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Quasiminimality

Definition. LetQ be the quantifier with semantics ‘there exist uncountably many’.
Definition. M is quasiminimal if for everyφ(x)with parameters, M |= ¬Q x.φ(x) or M |= ¬Q x.¬φ(x).
Examples. Ignoring countable structures, of course.
▶ (Strongly) minimal structures.
▶ (ω1 ×Q;<lex), (C;Z,+,×); pseudoexponentiation (B; +,×, exp) (Zilber ’05).
▶ Universal cover of (C×;×) (Zilber ’02–’06) and many follow ups (abelian and Shimura).
▶ Previous talks: raising to complex powers (Gallinaro-Kirby 2024), correspondences between elliptic curves,

generic unary holomorphic function (Dmitrieva).

Fact. If M is quasiminimal excellent,1 then it is a model of an uncountably categorical Lω1,ω(Q)-sentence.
All of the above examples except one (which one?) are quasiminimal excellent.
Conjecture (Zilber ’97–’05). Cexp := (C,+,×, exp) is quasiminimal excellent.
Theorem (Zilber ’05+Bays-Kirby ’18). IfCexp is exponentially-algebraically closed, thenCexp is q.m. excellent.
Moreover, clQ(A) := {b : φ(b, A),¬Q x.φ(x, A) for someφ} = ecl(A) (ecl on next slide).

1 ‘Closed substructures with closed embeddings generate an unbounded quasiminimal AEC’ (see Vasey ’18).
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Exponential-algebraic closedness and existential closedness

Definition (Macintyre ’96?). b ∈ ecl(A) if there are an algebraic variety V of dimension n and a tuple c of length
n − 1 such that (bc, E(bc)) is a transversal intersection of V with Γn

exp.2

The above definition generalises to any abstract exponential field K equipped a homomorphism
E : (K,+) → (K×,×): just replace ‘transversal’ with a suitable determinant being non-zero.
Fact. ecl is a closure operator (Macintyre) and a pregeometry (Wilkie forR, Kirby ’10).
Theorem (Ax ’70, heavily rephrased). Let V ⊆ Cn × (C×)

n algebraic and of dimension n. If C is a positive
dimensional component of V ∩ Γn

exp, then C ⊆ (L + a)× (C×)
n for someQ-linear space L.

Such C is an unlikely intersection: its dimension is bigger than it should. Compare with:
EAC. For all V ⊆ Kn × (K×)

n algebraic and of dimension n, if [conditions], then there is (a, exp(a)) ∈ V.
Thus exponential-algebraic closedness asks that likely intersections, i.e. the ones of dimension 0, exist.3

Equivalently, thatCexp is existentially closed among fields with ‘dimecl-preserving embeddings over ecl(∅)’.4

The ‘existential closedness’ question can be formulated for other functions, regardless of quasiminimality.
2HereΓn

exp is the graph of (x1, . . . , xn) 7→ (ex1 , . . . , exn ).
3That is, 2n − dim(V)− dim(Γexp) = 2n − n − n = 0.
4This would actually be ‘generic EAC’; EAC also says something about ecl(∅). See Kirby ’10, Bays–Kirby ’18.
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State of the art on existential closedness
▶ p(z, ez) = 0 has infinitely many solutions unless p ∈ C[X] · YN (see Marker ’06; this is n = 1).

Given V ⊆ Cn × (C×)
n, V ∩ Γn

exp is nonempty when:
▶ V = L × W ‘free rotund’ for K-affine L ⊆ Cn, W ⊆ (C×)

n (Zilber ’03-’12 for K ⊆ R ‘generic’; Gallinaro ’23).
▶ The projection of V toCn has dimension n (Brownawell-Masser ’17, D’Aquino-Fornasiero-Terzo ’18).
▶ The projection of V toCn has dimension 1 and is ‘free’ (M-Masser ’24). In particular, n = 2 is solved.
▶ V = W1 × W2 with W1 ⊆ Cn (Gallinaro).

Given A semiabelian of dimension g, V ⊆ Cg × A ‘free rotund’, V ∩ Γn
expA

is nonempty when:
▶ A abelian, V = L × W for K-linear L ⊆ Cg (Gallinaro ’24).
▶ A (split semi-)abelian: the projection of V toCg has dimension g (Aslanyan-Kirby-M ’23).
▶ A = E1 × E2, V = ∆× W (where∆ is the diagonal; Dmitrieva).

