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1. Probabilistic calculus in Boltzmann’s statistical mechanics

Probability of a state with energy E at temperature T is

E
kT
∈ U 7→ 1

ZT
e

E
kT ∈ R; U→ R

2. Probabily amplitudes calculus in Dirac’s quantum mechanics

Probability amplitude of a state with energy H at time t is

Ht
~
∈ U 7→ 1

ct
e

iHt
~ ∈ C; U→ C
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Continuous predicates and quantifiers

States = n-ary CL-predicates

ψ : Un → F

Example.

〈x | p〉 =
1√
2π~

ei px
~

Quantifiers (bounded) ( a,p ∈ R+)

epx 7→
∫
R

e−a x2
2 epxdx =

√
π

a
e

p2

4a (SM calculus)

and

eipx 7→
∫
R

e−ai x2
2 eipxdx =

√
π

ai
e−i p2

4a (QM calculus)
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Magic rules

- Wick rotation:
For many (all?) physical processes the calculation in quantum
mechanics and QFT can be replaced by calculations in
statistical mechanics and Euclidean field theory via the
“rotation” a 7→ ia

...

-Regularisations:
E.g.: for some infinite matrix A,

det A “=”
∏
n∈N

n “=” eζ
′(0) =

√
2π

...
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Interpretation problem

We assume that the physical theory (or a part of it) is a system
of CL-axioms, i.e. a CL-theory.

Problem. Give an interpretation of the CL-axioms in the
context of continuous model theory.
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Discrete or continuous? Finite or infinite?

Gerard t’Hooft:
A locally finite model of gravity, 2008; Relating the Quantum
Mechanics of Discrete Systems to Standard Canonical
Quantum Mechanics 2014, ...
... We here consider systems where only the integers describe
what happens at a deeper level. Can one understand why our
world appears to be based on real numbers?

Assuming the “universe” U is discrete or finite, the Logic
System must be multivalued.
With values in some finite or pseudo-finite F :

expp : Un → F
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Roger Penrose in The Road to reality on using finite fields in
physics:
... If Fp were to take the place of the real-number system, in any
significant sense, then p has to be very large indeed. ... To my
mind, a physical theory which depends fundamentally upon
some absurdly enormous prime number would be a far more
complicated (and improbable) theory than one that is able to
depend on a simple notion of infinity. Nevertheless, it is of some
interest to pursue these matters. ...
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Finite and pseudo-finite models

U is pseudo-finite⇒ F is pseudo-finite

U := ∗Z/(p− 1)l; F = ∗Z/p = Fp

U is a module over the ring ∗Z/(p− 1)l.

(Un an analogue of n-dim lattice of physics lattice theory).

expp : U � F×p

a surjective homomorphism of groups.
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Limits of finite structures

Theorem For some non-standard prime p, highly divisible
l ∈ ∗Z and a very large i ∈ ∗Z, there is a pair of surjective “limit”
homomorphisms which make the diagram commute

lmU : U � C̄

expp ↓ exp ↓

lmF : Fp � C̄

;

where lmU is a homomorphism of a Z[i]-modules such that

lmU(i · u) = i · lmU(u), i =
√
−1
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Limits of finite structures

There are subgroups: ′R′ ⊂ U; i · ′R′ ⊂ U such that

lmU : ′R′ � R ⊂ C

lmU : i · ′R′ � i · R ⊂ C

lmF : ′S′ � S ⊂ C

lmF : ′R′+ � R+ ⊂ C

This allows polar coordinates and “complex” conjugation on a
“dense” subfield F ⊂ Fp,

with an embedding

F ↪→ ∗C

so allows non-standard analysis on F.
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Predicates and states with values in F ⊆ Fp

A state (= predicate) on V ⊂ Un is:

ϕ : V→ F

A basic state (basic predicate) ϕ has the form

ϕ(x̄) = expp(f (x̄) · v)

where f (x̄) ∈ Z[x̄ ], x̄ ∈ (∗Z/N )n and v ∈ V, N = |V|.
Logical connectives = operations of F. For quantifiers use

1√
N

∑
y∈∗Z/N

expp(g(x̄ , y) · v)

(cf. E.Kowalski’s and E.Hrushovski’s works on additive
character over finite fields).
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Hilbert space over F and operators

The states form an F-linear space HV of pseudo-finite
dimension, with natural choices of orthonormal bases and
well-defined inner product with values in F.

Definable linear maps on HV, analogues of linear unitary
operators:

Lg : ϕ(x̄ , y)) 7→ 1√
|V|

∑
nv∈V

expp(g(n)v) · ϕ(x̄ ,n)

which interpret the continuous logic quantifiers

Lg : ϕ(x̄ , y)) 7→
∫
R

eg(y)ϕ(x̄ , y)) dy

or
Lg : ϕ(x̄ , y)) 7→

∫
R

eig(y)ϕ(x̄ , y)) dy
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Wick rotation on Gaussian states

A state is Gaussian if f (x̄) is a quadratic form.

Theorem. For some natural subgroup-subdomains

VQM ⊂ VSM ⊂ Un

VQM = i · VSM;

u 7→ i · u induces ϕ 7→ ϕi

where
ϕ : VSM → F; ϕi : VQM → F
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And for linear Gaussian operators L on ϕ ∈ HSM becomes the
action of some well-defined linear operator Li on ϕi ∈ HQM,

Liϕi = (Lϕ)i.

The inner product on the spaces transforms correspondingly

〈ϕi|ψi〉 = 〈ϕ|ψ〉i,

where we consider both a formal-Euclidean and a formal-
Hermitian versions of inner product.
This results in the Wick rotation isomorphism

{}i : HSM → HQM
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