
A new str. min. set, Part 2

The goal of this talk is to present Hrushovskis counterexample for Zilbers conjecture, that a strongly minimal
theory must be either locally modular or interpret an infinte field. I follow closely Zieglers "An exposition of
Hrushovskis new strongly minimal set" and in the last section Hrushovskis "A new strongly minimal set".
The talk is based on Zhengqing Hes talk, so first I will repeat the setting, some important definition and
statements and some basic lemmata, which follow from these. Later on I will just refer to these, so it does
not prolong some proofs unneccessarily. Then we will proceed to the construction of the counterexample and
show its important properties.
Just some remarks before we start, for better legibility we will sometimes use AB instead of A ∪B.

0.1 Repition and basics
One corollary we need from Blaise Boissoneaus talk

Corollary 0.1. a |̂
C
B iff Cb(p) ⊆ acleq(C).

Now we repeat some parts of Zhengqing Hes talk. These statements we do not proof and refer to her
notes. We will also take a look at some easy lemma, which we will prove here instead of extending later
proofs unnecessarily:

The setting: We consider a language L with just one ternary relation symbol R and C is the class of all
L-structures M = (M,RM ), where RM is irreflexive and symmetric.

Definition 0.2. We defined δ on a given structure M as δ(A) = |A|− |R(A)| and δ(A/B) = δ(A∪B)− δ(B)
for sets A,B.
A finite subset A is closed inM , orM is a strong extension of A , A ≤M , if δ(A) ≤ δ(B) for all A ⊆ B ⊆M .
We define C0 = {M ∈ C|∅ ≤M}.

Example 0.3. Define Cnm = {a1, a2, b1, b2, c} with R(Cnm) consisting of {a1, b1, c} and {a2, b2, c}. Cnm
belongs to C0.

Definition 0.4. The closure cl(X) of a set X in M is the smallest closed set containing X.

Lemma 0.5. The closure of a finite set is finite.

Remark 0.6. δ(A/B) = δ(A∪B)−δ(B) = |A∪B|−|R(A∪B)|−(|B|−|R(B)|) = |A\B|−|R(A∪B)\R(B)|.
In particular, for A and B disjoint we get: δ(A/B) = |A| − |R(A ∪B) \R(B)|

Lemma 0.7. For sets A disjoint to B ⊆ M , if all elements of M , which are connected to A lie in B, then
δ(A/M) = δ(A/B).

Lemma 0.8. If A0, ..., An are disjoint subsets, then for any set M we have:

δ(A0...An/M) =
n∑
k=0

δ(Ak...An/(Ak+1...AnM).

Lemma 0.9. If |R(B ∪M)| ≥ |R(B)|+ |R(M)| − |R(B ∩M)|+ r, then δ(B/M) ≤ δ(B/B ∩M)− r.

1



Proof. If |R(B ∪M)| ≥ |R(B)| + |R(M)| − |R(B ∩M)| + r, then equivalently |R(B ∪M) \ R(M)| ≥ r −
|R(B ∩M) \R(B)| and hence

δ(B/M) = |B \M | − |R(B ∪M) \R(M)| ≤ |B \ (M ∩B)|+ |R(B ∩M) \R(B)| − r = δ(B/B ∩M)− r

Lemma 0.10. Let X be a subset of Y . Then

X ≤ Y ⇔ δ(A/A ∩X) ≥ 0 for all finiteA ⊆ Y.

Lemma 0.11. If A ≤ C,A ⊆ B ⊆ C, then A ≤ B.

Lemma 0.12. Let A,B be any sets in M . Then

A ∪B ≤M iff A′ ∪B′ ≤M for every finite A′ ≤ A,B′ ≤ B.

Proof. "⇐"Follows directly from lemma 0.11, since A′ ∪B′ ⊆ A ∪B ⊆M .
"⇒"Assume there exists some finite A′ ≤ A,B′ ≤ B with A′∪B′ �M - Then by lemma 0.10 there exists a finite
D ⊆M such that δ(D/D ∩ (A′B′)) < 0. By submodularity we get δ(D/D ∩ (AB)) ≤ δ(D/D ∩ (A′B′)) < 0.
And again by lemma 0.10 this implies that A ∪B �M .

Definition 0.13. An extension B ≤ C is minimal if B is a maximal proper closed subset of C.

