Existential closedness beyond quasiminimality: *j* and derivatives

Vincenzo Mantova

University of Leeds Supported by EPSRC EP/T018461/1

Geometry from the model theorist's point of view, Oxford 10–13 September 2024

> From joint work with V. Aslanyan, S. Eterović <https://arxiv.org/abs/2312.09974>

Engineering and Physical Sciences Research Council

Quasiminimality

Definition. Let Q be the quantifier with semantics 'there exist uncountably many'.

Definition. *M* is quasiminimal if for every $\varphi(x)$ with parameters, $M \models \neg Q x.\varphi(x)$ or $M \models \neg Q x.\neg \varphi(x)$. **Examples.** Ignoring countable structures, of course.

- \blacktriangleright (Strongly) minimal structures.
- \blacktriangleright $(\omega_1 \times \mathbb{Q}; \langle \zeta_{\text{lex}}), (\mathbb{C}; \mathbb{Z}, +, \times);$ pseudoexponentiation $(\mathbb{B}; +, \times, \text{exp})$ (Zilber '05).
- \blacktriangleright Universal cover of $(\mathbb{C}^\times;\times)$ (Zilber '02–'06) and many follow ups (abelian and Shimura).
- ▶ Previous talks: raising to complex powers (Gallinaro-Kirby 2024), correspondences between elliptic curves, generic unary holomorphic function (Dmitrieva).

Fact. If M is quasiminimal excellent, 1 then it is a model of an uncountably categorical $L_{\omega_1,\omega}(Q)$ -sentence.

All of the above examples except one (which one?) are quasiminimal excellent.

Conjecture (Zilber '97–'05). $\mathbb{C}_{\text{exp}} := (\mathbb{C}, +, \times, \text{exp})$ is quasiminimal excellent.

Theorem (Zilber '05+Bays-Kirby '18). If Cexp is*exponentially-algebraically closed*, then Cexp is q.m. excellent. Moreover, $cl_Q(A) := \{b : \varphi(b, A), \neg Q \times \varphi(x, A) \text{ for some } \varphi\} = \text{ecl}(A)$ (ecl on next slide).

^{1/8} 1 'Closed substructures with closed embeddings generate an unbounded quasiminimal AEC' (see Vasey '18).

Exponential-algebraic closedness and existential closedness

Definition (Macintyre '96?). $b \in \text{ecl}(A)$ if there are an algebraic variety *V* of dimension *n* and a tuple \bar{c} of length *n* $-$ 1 such that $(b\bar{c}, E(b\bar{c}))$ is a transversal intersection of V with Γ_{exp}^n .²

The above definition generalises to any abstract exponential field *K* equipped a homomorphism $E: (K,+) \rightarrow (K^{\times},\times)$: just replace 'transversal' with a suitable determinant being non-zero.

Fact. ecl is a closure operator (Macintyre) and a pregeometry (Wilkie for R, Kirby '10).

Theorem (Ax '70, heavily rephrased). Let $V \subseteq \mathbb{C}^n \times (\mathbb{C}^\times)^n$ algebraic and of dimension *n*. If *C* is a *positive* \dim ensional component of $V\cap \Gamma^n_{\rm exp}$, then $C\subseteq (L+\overline{a})\times \left({\mathbb C}^\times\right)^n$ for some ${\mathbb Q}$ -linear space L .

Such *C* is an *unlikely* intersection: its dimension is bigger than it should. Compare with:

EAC. For all $V ⊆ K^n × (K^×)^n$ algebraic and of dimension *n*, if [conditions], then there is $(\bar{a}, \exp(\bar{a})) ∈ V$. Thus exponential-algebraic closedness asks that *likely* intersections, i.e. the ones of dimension 0, exist.³

Equivalently, that \mathbb{C}_{exp} is existentially closed among fields with 'dim_{ecl}-preserving embeddings over ecl(∅)'.⁴

The 'existential closedness' question can be formulated for other functions, regardless of quasiminimality.

³That is,
$$
2n - \dim(V) - \dim(\Gamma_{exp}) = 2n - n - n = 0
$$
.

2/8 ⁴This would actually be 'generic EAC'; EAC also says something about ecl(∅). See Kirby '10, Bays–Kirby '18.

