Existential closedness beyond quasiminimality: *j* and derivatives

Vincenzo Mantova

University of Leeds Supported by EPSRC EP/T018461/1

Geometry from the model theorist's point of view, Oxford 10–13 September 2024

> From joint work with V. Aslanyan, S. Eterović https://arxiv.org/abs/2312.09974

Engineering and Physical Sciences Research Council

Ouasiminimality

Definition. Let Q be the quantifier with semantics 'there exist uncountably many'.

Definition. *M* is quasiminimal if for every $\varphi(x)$ with parameters, $M \models \neg Q x \cdot \varphi(x)$ or $M \models \neg Q x \cdot \neg \varphi(x)$.

Examples. Ignoring countable structures, of course.

- (Strongly) minimal structures.
- $(\omega_1 \times \mathbb{Q}; <_{\text{lex}}), (\mathbb{C}; \mathbb{Z}, +, \times);$ pseudoexponentiation $(\mathbb{B}; +, \times, \exp)$ (Zilber '05).
- Universal cover of $(\mathbb{C}^{\times}; \times)$ (Zilber '02–'06) and many follow ups (abelian and Shimura).
- Previous talks: raising to complex powers (Gallinaro-Kirby 2024), correspondences between elliptic curves. generic unary holomorphic function (Dmitrieva).

Fact. If M is quasiminimal excellent,¹ then it is a model of an uncountably categorical $L_{\omega,\omega}(Q)$ -sentence.

All of the above examples except one (which one?) are quasiminimal excellent.

Conjecture (Zilber '97–'05). $\mathbb{C}_{exp} := (\mathbb{C}, +, \times, exp)$ is quasiminimal excellent.

Theorem (Zilber '05+Bays-Kirby '18). If \mathbb{C}_{exp} is exponentially-algebraically closed, then \mathbb{C}_{exp} is q.m. excellent. Moreover, $cl_{\Omega}(A) := \{b : \varphi(b, A), \neg Q x. \varphi(x, A) \text{ for some } \varphi\} = ecl(A)$ (ecl on next slide).

^{1/8} ¹ Closed substructures with closed embeddings generate an unbounded quasiminimal AEC' (see Vasey '18).

Definition (Macintyre '96?). $b \in ecl(A)$ if there are an algebraic variety V of dimension *n* and a tuple \bar{c} of length n - 1 such that $(b\bar{c}, E(b\bar{c}))$ is a transversal intersection of V with Γ_{exp}^{n} .²

The above definition generalises to any abstract exponential field K equipped a homomorphism $E: (K, +) \rightarrow (K^{\times}, \times)$: just replace 'transversal' with a suitable determinant being non-zero.

Fact. ecl is a closure operator (Macintyre) and a pregeometry (Wilkie for \mathbb{R} , Kirby 10).

Theorem (Ax '70, heavily rephrased). Let $V \subseteq \mathbb{C}^n \times (\mathbb{C}^{\times})^n$ algebraic and of dimension *n*. If *C* is a *positive* dimensional component of $V \cap \Gamma_{exp}^n$, then $C \subseteq (L + \overline{a}) \times (\mathbb{C}^{\times})^n$ for some \mathbb{Q} -linear space *L*.

Such C is an *unlikely* intersection: its dimension is bigger than it should. Compare with:

EAC. For all $V \subseteq K^n \times (K^{\times})^n$ algebraic and of dimension *n*, if [conditions], then there is $(\bar{a}, \exp(\bar{a})) \in V$. Thus exponential-algebraic closedness asks that *likely* intersections, i.e. the ones of dimension 0, exist.³ Equivalently, that \mathbb{C}_{exp} is existentially closed among fields with 'dim_{ecl}-preserving embeddings over ecl(\emptyset)'.⁴

The 'existential closedness' question can be formulated for other functions, regardless of quasiminimality.

That is,
$$2n - \dim(V) - \dim(\Gamma_{exp}) = 2n - n - n = 0.$$

2/8 ⁴This would actually be 'generic EAC'; EAC also says something about ecl(\varnothing). See Kirby '10, Bays–Kirby '18.

²Here Γ_{exp}^{n} is the graph of $(x_1, \ldots, x_n) \mapsto (e^{x_1}, \ldots, e^{x_n})$.