Lemma 0.14. A proper strong extension C of B is minimal iff δ(C/D) < 0 for all B ( D ( C.
We will also use a slightly different version of this lemma:
A proper strong extension B ≤ B tA is minimal iff δ(B ∪A/B ∪D) < 0 for all D ( A.

Corollary 0.15. If B ≤ C is minimal and C is neither contained in X nor disjoint from X, then we have
δ(C/X ∪B) < 0.

Lemma 0.16. If B ≤ C is minimal, there are two cases

1. δ(C/B) = 1 and C = {B ∪ {c}.

2. δ(C/B) = 0.

Definition 0.17. The dimension of A is defined as

d(A) = min{δ(B)|A ⊆ B} = δ(cl(A)).

The corresponding Cl (for which d is the dimension function) we call the geometric closure.

Remark 0.18. Note that d(A) ≤ δ(A) and cl(X) ⊆ Cl(X). Furthermore, d(A) = d(cl(A)).

Remark 0.19. If C is a subset of M , B closed in C and δ(C/B) = 0, then C is contained in Cl(B).

Lemma 0.20. If X is closed in M , then Cl(X) is the union of all extensions C with δ(C/X) = 0.

Proof. Since X ≤M for any C with X ⊆ C ⊆M we have B is closed in C. Now if C fulfilled δ(C/X) = 0,
then by the remark C ⊆ Cl(B).
On the other hand, if we have any x ∈ Cl(X), then 0 = d(x/X) = δ(cl(X ∪{x})/ cl(X)) = δ(cl(X ∪{x})/X).
Hence x ∈ cl(X ∪ {x}) lies in the union.

Lemma 0.21. If d(c/B) = 1, then c is not connected to cl(B) and cl(B) ∪ {c} is closed.

Proof. If c /∈ cl(B), but c is connected to cl(B), then

δ(cl(B) ∪ {c}) = | cl(B)||+ 1− |R(cl(B) ∪ {c})| ≤ | cl(B)||+ 1− (|R(cl(B))|+ 1) = δ(cl(B)).

and hence we get

d(c/B) = d(B ∪ {c}))− d(B) = min{δ(A)|B ∪ {c} ⊆ A} − δ(cl(B)) ≤ δ(cl(B) ∪ {c})− δ(cl(B)) ≤ 0.
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And if c is not connected to cl(B) and cl(B) ∪ {c} is not closed, then exists some cl(B) ∪ {c} ⊆ A with
δ(A) < δ(cl(B) ∪ {c}) and hence

d(c/B) = min{δ(A′)|Bc ⊆ A′} − d(B) ≤ δ(A)− d(B) < δ(cl(B) ∪ {c})− δ(cl(B)) = 1.

Definition 0.22. Let A,B be sets in M , then A ∪ B is the free amalgam A ⊗C B iff A ∩ B = C and
R(A ∪B) = R(A) ∪R(B).

Lemma 0.23. For sets A,B in M we have:

A ∪B = A⊗C B iff. A′ ∪B′ = A′ ⊗C B′ for all finite A′ ≤ A,B′ ≤ B with A′ ∩B′ = C.

Proof. "⇒" This is clear by definition.
"⇐"Assume A ∪ B is not the free amalgam. Hence there exist a ∈ A, b ∈ B such that R(a, b, c) for some
c ∈ A ∪ B holds. W.l.o.g. c ∈ A. Now consider A′ = cl(a, c) ≤ A and B′ = cl(b). By lemma 0.5 A′, B′ are
finite and they are not the free amalgam.
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Chapter 1

The collapse

Definition 1.1. A pair A/X of disjoint sets is called prealgebraic minimal if

(i) X ∪A belongs to C0.

(ii) X ≤ X ∪A is minimal.

(iii) δ(A/X) = 0.

A prealgebraic minimal pair A/B is called good if δ(A/B′) > 0 for every proper subset B′ ( B.

Proposition 1.2. For every prealgebraic pair A/X there exists a unique B ⊆ X such that A/B is good.
We call this B the basis of A/X.

Proof. Let B be the set of all x ∈ X which are connected with an element of A i.e. there exists an a ∈ A
and y ∈ X ∪ A such that R(x, a, y). By definition we then get R(X ∪ A′) = R(X) t R(B ∪ A′) \ R(B) for
any A′ ⊆ A and hence

|R(X ∪A′)| = |R(X)|+ |R(B ∪A′) \R(B)| = |R(X)|+ |R(B ∪A′)| − |R(B)|.