² Here Γ_{exp}^n is the graph of $(x_1, \ldots, x_n) \mapsto (e^{x_1}, \ldots, e^{x_n}).$

▶ $p(z, e^z) = 0$ has infinitely many solutions unless $p \in \mathbb{C}[X] \cdot Y^{\mathbb{N}}$ (see Marker '06; this is $n = 1$). Given $V\subseteq \mathbb{C}^n\times \left(\mathbb{C}^\times\right)^n$, $V\cap \mathsf{\Gamma}^n_{\textsf{exp}}$ is nonempty when:

- ▶ $V = L \times W$ 'free rotund' for *K*-affine $L \subseteq \mathbb{C}^n$, $W \subseteq (\mathbb{C}^{\times})^n$ (Zilber '03-'12 for $K \subseteq \mathbb{R}$ 'generic'; Gallinaro '23).
- ▶ The projection of *V* to C *ⁿ* has dimension *n* (Brownawell-Masser '17, D'Aquino-Fornasiero-Terzo '18).
- \blacktriangleright The projection of V to \mathbb{C}^n has dimension 1 and is 'free' (M-Masser '24). In particular, $n = 2$ is solved.
- ▶ $V = W_1 \times W_2$ with $W_1 \subseteq \mathbb{C}^n$ (Gallinaro).

Given A semiabelian of dimension g , $V\subseteq \mathbb{C}^g\times A$ 'free rotund', $V\cap \mathsf{\Gamma}^n_\textsf{exp_A}$ is nonempty when:

- ▶ *A* abelian, $V = L \times W$ for *K*-linear $L \subseteq \mathbb{C}^g$ (Gallinaro '24).
- ▶ *A* (split semi-)abelian: the projection of *V* to C *^g* has dimension *g* (Aslanyan-Kirby-M '23).
- \triangleright *A* = *E*₁ × *E*₂, *V* = Δ × *W* (where Δ is the diagonal; Dmitrieva).

Given *S* Shimura variety with uniformizer $q:\Omega\subseteq \mathbb{C}^N\to$ S, $V\subseteq \mathbb{C}^N\times$ S 'broad Hodge-generic':

 \blacktriangleright The projection of V to \mathbb{C}^N has dimension N (Eterović-Herrero for $S = \mathbb{C}^N$, $q = j^N$; Eterović-Zhao).

▶ $V = L \times W$ with $L \subseteq \mathbb{C}^N$ 'totally geodesic' (Gallinaro for $S = \mathbb{C}^N$, $q = j^N$; Eterović-Zhao).

3/8 Also differential/blurred e.c. (Kirby, Aslanyan-Eterović-Kirby); Γ function (Eterović-Padgett).

Engineering and

The *j*-function

The Klein *j*-invariant (or just *j*-function) is the unique holomorphic function $j : \mathbb{H} \to \mathbb{C}$ such that:

$$
\blacktriangleright j(\tau) = j(\tau') \Longleftrightarrow \tau' = \frac{a\tau + b}{c\tau + d} \text{ for some } \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) \in SL_2(\mathbb{Z}) \text{ (that is, } ad - bc = 1);
$$

$$
\blacktriangleright \; j(\imath) = 1728 \text{ and } j(z) \sim e^{-2\pi i z} \text{ for } \Im(z) \to +\infty.
$$

j parametrizes elliptic curves up to isomorphism. It is differentially algebraic:

$$
j''' = \frac{3}{2} \frac{(j'')^2}{j'} - \frac{j^2 - 1968j + 2654208}{2j^2(j - 1728)^2} (j')^3.
$$

Let **J** := (j, j', j'') , Y := (Y_0, Y_1, Y_2) .

Theorem (Aslanyan-Eterović-M). Let $p, q \in \mathbb{C}[X, Y] \setminus \mathbb{C}$ be coprime. Then there is $\tau \in \mathbb{H}$ such that $p(\tau,\mathbf{J}(\tau))=0\neq q(\tau,\mathbf{J}(\tau))$ unless $p\in\mathbb{C}[X]\cdot Y_0^\mathbb{N}\cdot \left(Y_0-1728\right)^\mathbb{N}\cdot Y_1^\mathbb{N}.$

We have $j'(\tau) = 0 \Leftrightarrow \tau \in SL_2(\mathbb{Z}) \cdot \{i, \rho\} \Leftrightarrow j(\tau) = 0 \vee j(\tau) = 1728.$ $\text{Thus } p(\tau, \mathbf{J}(\tau)) = 0 \Leftrightarrow q(\tau, \mathbf{J}(\tau)) = 0 \text{ for } p = Y_1, q = Y_0(Y_0 - 1728).$

4/8 **Corollary.** $j''(\tau) = 0$ has solutions that are not in the $\mathsf{SL}_2(\mathbb{Z})$ -orbit of ρ .