• $p(z, e^z) = 0$ has infinitely many solutions unless $p \in \mathbb{C}[X] \cdot Y^{\mathbb{N}}$ (see Marker '06; this is n = 1). Given $V \subseteq \mathbb{C}^n \times (\mathbb{C}^{\times})^n$, $V \cap \Gamma_{exp}^n$ is nonempty when:

- ► $V = L \times W$ 'free rotund' for *K*-affine $L \subseteq \mathbb{C}^n$, $W \subseteq (\mathbb{C}^{\times})^n$ (Zilber '03-'12 for $K \subseteq \mathbb{R}$ 'generic'; Gallinaro '23).
- The projection of V to \mathbb{C}^n has dimension *n* (Brownawell-Masser '17, D'Aquino-Fornasiero-Terzo '18).
- The projection of V to \mathbb{C}^n has dimension 1 and is 'free' (M-Masser '24). In particular, n = 2 is solved.
- ▶ $V = W_1 \times W_2$ with $W_1 \subseteq \mathbb{C}^n$ (Gallinaro).

Given A semiabelian of dimension g, $V \subseteq \mathbb{C}^g \times A$ 'free rotund', $V \cap \Gamma_{exp_A}^n$ is nonempty when:

- A abelian, $V = L \times W$ for K-linear $L \subseteq \mathbb{C}^g$ (Gallinaro '24).
- A (split semi-)abelian: the projection of V to \mathbb{C}^g has dimension g (Aslanyan-Kirby-M '23).
- $A = E_1 \times E_2$, $V = \Delta \times W$ (where Δ is the diagonal; Dmitrieva).

Given S Shimura variety with uniformizer $q: \Omega \subseteq \mathbb{C}^N \to S$, $V \subseteq \mathbb{C}^N \times S$ 'broad Hodge-generic':

- ▶ The projection of *V* to \mathbb{C}^N has dimension *N* (Eterović-Herrero for $S = \mathbb{C}^N$, $q = j^N$; Eterović-Zhao).
- ▶ $V = L \times W$ with $L \subseteq \mathbb{C}^N$ 'totally geodesic' (Gallinaro for $S = \mathbb{C}^N$, $q = j^N$; Eterović-Zhao)

3/8Also differential/blurred e.c. (Kirby, Aslanyan-Eterović-Kirby); [function (Eterović-Padgett).

Engineering and Physical Sciences Research Council

The *j*-function

The Klein *j*-invariant (or just *j*-function) is the unique holomorphic function $j : \mathbb{H} \to \mathbb{C}$ such that:

►
$$j(\tau) = j(\tau') \iff \tau' = \frac{a\tau+b}{c\tau+d}$$
 for some $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$ (that is, $ad - bc = 1$);

►
$$j(i) = 1728$$
 and $j(z) \sim e^{-2\pi i z}$ for $\Im(z) \to +\infty$.

j parametrizes elliptic curves up to isomorphism. It is differentially algebraic:

$$j''' = \frac{3}{2} \frac{(j'')^2}{j'} - \frac{j^2 - 1968j + 2654208}{2j^2(j - 1728)^2} (j')^3.$$

Let $\mathbf{J} \coloneqq (j, j', j'')$, $\mathbf{Y} \coloneqq (Y_0, Y_1, Y_2)$.

Theorem (Aslanyan-Eterović-M). Let $p, q \in \mathbb{C}[X, \mathbf{Y}] \setminus \mathbb{C}$ be coprime. Then there is $\tau \in \mathbb{H}$ such that $p(\tau, \mathbf{J}(\tau)) = 0 \neq q(\tau, \mathbf{J}(\tau))$ unless $p \in \mathbb{C}[X] \cdot Y_0^{\mathbb{N}} \cdot (Y_0 - 1728)^{\mathbb{N}} \cdot Y_1^{\mathbb{N}}$.

We have $j'(\tau) = 0 \Leftrightarrow \tau \in SL_2(\mathbb{Z}) \cdot \{i, \rho\} \Leftrightarrow j(\tau) = 0 \lor j(\tau) = 1728$. Thus $p(\tau, \mathbf{J}(\tau)) = 0 \Leftrightarrow q(\tau, \mathbf{J}(\tau)) = 0$ for $p = Y_1$, $q = Y_0(Y_0 - 1728)$.