A/B is pralgebraic minimal, since:

(i) B ∪A belongs to C0, because X ∪A does.

(ii) B ≤ B ∪A is minimal: Using corrollary 0.14 to show minimality, take any A′ ( A:

δ(B ∪A/B ∪A′) = |A \A′| − |R(B ∪A) \R(B ∪A′)|
= |A \A′| − (|R(B ∪A)| − |R(B)|+ |R(X)|) + (|R(B′ ∪A′)| − |R(B)|+ |R(X)|)

= |A \A′| − |R(X ∪A)|+ |R(X ∪A′)| = δ(X ∪A/X ∪A′)
A/X min
< 0

(iii)

δ(A/B) = |A| − |R(A ∪B) \R(B)| = |A| − |R(X ∪A) \R(X)| = δ(A \X) = 0

Now goodness follows since for any subset B′ ( B, there is at least one element b ∈ B \ B′. Now b is
connected to A and hence |R(A ∪B′) \R(B′)| = |R(A ∪B′) \R(B)| < |R(A ∪B) \R(B)|. Therefore

δ(A/B′) = |A| − |R(A ∪B′) \R(B′)| > |A| − |R(A ∪B)| = δ(A/B) = 0

Now assume we have another good pair A/C with x /∈ B, then x is not connected to A and we have
|R(A∪ (C \x)) \R(C \x)| = |R(A∪C) \R(C)|. Hence δ(A/C \x) = |A|− |R(A∪ (C \x)) \R(C \x)| =
|A| − |R(A ∪ C) \R(C)| = δ(A/C) = 0, which contradicts the goodness of A/C. Therefore C must lie
in B, but by goodness it cannot be a proper subset. Hence we have equality.
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Lemma 1.3. For a prealgebraic minimal pair A/X with basis B we get:

a) X ∪A = X ⊗B (B ∪A).

b) |B| ≤ 2 · |A|.

Proof. a) As sets we clearly get X ⊗B (B ∪ A) = X ∪ (B ∪ A) = X ∪ A. Now since all x ∈ X which are
connected with A lie in B we also have R⊗(X ∪A) = R(X) ∪R(B ∪A) = R(X ⊗B (B ∪A)).

b) 0 = δ(A/B) = |A|− (|R(A∪B)|− |R(B)|) implies R′ = R(B∪A)\R(B) has |A| elements. By goodness
(or the characterization of the basis as above) every element of B belongs to some set in R′, but such
a set contains at most 2 elements of B. Hence |A| = |R′| ≥ 1

2 |B|.

Definition 1.4. A code α is the isomorhism type of a good pair Aα/Bα.
A pseudo Morley sequence of α over B is a pairwise disjoint sequence A0, A1, ... such that all Ai/B are of
type α.

Lemma 1.5. Let M ≤ N be in C0. If N contains a pseudo Morley sequence (Ai) of α over B with more
than δ(B) elements, then one of the following occurs:

1. B ⊆M

2. Some Ai lies in N\M .

Proof. Assume A0, ..., Ar−1 lie in M and Ar, ..., Ar+s−1 are neither in M nor in N\M . Further assume B
is not contained in M . Since Ai/B is good, each Ai contains at least one element which is connected to B.
Hence

|R(B ∪M)| ≥ |R(B)|+ |R(M)| − |R(B ∩M)|+ r.

So we get

δ(B/M)
0.9
≤ δ(B/B ∩M)− r = δ(B)− δ(B ∩M)− r

M∈C0

≤ δ(B)− r.

By the minimality ofAi/B, corollary 0.15 implies δ(Ai/Ar...Ai−1MB) < 0 or equiv. δ(Ai/Ar...Ai−1MB) ≤
−1 for all i ∈ [r, r + s− 1]. Therefore

δ(Ar....Ar+s−1/MB) (0.8)= δ(Ar...Ar+s−1/Ar...Ar+s−2MB)+δ(Ar...Ar+s−2/Ar...Ar+s−3MB)+...+δ(Ar/MB) ≤ −s.

Or equiv. δ(Ar....Ar+s−1MB) ≤ δ(MB)− s. This implies

0
M≤N
≤ δ(Ar...Ar+s−1B/M) = δ(Ar...Ar+s−1MB)−δ(M) ≤ δ(MB)−s−δ(M) = δ(B/M)−s ≤ δ(B)−r−s.

This contradicts the pre-condition r + s ≥ δ(B)

For every code α we now fix a natural number µ(α) ≥ δ(Bα).