Theorem (Pila–Tsimerman 2014, heavily rephrased). Let *^V* [⊆] ^C 4*n* algebraic and of dimension 3*n*. If *C* is a positive \dim ensional component of $V\cap\Gamma_{\bf J}^n$, 5 then $C\subseteq \{z_N=a\}$ or $C\subseteq \{\tau_N=\gamma\tau_m\}$ for some $\gamma\in\mathsf{GL}_2^+(\mathbb{Q})$.

Just as before: unlikely intersections between V and the graph of **J** come from $\mathsf{GL}^+_2(\mathbb{Q})$ or constant coordinates.

The Existential Closedness conjecture for**J**should assert that likely intersections exist:

Existential closedness? ()). Let $V \subseteq \mathbb{C}^{4n}$ algebraic. If [conditions], then there is $(\overline{\tau}, \mathbf{J}(\overline{\tau})) \in V \cap \Gamma_{\mathbf{J}}^{n}$.

The omitted 'conditions' guarantee that the intersections remain likely even after transformations that preserve **Γ_J** (such as projecting to $(\tau_1, \mathbf{J}(\tau_1))$ which maps $\Gamma^n_\mathbf{J}$ to $\Gamma^1_\mathbf{J}$).

Our theorem is a very special case: here $V = \{p(x, y_0, y_1, y_2) = 0\} \subseteq \mathbb{C}^4$, and we prove that $V \cap \Gamma_j^1$ is Zariski dense in *V*, unless *V* is of a special form.

The new challenge is that j',j'' are *not* invariant under the action of $\mathsf{SL}_2(\mathbb{Z})$:

$$
j\left(\frac{a\tau+b}{c\tau+d}\right)=j(\tau), \quad j'\left(\frac{a\tau+b}{c\tau+d}\right)=(c\tau+d)^2j'(\tau), \quad j''\left(\frac{a\tau+b}{c\tau+d}\right)=(c\tau+d)^4j''(\tau)+2c(c\tau+d)^3j'(\tau).
$$

 $5/8$ ${}^5\Gamma_J^n = \{(\tau_1,\ldots,\tau_n,\mathbf{J}(\tau_1),\ldots,\mathbf{J}(\tau_n)) : \tau_i \in \mathbb{H}\}.$

Let us sketch a strategy for the following system, where $q \in \mathbb{C}[X, Y]$ is not divisible by $Y_1 + Y_2$.

A
$$
j''(\tau) + j'(\tau) = 0
$$
 (that is $p = Y_1 + Y_2$) and $q(\tau, \mathbf{J}(\tau)) \neq 0$.

We apply a suitable $\gamma=\bigl(\begin{smallmatrix}a&b\\c&d\end{smallmatrix}\bigr)\in\mathsf{SL}_2(\mathbb{Z}).$ Here $\gamma=\bigl(\begin{smallmatrix}0&-1\\1&0\end{smallmatrix}\bigr)$ (that is, $\tau\mapsto-\frac{1}{\tau}\bigl)$ is enough.

$$
j''\left(-\frac{1}{\tau}\right)+j'\left(-\frac{1}{\tau}\right)=\tau^4\underbrace{j''(\tau)}_{p_4(\mathbf{J}(\tau))}+2\tau^3j'(\tau)+\tau^2\underbrace{j'(\tau)}_{p_2(\mathbf{J}(\tau))}.
$$

Root finding (pole version). Let $f_0, \ldots, f_\ell : \mathbb{H} \to \mathbb{C}$ be meromorphic, with $f_i(\tau + 1) = f_i(\tau)$, $f_\ell \not\equiv 0$, and

$$
F(\tau) := \tau^{\ell} f_{\ell}(\tau) + \cdots + f_0(\tau).
$$

If $\frac{f_k}{f_\ell}$ has a pole at $\tau\in\mathbb{H}$, then there are τ_m for large $m\in\mathbb{Z}$ such that $F(\tau_m+m)=0$, and $\tau_m\to\tau$ for $|m|\to\infty.$ **Corollary.** Let τ with $j''(\tau) = 0$, $j'(\tau) \neq 0$. Then there is τ_m with $j''(\tau_m) = j''(\tau_m + m) = 0$ and $q(\tau_m + m, \mathbf{J}(\tau_m + m)) \neq 0.$

 $_{6/8}$ General strategy: apply a 'generic' $\gamma \in \mathsf{SL}_2(\mathbb{Z})$, reduce to 'simpler' equation. Does it work?