Corollary. $j''(\tau) = 0$ has solutions that are not in the SL₂(\mathbb{Z})-orbit of ρ . 4/8

Theorem (Pila–Tsimerman 2014, heavily rephrased). Let $V \subseteq \mathbb{C}^{4n}$ algebraic and of dimension 3n. If C is a positive dimensional component of $V \cap \Gamma_{\mathbf{J}}^{n,5}$ then $C \subseteq \{z_N = a\}$ or $C \subseteq \{\tau_N = \gamma \tau_m\}$ for some $\gamma \in \mathsf{GL}_2^+(\mathbb{Q})$.

Just as before: unlikely intersections between V and the graph of J come from $GL_2^+(\mathbb{Q})$ or constant coordinates.

The Existential Closedness conjecture for J should assert that likely intersections exist:

Existential closedness? (J). Let $V \subseteq \mathbb{C}^{4n}$ algebraic. If [conditions], then there is $(\overline{\tau}, J(\overline{\tau})) \in V \cap \Gamma_J^n$.

The omitted 'conditions' guarantee that the intersections remain likely even after transformations that preserve Γ_J (such as projecting to $(\tau_1, J(\tau_1))$ which maps Γ_J^n to Γ_J^1).

Our theorem is a very special case: here $V = \{p(x, y_0, y_1, y_2) = 0\} \subseteq \mathbb{C}^4$, and we prove that $V \cap \Gamma_J^1$ is Zariski dense in V, unless V is of a special form.

The new challenge is that j', j'' are *not* invariant under the action of $SL_2(\mathbb{Z})$:

$$j\left(\frac{a\tau+b}{c\tau+d}\right)=j(\tau), \quad j'\left(\frac{a\tau+b}{c\tau+d}\right)=(c\tau+d)^2j'(\tau), \quad j''\left(\frac{a\tau+b}{c\tau+d}\right)=(c\tau+d)^4j''(\tau)+2c(c\tau+d)^3j'(\tau).$$

 $5/8 \quad {}^{5}\Gamma_{\mathbf{j}}^{n} = \{(\tau_{1}, \ldots, \tau_{n}, \mathbf{J}(\tau_{1}), \ldots, \mathbf{J}(\tau_{n})) : \tau_{i} \in \mathbb{H}\}.$

Let us sketch a strategy for the following system, where $q \in \mathbb{C}[X, \mathbf{Y}]$ is not divisible by $Y_1 + Y_2$:

$$I j''(\tau) + j'(\tau) = 0 \text{ (that is } p = Y_1 + Y_2) \text{ and } q(\tau, \mathbf{J}(\tau)) \neq 0.$$

We apply a suitable $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$. Here $\gamma = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ (that is, $\tau \mapsto -\frac{1}{\tau}$) is enough.

$$j''\left(-\frac{1}{\tau}\right)+j'\left(-\frac{1}{\tau}\right)=\tau^4\underbrace{j''(\tau)}_{p_4(\mathbf{J}(\tau))}+2\tau^3j'(\tau)+\tau^2\underbrace{j'(\tau)}_{p_2(\mathbf{J}(\tau))}.$$

Root finding (pole version). Let $f_0, \ldots, f_\ell : \mathbb{H} \to \mathbb{C}$ be meromorphic, with $f_i(\tau + 1) = f_i(\tau)$, $f_\ell \neq 0$, and

$$F(\tau) \coloneqq \tau^{\ell} f_{\ell}(\tau) + \cdots + f_{0}(\tau).$$

If $\frac{f_k}{f_\ell}$ has a pole at $\tau \in \mathbb{H}$, then there are τ_m for large $m \in \mathbb{Z}$ such that $F(\tau_m + m) = 0$, and $\tau_m \to \tau$ for $|m| \to \infty$. **Corollary.** Let τ with $j''(\tau) = 0$, $j'(\tau) \neq 0$. Then there is τ_m with $j''(\tau_m) = j''(\tau_m + m) = 0$ and $q(\tau_m + m, \mathbf{J}(\tau_m + m)) \neq 0$.

General strategy: apply a 'generic' $\gamma \in SL_2(\mathbb{Z})$, reduce to 'simpler' equation. Does it work?