Definition 1.6. A pseudo Morley sequence of length > µ(α) is called a long pseudo Morley sequence.
Let Cµ be the class of all M ∈ C0 without any long pseudo Morley sequences.

Example 1.7. • Cnm ∈ Cµ.
Up to isomorphism the only two good pairs are c/a1b1 and b2/a2c. The only pseudo Morley

sequences over their isomorphism types are of length one, which implies not long.

• Fn ∈ Cµ for any n < ω.

If we had any good pair A/B, then 0 = δ(A/B) = |A| − |R(A ∪ B) \ R(B)| no rel.= |A|. So there is
no good pairs and no (long) pseudo Morley sequences.
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• If M ∈ Cµ and we add a new unconnected point c to M , then M ′ := M ∪ {c} ∈ Cµ.
For any good pair A/B in M ′, by the minimality c cannot be in A and by goodness c cannot be

in B. Hence any pseudo Morley sequence in M ′ is also a pseudo Morley sequence in M and hence not
long.

Lemma 1.8. Cµfin has the amalgamation property for strong extensions.

Proof. Consider B ≤ M and B ≤ N in Cµfin and assume M ⊗B N does not belong to Cµfin. We may assume
that N is a minimal extension of B (otherwise we could build a finite chain of minimal extensions). Since
M ⊗B N /∈ Cµfin, it contains a long pseudo Morley sequence (Ai) of some α over B′. Now by Lemma 1.5 there
are two cases:

1. B′ ⊆M . Since M ∈ Cµfin, there is an Ai which lies not completely in M.
(Ai ∩M) ∪ B′ is a closed subset of Ai ∪ B′, but by minimality this can only be if Ai ∩M is empty.
Hence Ai ⊆ N \M = N \B =: A.
Now B ≤ N = B ∪ N\B = B ∪ A is minimal, implying the pair A/B is minimal. All elements in M
which are connected to A (resp. Ai) lie in B (free amalgam). Hence by the minimality of A/B , also
A/M is minimal. Now

0
M strong
≤ δ(Ai/M) = δ(Ai ∪M)− δ(M) = δ(Ai ∪B′ ∪M)− δ(M)

≤ δ(Ai ∪B′) + δ(M)− δ((Ai ∪B′) ∩M)− δ(M) = δ(Ai ∪B′)− δ(B′) = δ(Ai/B′) = 0

and hence δ(Ai/M) = 0. But by lemma 0.14 this can only be if Ai = A.
Furthermore, A/B′ is a good pair and by the definition of the free amalgam all elements of N , which
are conntected to A = N\B, must lie in B. Hence B′ ⊆ B. Again, since N ∈ Cµfin, there is an Aj which
lies in M \B. Now B′ is the basis of A/B and Aj/B, so they must be isomorphic. Then we can embed
N = B ∪A in M by mapping it onto B ∪Aj and we have found an amalgamation.

2. Ai ⊆ N \M for some i. Since Ai/B′ is minimal, by corollary 0.15 B′ ⊆ N . N belongs to Cµfin, so some
Aj lies in M \B. As above B′ ⊆ B and we proceed as in the first case.

Definition 1.9. We define Mµ to be the Fraïssé limit of Cµ.

The following will be a complete axiomatisation of the theory of Mµ:

Definition 1.10. M is a model of Tµ if the following conditions hold:

a) M belongs to Cµ.

b) No prealgebraic minimal extension of M belongs to Cµ.

c) M is infinite.

Lemma 1.11. Tµ is ∀∃-axiomatisable.

Proof. Clearly, condition c) can be elementarily expressed by ∀∃-sentences.
For the other conditions notice first, the (non-)existence of a long pseudo Morley sequence for a given iso-
morphism type α can be expressed by a ∀∃-sentence. (The isomorphism type is completely discribed by the
relations which hold and this can be easily expressed. Then its again easy to express that there exits ≤ µ(α)
or > µ(α) disjoint sets which also hold the required relations.)
By using such a sentence for every isomorphism type α in M , we get a set of axioms to express condition a).