Given S Shimura variety with uniformizer q : Ω ⊆ CN → S, V ⊆ CN × S ‘broad Hodge-generic’:
▶ The projection of V toCN has dimension N (Eterović-Herrero for S = CN, q = jN; Eterović-Zhao).
▶ V = L × W with L ⊆ CN ‘totally geodesic’ (Gallinaro for S = CN, q = jN; Eterović-Zhao).

Also differential/blurred e.c. (Kirby, Aslanyan-Eterović-Kirby); Γ function (Eterović-Padgett).
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The j-function

The Klein j-invariant (or just j-function) is the unique holomorphic function j : H → C such that:
▶ j(τ) = j(τ ′)⇐⇒ τ ′ = aτ+b

cτ+d for some
(

a b
c d

)
∈ SL2(Z) (that is, ad − bc = 1);

▶ j(ı) = 1728 and j(z) ∼ e−2πız forℑ(z) → +∞.
j parametrizes elliptic curves up to isomorphism. It is differentially algebraic:

j′′′ =
3
2
(j′′)2

j′
− j2 − 1968j + 2654208

2j2(j − 1728)2 (j′)3
.

Let J := (j, j′, j′′), Y := (Y0, Y1, Y2).

Theorem (Aslanyan-Eterović-M). Let p, q ∈ C[X, Y] \ C be coprime. Then there is τ ∈ H such that
p(τ, J(τ)) = 0 ̸= q(τ, J(τ)) unless p ∈ C[X] · YN

0 · (Y0 − 1728)N · YN
1 .

We have j′(τ) = 0 ⇔ τ ∈ SL2(Z) · {ı, ρ} ⇔ j(τ) = 0 ∨ j(τ) = 1728.
Thus p(τ, J(τ)) = 0 ⇔ q(τ, J(τ)) = 0 for p = Y1, q = Y0(Y0 − 1728).

Corollary. j′′(τ) = 0 has solutions that are not in theSL2(Z)-orbit of ρ.
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The Existential Closedness conjecture (for ZP enthusiasts)

Theorem (Pila–Tsimerman 2014, heavily rephrased). Let V ⊆ C4n algebraic and of dimension 3n. If C is a positive
dimensional component of V ∩ Γn

J ,5 then C ⊆ {zN = a} or C ⊆ {τN = γτm} for some γ ∈ GL+2 (Q).

Just as before: unlikely intersections between V and the graph of J come fromGL+2 (Q) or constant coordinates.

The Existential Closedness conjecture for J should assert that likely intersections exist:

Existential closedness? (J). Let V ⊆ C4n algebraic. If [conditions], then there is (τ , J(τ)) ∈ V ∩ Γn
J .

The omitted ‘conditions’ guarantee that the intersections remain likely even after transformations that preserve
ΓJ (such as projecting to (τ1, J(τ1))which maps Γn

J to Γ1
J).

Our theorem is a very special case: here V = {p(x, y0, y1, y2) = 0} ⊆ C4, and we prove that V ∩ Γ1
J is Zariski

dense in V, unless V is of a special form.

The new challenge is that j′, j′′ are not invariant under the action ofSL2(Z):

j
(

aτ + b
cτ + d

)
= j(τ), j′

(
aτ + b
cτ + d

)
= (cτ + d)2j′(τ), j′′

(
aτ + b
cτ + d

)
= (cτ + d)4j′′(τ) + 2c(cτ + d)3j′(τ).

5Γn
J = {(τ1, . . . , τn, J(τ1), . . . , J(τn)) : τi ∈ H}.
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An example: solving j′′(τ) + j′(τ) = 0
Let us sketch a strategy for the following system, where q ∈ C[X, Y] is not divisible by Y1 + Y2:

A j′′(τ) + j′(τ) = 0 (that is p = Y1 + Y2) and q(τ, J(τ)) ̸= 0.

We apply a suitable γ =
(

a b
c d

)
∈ SL2(Z). Here γ = ( 0 −1

1 0 ) (that is, τ 7→ − 1
τ ) is enough.

j′′
(
− 1
τ

)
+ j′

(
− 1
τ

)
= τ 4 j′′(τ)︸ ︷︷ ︸

p4(J(τ))

+2τ 3j′(τ) + τ 2 j′(τ)︸︷︷︸
p2(J(τ))

.

