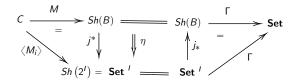
1 we know: λ -pure \Rightarrow elementary.

- **2** claim: $\alpha : F \Rightarrow G$ is elementary iff regular mono in $\text{Lex}(\mathcal{C}, \text{Set})$.
- Set admits a (regular) mono to a product of coherent functors:

$$M \xrightarrow{} N \xrightarrow{} F \xrightarrow{} \prod N_i$$

then $M \to N$ is the joint equalizer of the $N \rightrightarrows N_i$ pairs in $\text{Lex}(\mathcal{C}, \text{Set})$ hence in $\text{Coh}(\mathcal{C}, \text{Set})$.

- every lex embeds to regular: small object argument
- o every regular embeds to product of coherents [Lurie]:



References

[AR94] J. Adámek, J. Rosický: Locally presentable and accessible categories

[AHT96] J. Adámek, H. Hu, W. Tholen: On pure morphisms in accessible categories

[HP97] H. Hu, J. W. Pelletier: On regular monomorphisms in weakly locally presentable categories

[Lurie] J. Lurie: lecture notes in categorical logic

Pure maps are strict monomorphisms (arxiv.org/abs/2407.13448)

12/12

伺 ト イヨト イヨト