Now for condition b): We show: If we have M ∈ Cµ and A/M a prealgebraic minimal pair with basis B
and α the isomorphism type for A/B, then there is only a finite number of codes α′ which can have a long
pseudo Morley sequence in N = M ∪A = M ⊗ (B ∪A). If we express the existence of a long Morley for each
of the α′ as a ∀∃-sentence, then the disjunction expresses the existence of any long Morley sequence and is
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also a ∀∃-sentence.
So let M ∈ Cµ and A/M a prealgebraic minimal pair with basis B and α the isomorphism type for A/B and
assume (A′i) is a long pseudo Morley sequence of α′ in over B′ in N . By the Mainlemma 1.5 there is two
cases:

1.) B′ ⊆ M . As in the proof of the amalgamation property we conclude that some A′i equals A and that
B′ ⊆ B. Now B′ = B, since A′i/B′ = A/B′ and A/B are both good. Then we have α′ = α, so only
one possible isomorphism type.

2.) Some A′i lies in A. The size of B′ can be bounded by |B′| ≤ 2 · |A′i| ≤ 2 · |A|. So there is only finitely
many possibilities for α′.

Corollary 1.12. Tµ is model complete.

Proof. We will see later, that Tµ is strongly minimal and strongly minimal theories in a countable language
are uncountably categorical. Now use Lindströms theorem: A ∀∃-theory which is categorical in some cardinal
is model complete.

Recall 1.13. M is rich (regarding Cµ) if:
If B is closed in M and B ≤ C ∈ Cµfin, then C can be strongly embedded in M over B.

Proposition 1.14. A structure M is rich iff. it is an ω-saturated model of Tµ.

As in the case of T 0 we can follow:

Corollary 1.15. Tµ axiomatises the complete theory of Mµ.

For the proof of Proposition 1.14 we need the following lemma:

Lemma 1.16. In every ω-saturated structure M ∈ Cµ, the algebraic closure contains the geometric closure.

Proof. For any finite set X the property X ≤ M is equiv to δ(D/D ∩X) ≥ 0 for all D ⊆ M , which can be
expressed by sentences. Hence cl(X) is algebraic over X. Therefore we might assume X ≤M , when proving
Cl(X) is algebraic over X. Then by lemma0.20 Cl(X) is the union of all extensions C with δ(C/X) = 0.
So it suffices to show, that every prealgebraic minimal extension A/X is algebraic. Let B be the basis of A/X
and α the type of A/B. Then any sequence of (Ai) of realisations of tp(A/X) is a pseudo Morley sequence
of α. Hence there can only be finitely (≤ µ(α)) many and by ω-saturation this implies A is algebraic over
X.

Proof of Prop 1.14. "⇐ "Let M be an ω-saturated model of Tµ. To show, that M is rich, consider B ≤ M
and an extension B ≤ C ∈ Cµfin. We may assume that the extension is minimal (o/w we can consider a finite
chain of minimal extensions). By lemma0.16 there are two cases:

1. δ(C/B) = 0. Then M ⊗B C would be a prealgebraic minimal extension of M , hence M ⊗B C /∈ Cµ. In
this case, C embeds over B into M as in the proof of Lemma1.8.

2. C = B ∪ {c} with δ(c/B) = 1. Then c is not connected to B. To embed C strongly into M we take
c′ outside of Cl(B). Such a c′ exists, since ω-saturation implies that acl(B) is a proper subset of the
infinite structure M . Now B ∪ {c′} is strong, since for any B ∪ {c′} ⊆ A ⊆M we get

1 = d(c′/B) = min{δ(A′)|B ∪ {c′} ⊆ A′} − δ(cl(B)) ≤ δ(A)− δ(B)
= δ(A)− |B|+ |R(B)| ≤ δ(A) + 1− |B ∪ {c′}|+ |R(B ∪ {c′})| = δ(A)− δ(B ∪ {c′) + 1

or equiv. δ(A) ≥ δ(B ∪ {c′}).
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"⇒"Assume M is rich. Now condition a) automatically holds and for c) we notice, that all Fn belong to
Cµ. Hence Mµ is infinite.
For the second one let A/M be prealgebraic minimal extension with basis B and α the type of A/B. Assume
that M ∪A belongs to Cµ. Now take any finite extension C0 of B, which is closed in M . Since C0 ≤M and
C0 ≤ C0 ∪A ∈ Cµfin, by richness M contains a copy A0 of A over C0 (by construction A0 is disjoint from C0).
We now choose C1 ≤ M , which contains C0 ∪ A0 and construct as before a copy A1 of A over C1, which
is disjoint from C1, so in particular A1 is disjoint from A0. By continuing, we construct an infinite pseudo
Morley sequence (Ai) of α. However this is a contradiction to M ∈ Cµ.
ω-saturation follows again as in the T 0-case from the other direction. (If M ′ is any ω-saturated model of Tµ.
ThenM ′ is rich and therefore partially isomorphic to any richM and this implies that alsoM is ω-saturated.)