Root finding (pole version). Let f0, . . . , fℓ : H → C be meromorphic, with fi(τ + 1) = fi(τ), fℓ ̸≡ 0, and

F(τ) := τ ℓfℓ(τ) + · · ·+ f0(τ).

If fk
fℓ

has a pole at τ ∈ H, then there are τm for large m ∈ Z such that F(τm + m) = 0, and τm → τ for |m| → ∞.

Corollary. Let τ with j′′(τ) = 0, j′(τ) ̸= 0. Then there is τm with j′′(τm) = j′′(τm + m) = 0 and
q(τm + m, J(τm + m)) ̸= 0.

General strategy: apply a ‘generic’ γ ∈ SL2(Z), reduce to ‘simpler’ equation. Does it work?
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Solving j′′(τ) = 0
We reduced j′′ + j′ = 0 ̸= q to j′′ = 0 ̸= j′. Let us try to solve:

B j′′(τ) = 0 (that is p = Y1) and q(τ, J(τ)) ̸= 0 (where Y2 does not divide q).
Unfortunately, p = Y2 is ‘J-homogeneous’: p(Y0,W2Y1,W4Y2) = W4Y2 = W4p.
J-homogeneous polynomials have the following funny transform. Fix γ =

(
a b
c d

)
∈ SL2(Z)with c ̸= 0:

p(γτ, J(γτ)) = p(τ, J(τ))cN

((
τ +

d
c

)N

+ . . .

)
︸ ︷︷ ︸

h(z+ d
c ,J(τ))

; e.g. j′′(γτ) = j′′(τ)c4
((

τ + d
c

)4
+ 2c

(
τ + d

c

)3 j′(τ)
j′′(τ)

)

The (A) strategy now fails: the leading coefficient is again j′′! And yet, by contradiction (and very ineffectively):
▶ suppose we cannot apply the Root finding (even the ‘cusp version’, omitted in these slides);
▶ we deduce that the only zeroes are (conjugates of) ρ and i (with help from zero estimates);
▶ via the Open Mapping Theorem: h(τ + u, J(τ)) does not vanish for τ ∈ H, u ∈ R;
▶ get bound |h(τ + u, J(τ))| ⪰ |z + u|N for τ in the standard fundamental domain;
▶ but then 1/h extends holomorphically toC and vanishes onR, contradiction!
General strategy: this works for every J-homogeneous p containing Y2.
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The other J-homogeneous case: zero estimates
The actual general strategy is the following (with finer details not explained):

1 given p(X, Y) irreducible, apply a ‘generic’ γ ∈ SL2(Z); formally, let the generic transform of p be

Γ(p)(Z, C,W, Y) := p
(

Z, Y0,W2Y1,W4Y2 + 2CW3Y1
)
= pN(Z, C, Y)WN + · · ·+ pn0(Z, C, Y)Wn0

so that (cτ + d)N+ℓp(γτ, J(γτ)) = Γ(p)(γτ, c, cτ + d, J(τ)); pN is always J-homogeneous;
2 if pN contains Y2: can solve pN(τ, J(τ)) = 0 ̸= pk(τ, J(τ)) for (some) pk; apply Root finding;
3 if pN does not contain Y2: see below.

Fixed some q ∈ C[X, Y], we have the following zero estimates for generic6 γ ∈ SL2(Z):
▶ for j′(τ0) ̸= 0: q(τ, J(τ)) vanishes at γτ0 with multiplicity s = max{s : (Y0 − j(τ0))

s divides q};
▶ for j′(τ0) = 0, q does not contain Y2: q(τ, J(τ)) vanishes at γτ0 with multiplicity [explicit, but omitted];
▶ q(τ, J(τ)) has ‘exponential growth e’ at the cusp of γF, where e = degT q(X, TY0, TY1, TY2).

Take pn0 (τ,c,J(τ))
pN(τ,c,J(τ)) : if it has no pole, the multiplicity of the numerator always beats the denominator; no exponential

growth is similar. Summing up the zero estimates at a generic γ, we find 7
6 ≤ 1 (!!). Thanks!

6Meaning outside of some proper Zariski closed subset.