Solving $j''(\tau) = 0$

Engineering and

We reduced $j'' + j' = 0 \neq q$ to $j'' = 0 \neq j'$. Let us try to solve:

B $j''(\tau) = 0$ (that is $p = Y_1$) and $q(\tau, \mathbf{I}(\tau)) \neq 0$ (where Y_2 does not divide q).

Unfortunately, $p = Y_2$ is 'J-homogeneous': $p(Y_0, W^2Y_1, W^4Y_2) = W^4Y_2 = W^4p$. J-homogeneous polynomials have the following funny transform. Fix $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$ with $c \neq 0$:

$$p(\gamma\tau,\mathbf{J}(\gamma\tau)) = p(\tau,\mathbf{J}(\tau))c^{N}\underbrace{\left(\left(\tau + \frac{d}{c}\right)^{N} + \dots\right)}_{h\left(z + \frac{d}{c},\mathbf{J}(\tau)\right)}; \text{ e.g. } j''(\gamma\tau) = j''(\tau)c^{4}\left(\left(\tau + \frac{d}{c}\right)^{4} + 2c\left(\tau + \frac{d}{c}\right)^{3}\frac{j'(\tau)}{j''(\tau)}\right)$$

The (A) strategy now fails: the leading coefficient is again j''! And yet, by contradiction (and very ineffectively):

- suppose we cannot apply the Root finding (even the 'cusp version', omitted in these slides);
- we deduce that the only zeroes are (conjugates of) ρ and i (with help from zero estimates);
- ▶ via the Open Mapping Theorem: $h(\tau + u, J(\tau))$ does not vanish for $\tau \in \mathbb{H}$, $u \in \mathbb{R}$;
- ▶ get bound $|h(\tau + u, J(\tau))| \succeq |z + u|^N$ for τ in the standard fundamental domain;
- but then 1/h extends holomorphically to \mathbb{C} and vanishes on \mathbb{R} , contradiction! 7/8 General strategy: this works for every **J**-homogeneous p containing Y_2 .

The actual general strategy is the following (with finer details not explained):

1 given $p(X, \mathbf{Y})$ irreducible, apply a 'generic' $\gamma \in SL_2(\mathbb{Z})$; formally, let the generic transform of p be

 $\Gamma(p)(Z,C,W,\mathbf{Y}) \coloneqq p\left(Z,Y_0,W^2Y_1,W^4Y_2+2CW^3Y_1\right) = p_N(Z,C,\mathbf{Y})W^N + \cdots + p_{n_0}(Z,C,\mathbf{Y})W^{n_0}$

so that $(c\tau + d)^{N+\ell} p(\gamma \tau, \mathbf{J}(\gamma \tau)) = \Gamma(p)(\gamma \tau, c, c\tau + d, \mathbf{J}(\tau)); p_N$ is always **J**-homogeneous;

- 2 if p_N contains Y_2 : can solve $p_N(\tau, \mathbf{J}(\tau)) = 0 \neq p_k(\tau, \mathbf{J}(\tau))$ for (some) p_k ; apply Root finding;
- **3** if p_N does *not* contain Y_2 : see below.

Fixed some $q \in \mathbb{C}[X, \mathbf{Y}]$, we have the following zero estimates for generic⁶ $\gamma \in SL_2(\mathbb{Z})$:

- for $j'(\tau_0) \neq 0$: $q(\tau, \mathbf{J}(\tau))$ vanishes at $\gamma \tau_0$ with multiplicity $s = \max\{s : (Y_0 j(\tau_0))^s \text{ divides } q\};$
- for $j'(\tau_0) = 0$, q does not contain Y_2 : $q(\tau, \mathbf{J}(\tau))$ vanishes at $\gamma \tau_0$ with multiplicity [explicit, but omitted];
- $q(\tau, \mathbf{J}(\tau))$ has 'exponential growth e' at the cusp of $\gamma \mathbb{F}$, where $e = \deg_T q(X, TY_0, TY_1, TY_2)$.

Take $\frac{p_{n_0}(\tau,c,\mathbf{I}(\tau))}{p_N(\tau,c,\mathbf{I}(\tau))}$: if it has no pole, the multiplicity of the numerator always beats the denominator; no exponential growth is similar. Summing up the zero estimates at a generic γ , we find $\frac{7}{6} \leq 1$ (!!). Thanks!

^{8/8 &}lt;sup>6</sup>Meaning outside of some proper Zariski closed subset.