Lemma 1.17. Let M1 and M2 be two models of Tµ. Then a1 ∈ M1 and a2 ∈ M2 have the same type iff
a1 7→ a2 extends to an isomorphism cl(a1)→ cl(a2).

The proof proceeds exactly as for T 0 and will be ommitted here.

Theorem 1.18. Tµ is strongly minimal.

Proof. We show, that there is only one non-algebraic type tp(c/B). There is two different cases d(c/B) = 0
and d(c/B) = 1.
If d(c/B) = 0, then c ∈ Cl(B) ⊆ acl(B), hence tp(c/B) is algebraic.
Now by lemma0.21 in the case d(c/B) = 1 we know c is not connected to cl(B) and cl(B)∪{c} is closed. By the
construction ofMµ via the Fraïssé limit, if we have another {c’} with those properties we can expand any map
fixing cl(B) and sending c to c′ to an automorphism. Then Lemma1.17 yields that tp(c/B) = tp(c′/B).

Corollary 1.19. In any model of Tµ the geometric closure equals the algebraic closure. In particular, the
relative dimension d(A/B) is the Morley rank of tp(A/B).

Proof. By lemma 1.16 we already know that the geometric closure is contained in the algebraic one. Now
the he proof of theorem1.18 gives us

c /∈ Cl(B)⇔ d(c/B) = 1⇒ c /∈ acl(B).

Proposition 1.20. Tµ is not locally modular.

Proof. This follows as in the T 0 case, because by the examples in 1.7 Cnm ∈ Cµ and Cnm ∪ {d} ∈ Cµ for
some d not connected to Cnm.

Remark 1.21. For any n < ω we considerMn = {x1, ..., xn} with the relations R(Mn) = {{xi−1, xi, xi+1|1 ≤
i ≤ n(x−1 = xn, xn+1 = x1}. We can check that Mn ∈ Cµ and d(Mn) = 0. Therefore we may assume
Mn ≤ Mµ and Mn ⊆ acl(∅). Hence, acl(∅) is infinite and together with strongly minimal, this yields that
Tµ has weak elimination of imaginaries.
Because of this we can consider acl whenever we need acleq.

Lemma 1.22. Suppose A,B ≤Mµ and C = A ∩B. Then A |̂ B|C iff A ∪B = A⊗C B ≤Mµ.

Proof. First assume A,B are finite. We know A |̂ B|C iff d(A/B) = d(A/C). If this holds, we can use, that
A,B,A ∩B = C are closed and get

δ(AB) ≥ d(AB) = d(A) + d(B)− d(C) = δ(A) + δ(B)− δ(C)
submod.
≥ δ(AB).

d(AB) = δ(AB) implies, that A ∪B ≤M . Furthermore, δ(A) + δ(B)− δ(C) = δ(AB) implies |R(A ∪B)| =
|R(A)|+ |R(B)| − |R(C)| and hence R(A ∪B) = R(A) ∪R(B). Finally we get A ∪B = A⊗C B.
On the other hand, if A∪B = A⊗C B ≤Mµ, the we get d(AB) closed= δ(AB) A⊗CB= δ(A) + δ(B)− δ(C) closed=
d(A) + d(B)− d(C) or equivalently d(A/B) = d(A/C).
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If A,B are not finite. We use the finite character of independence:

A |̂ B|C iff A′ |̂ B′|C for every finite A′ ≤ A,B′ ≤ B

and that by lemma 0.12 and lemma 0.23 we know

A ∪B = A⊗C B ≤M iff A′ ∪B′ = A′ ⊗C B′ ≤M for every finite A′ ≤ A,B′ ≤ B.

Definition 1.23. A δ-function f is called flat on E1, ..., En, if:∑
∆⊆{1,...,n}

(−1)|∆|f(E∆) ≤ 0,

where EDelta =
⋂
i∈∆Ei and E∅ =

⋃
1≤i≤nEi.