Solving $j''(\tau)=$ 0

We reduced $j'' + j' = 0 \neq q$ to $j'' = 0 \neq j'$. Let us try to solve:

 B *j''* $(\tau) = 0$ (that is $p = Y_1$) and $q(\tau, \mathbf{J}(\tau)) \neq 0$ (where Y_2 does not divide q).

Unfortunately, $p = Y_2$ is 'J-homogeneous': $p(Y_0, W^2Y_1, W^4Y_2) = W^4Y_2 = W^4p$. **J**-homogeneous polynomials have the following funny transform. Fix $\gamma = \bigl(\frac{a}{c}\frac{b}{d}\bigr) \in$ SL₂($\mathbb Z$) with $c\neq$ 0:

$$
p(\gamma \tau, \mathbf{J}(\gamma \tau)) = p(\tau, \mathbf{J}(\tau))c^N \underbrace{\left(\left(\tau + \frac{d}{c} \right)^N + \dots \right)}_{h(z + \frac{d}{c}, \mathbf{J}(\tau))}; \text{ e.g. } j''(\gamma \tau) = j''(\tau)c^4 \left(\left(\tau + \frac{d}{c} \right)^4 + 2c(\tau + \frac{d}{c})^3 \frac{j'(\tau)}{j''(\tau)} \right)
$$

The [\(A\)](#page-6-0) strategy now fails: the leading coefficient is again *j* ′′! And yet, by contradiction (and very ineffectively):

- ▶ suppose we *cannot* apply the Root finding (even the 'cusp version', omitted in these slides);
- ▶ we deduce that the only zeroes are (conjugates of) ρ and *i* (with help from zero estimates);
- via the Open Mapping Theorem: $h(\tau + u, \mathbf{J}(\tau))$ does not vanish for $\tau \in \mathbb{H}$, $u \in \mathbb{R}$;
- ▶ get bound $|h(\tau + u, \mathbf{J}(\tau))| \succeq |z + u|^N$ for τ in the standard fundamental domain;
- 7/8 General strategy: this works for every **J**-homogeneous *p* containing *Y*2. \triangleright but then 1/*h* extends holomorphically to $\mathbb C$ and vanishes on $\mathbb R$, contradiction!

The actual general strategy is the following (with finer details not explained):

1 given $p(X, Y)$ *irreducible*, apply a 'generic' $\gamma \in SL_2(\mathbb{Z})$; formally, let the generic transform of p be

$$
\Gamma(p)(Z,C,W,Y) := p(Z,Y_0,W^2Y_1,W^4Y_2 + 2CW^3Y_1) = p_N(Z,C,Y)W^N + \cdots + p_{n_0}(Z,C,Y)W^{n_0}
$$

so that
$$
(c\tau + d)^{N+\ell} p(\gamma \tau, \mathbf{J}(\gamma \tau)) = \Gamma(p)(\gamma \tau, c, c\tau + d, \mathbf{J}(\tau))
$$
; p_N is always **J**-homogeneous;

- 2 if p_N contains Y_2 : can solve $p_N(\tau, \mathbf{J}(\tau)) = 0 \neq p_k(\tau, \mathbf{J}(\tau))$ for (some) p_k ; apply Root finding;
- **3** if p_N does *not* contain Y_2 : see below.

Fixed some $q \in \mathbb{C}[X, Y]$, we have the following zero estimates for generic⁶ $\gamma \in SL_2(\mathbb{Z})$:

- ▶ for $j'(\tau_0) \neq 0$: $q(\tau, \mathbf{J}(\tau))$ vanishes at $\gamma \tau_0$ with multiplicity $s = \max\{s : (Y_0 j(\tau_0))^s$ divides $q\}$;
- \blacktriangleright for $j'(\tau_0)=0$, q does not contain Y_2 : $q(\tau, \mathbf{J}(\tau))$ vanishes at $\gamma\tau_0$ with multiplicity [explicit, but omitted];
- \blacktriangleright $q(\tau, \mathbf{J}(\tau))$ has 'exponential growth e ' at the cusp of $\gamma \mathbb{F}$, where $e = \deg_{\tau} q(X, T Y_0, T Y_1, T Y_2)$.

Take $\frac{p_{n_0}(\tau,c,\mathbf{J}(\tau))}{p_N(\tau,c,\mathbf{J}(\tau))}$: if it has no pole, the multiplicity of the numerator always beats the denominator; no exponential growth is similar. Summing up the zero estimates at a generic γ , we find $\frac{7}{6} \leq 1$ (!!). **Thanks! Engineering and**

^{8/8 &}lt;sup>6</sup> Meaning outside of some proper Zariski closed subset.