Proposition 1.24. In structures from C0, d is flat on Cl-closed finite-dimensional sets.

For the proof we need the following lemma:

Lemma 1.25. If E1, ..., En are Cl-closed finite-dimensional sets, we can choose finite closed sets Ai ≤ Ei
such that Cl(A∆) = Cl(

⋂
i∈∆Ai) = E∆ for all ∆ 6= ∅ and Cl(A∅) = Cl(E∅), where A∅ := cl(A1 ∪ ... ∪An).

Proof. For every nonempty ∆ ⊆ {1, ..., n}, pick a finite F∆ such that Cl(F∆) = E∆. Let Ai ⊆ Ei be a finite
closed subset and

⋃
{F∆|i ∈ ∆ ⊆ {1, ..., n}}. Then for any nonempty ∆ we have:

E∆ = Cl(F∆)
F∆⊆A∆
⊆ Cl(A∆)

A∆⊆E∆
⊆ Cl(E∆) = E∆.

Also,

E∅ = E1 ∪ ... ∪ En = Cl(A1) ∪ ... ∪ Cl(An) ⊆ Cl(A1 ∪ ... ∪An) ⊆ Cl(cl(A1 ∪ ... ∪An)) = Cl(A∅)

and

A∅ = cl(A1 ∪ ... ∪An) = cl(Cl(E1) ∪ ... ∪ Cl(En)) ⊆ cl(Cl(E1 ∪ ... ∪ En)) = Cl(E1 ∪ ... ∪ En) = Cl(E∅).

Proof of Proposition 1.24. Let E1, ..., En be Cl-closed finite-dimensional sets and choose finite Ai ≤ Ei as
in lemma 1.25. Then we have d(E∆) = d(A∆) = δ(A∆) = |A∆| − |R(A∆)|. From an inclusion-exclusion
argument we know

∑
∆⊆{1,...,n}(−1)|∆||A∆| and

|R(A1) ∪ ... ∪R(An)| = −
∑

∅6=∆⊆{1,...,n}

(−1)|∆||
⋂
i∈∆

R(Ai)| = −
∑

∅6=∆⊆{1,...,n}

(−1)|∆||R(A∆)|.

Together this yields∑
∆⊆{1,...,n}

(−1)|∆|d(E∆) =
∑

∆⊆{1,...,n}

(−1)|∆||A∆| − (
∑

∆⊆{1,...,n}

(−1)|∆||R(A∆)|)

= |R(A1) ∪ ... ∪R(An)| − |R(A∅)| = |R(A1) ∪ ... ∪R(An)| − |R(A1 ∪ ... ∪An)| ≤ 0

Proposition 1.26. There is no infinite group interpretable in Tµ.
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Proof. Let G be a groupt interpreted in a model M of Tµ, i.e. definable in Meq. We assume first, that
G is 0-definable in M . Let g be the Morley rank of G and pick three independent elements a1, a2, a3 of
Morley rank g. Now we define b1 := a1 · a2, b3 := a2 · a2 · a3 and b2 := b1 · a3 = a1 · b3. Furthermore, let
L1 := {a1, a2, b1}, L2 := {a2, a3, b3}, L3 := {a1, b2, b3} and L4 := {a3, b1, b2}. By definition of the Li one
element in Li is always the product of the other two, hence each element is algebraic over the other two.

This also implies that g
b1∈G
≥ d(bi) ≥ d(b1/a1) = d(a2/a1) = g and that three elements, which do not all lie

in one Li are independent. For example,

d(a1, b1, b3) a2,b2∈acl(a1,b1,b3)= d(a1, b1, a2, b3, b2)
b1∈acl(a1,a2)
a3∈acl(a2,b3)= d(a1, a2, b2, b3, a3)

b2,b3∈acl(a1,a2,a3)= d(a1, a2, a3) = 3g = d(a1) + d(b1) + d(b3).

Now we define Ei = Cl(Li). Now if Li, Lj intersect in x, then Ei |̂ Ej |Cl(x) and hence Eij = Ei∩Ej = Cl(x).
The intersection of Li, Lj , Lk is empty and hence Eijk = Ei ∩ Ej ∩ Ek = Cl(∅). We get:

• d(E∅) = d(E1 ∪ E2 ∪ E3 ∪ E4) = 3g

• d(Ei) = 2g

• d(Eij) = g

• d(Eijk) = d(Eijkl) = Cl(∅) = 0.

Now the flatness yields 0 ≥ 3g − 4 · (2g) + 6g = g. Hence, G is finite.
Assume G is definable in Meq with parameters A ⊆ M . Since Tµ has weak elimination of imaginaries,

we can replace the group diagram of G by a group diagram in M with the same Morley rank over A. Now
we are back in the case from above.

1.1 CM-triviality
In this section we will show, that Mµ is weakly CM-trivial, which is equivalent to being not 2-ample. We
will see in Thomas Kochs talk any structure, which interprets a field is n-ample for all n. Therefore we can
conclude that Mµ does not interpret any infinite field, which is the final contradiction to Zilbers conjecture.

Definition 1.27. A stable structure M is CM-trivial, if the following holds: Let C,A,B be algebraically
closed. Assume acl(A ∪ C) ∩ acl(A ∪B) = A. Then Cb(C/A) ⊆ Cb(C/A ∪B).

Proposition 1.28. For a stable structure M the following condition are equivalent:

(CMT1) Suppose B1, B2 are independent over E = acl(E) and acl(B1, B2) ∩ acl(E,Bi) = Bi, and Bi ∩ E = A.
Then B1, B2 are independent over A.

(CMT2) If E is algebraicaly closed, C1 |̂ C2|E, then C1 |̂ C2|(acl(C1, C2) ∩ E).

(CMT3) Let C,A,B be algebraically closed and acl(A∪C)∩acl(A∪B) = A. Then Cb(C/A) ⊆ acl(Cb(C/A∪B)).

Remark 1.29. We will see in a later talk, that (CMT3) is equivalent to being CM-trivial.

proof of Proposition 1.28. (1)⇒ (2): Let C1, C2, E be as in (CMT2). LetBi := acl(C1, C2)∩acl(E,Ci). Then
Ci ⊆ Bi ⊆ acl(C1, C2), so acl(B1, B2) = acl(C1, C2) and also Ci ⊆ Bi ⊆ acl(E,Ci), so acl(E,Bi) = acl(E,Ci).
Thus Bi

=
def. acl(C1, C2) ∩ acl(E,Ci) = acl(B1, B2) ∩ acl(E,Bi). Also Bi ∩ E = acl(C1, C2) ∩ acl(E,Ci) ∩

E
E⊆acl(E,Ci)= acl(C1, C2) ∩ E =: A. Hence we can apply (CMT1) and get B1 |̂ B2|A. In particular, since

Ci ⊆ Bi we have C1 |̂ C2|A (CMT2).

(2) ⇒ (3): Let C,A,B be algebraically closed, acl(A ∪ C) ∩ acl(A ∪ B) = A as in the definition of CM-
trivial. We first assume A ⊆ B. Let Y := acl(Cb(C/B)), so by a corollary 0.1 we know C |̂ B|Y and in
particular C |̂ A|Y . By (CMT2), C |̂ A|(Y ∩ acl(C ∪A)). Now Y ∩A assump.= Y ∩ acl(A∪C)∩ acl(A∪B) =
Y ∩acl(A∪C)∩B Y⊆B= Y ∩acl(C∪A). Thus by cor0.1 we have C |̂ A|Y ∩A and therefore Cb(C/A) ⊆ Y .
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Lemma 1.30. Mµ is CM-trivial.

Proof. We will show (CMT1), so suppose B1, B2 are independent over E = acl(E) with acl(B1, B2) ∩
acl(E,Bi) = Bi and Bi ∩ E = A.
Define Bi := acl(Bi ∪ E). The independence of B1, B2 over E also implies that B1 |̂ B2|E and by
lemma 1.22 B1 ∪ B2 = B1 ⊗E B2 ≤ Mµ. Now by assumption acl(B1 ∪ B2) ∩ Bi = Bi and hence
acl(B1 ∪B2) ∩ acl(B1 ∪B2) = B1 ∪B2. This implies B1 ∪B2 ≤ B1 ∪B2 ≤Mµ.
Because of independence we get

Bi ∩ E
E⊆B1∩B2
⊆ B1 ∩B2 ⊆ Bi ∩ (B1 ∩B2) E=B∩B2= Bi ∩ E = A

and using B1 ∪B2 = B1 ⊗E B2 this implies B1 ⊗A B2. And by Lemma 1.22 we get B1 |̂ B2|A.
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