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A NOTE ON CM-TRIVIALITY AND THE GEOMETRY OF FORKING

ANAND PILLAY

§1. Introduction. CM -triviality of a stable theory is a notion introduced by
Hrushovski [1]. The importance of this property is first that it holds of Hrushovski’s
new non 1-based strongly minimal sets, and second that it is still quite a restrictive
property, and forbids the existence of definable fields or simple groups (see [2]).
In [5], Frank Wagner posed some questions about CM -triviality, asking in particu-
lar whether a structure of finite rank, which is “coordinatized” by CM -trivial types
of rank 1, is itself CM -trivial. (Actually Wagner worked in a slightly more general
context, adapting the definitions to a certain “local” framework, in which algebraic
closure is replaced by P-closure, for P some family of types. We will, however,
remain in the standard context, and will just remark here that it is routine to trans-
late our results into Wagner’s framework, as well as to generalise to the superstable
theory/regular type context.) In any case we answer Wagner’s question positively.
Also in an attempt to put forward some concrete conjectures about the possible
geometries of strongly minimal sets (or stable theories) we tentatively suggest a hi-
erarchy of geometric properties of forking, the first two levels of which correspond
to 1-basedness and CM -triviality respectively. We do not know whether this is a
strict hierarchy (or even whether these are the “right” notions), but we conjecture
that it is, and moreover that a counterexample to Cherlin’s conjecture can be found
at level three in the hierarchy.

In the rest of the paper T will denote a stable theory. We work, as usual in a
structure M, where M is a big saturated model of 7. We assume familiarity with
the basics of stability theory (forking, canonical bases etc.), as well as the theory of
generic types in stable groups, which which can be found in Chapter 1 of [3] and
Chapter 5 of [4]. a, b, etc. denote possibly infinite (but of small length) tuples of
elements of M® and A4, B small subsets of M/, unless we say otherwise.

§2. Coordinatization and CM -triviality. In [1]several equivalent definitions were
given of CM -triviality. The most suggestive for us was:

DEFINITION 2.1. T is CM -trivial if whenever 4 C B and c satisfy acl(c, 4) N
acl(B) = acl(4), then Cb(stp(c/4)) C Cb(stp(c/B)).

We pointed out in [2] that CM -triviality is invariant under naming parameters.
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We will find an equivalent definition which is quite easily seen to pass from all
rank 1 types to the whole theory in the finite rank case. In fact it is convenient
(bearing in mind later definitions) to define the opposite property.

DEerFINITION 2.2. T is 2-ample if, possibly after naming some parameters, there
are a, b, ¢ such that
(i) acl(a) Nacl(b) = acl(p),
(ii) acl(ab) Nacl(ac) = acl(a),
(iti) tp(c/ab) does not fork over b,
(iv) ¢ forks with a over 0.

LeMMA 2.3. T is 2-ample if and only if T is not CM—trivial.

ProoF. Suppose T' to be 2-ample, witnessed by a, b, ¢ over some parameter set
D which we name for now. Set 4 = a, and B = ab. So acl(c4) Nacl(B) = acl(4).
By (iii) Cb(stp(c/B)) C acl(h). By (iv), Cb(stp(c/A4)) is not contained in acl(P)
and so by (i) is not contained in acl(h). Thus Cb(stp(c/4)) is not contained in
acl(Cb(stp(c¢/B))). Thus T is not CM trivial over D. So T is not CM -trivial.

Conversely, suppose T is not CM -trivial. So there are 4 C B, and ¢ such that
acl(cA4) Nacl(B) = acl(4) but Cb(stp(c/A4)) is not contained in Cb(stp(c/B)). Let
b = Cb(stp(c/B)). Let a = A4 and let D = acl(a) Nacl(b). So, working over D, we
clearly have (i)—(iv) of Definition 2.2 satisfied. -

LeMMA 2.4. Suppose a, b, ¢ satisfy Definition 2.2 over some set of parameters which
we name. Let b’ = Cb(stp(c/b)) and a’ = Cb(stp(b'/a)). Then a’,b’,c satisfy
Definition 2.2 over the same set of parameters.

_ProOOF. Itis clear firstly that a, b’, c satisfy (i)—(iv) too. In order to show the same
thing for a’, b’, ¢ the only nonobvious things to check are (a) acl(a’d’) Nacl(a’c) =
acl(a’) and (b) ¢ forks with a’ over (). We first prove (a): acl(a’b’) Nacl(a’c’) is
contained in acl(a) (by hypothesis), so contained in acl(a’b’) N acl(a). But b’ is
independent from acl{a) over a’, so acl(a’b’) N acl(a) = acl(a’).

We now prove (b): We have that b’ is independent from a over a’. On the other
hand c is independent from a over b’, so also over b’a’. So stp(a/cb’a’) does not
fork over b’a’. But stp(a/b’a’) does not fork over a’. Thus stp(a/ca’) does not
fork over a’. By symmetry, stp(c/a) does not fork over a’. But ¢ forks with a over
(). Thus ¢ forks with a’ over . -

DEFINITION 2.5. Let p be a partial type over a set Dy. We say that p is 2-ample, if
there are a, b, ¢ satisfying Definition 2.2 over some set of parameters including Dy,
where moreover c is a tuple of realisations of p. We say that p is CM -trivial if it is
not 2-ample.

REMARK 2.6. By the proof of 2.5 of [2], it would be equivalent to require in
Definition 2.5 that ¢ is a tuple from p7.

LeEMMA 2.7. Suppose p is a partial type over Dy which is 2-ample. Then we can find
a, b, ¢ contained in p* and D containing Dy contained in p® such that a, b, ¢ satisfies
Definition 2.2 over D.
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Proor. By Lemma 2.4. we can find a, b, ¢ in p®® satisfying Definition 2.2 over
some set C of parameters. Now replace C by Cb(stp(a,b,c/C)). =

REMARK 2.8. Lemma 2.7 shows that, for example, the 2-ampleness (and so also
CM -triviality) of a strongly minimal set p is a function of the geometry of p.

LeEMMA 2.9. Suppose that a, b, ¢ and Ay satisfy acl(abAy) Nacl(acAy) = acl(ady).
Let A D Ag be such that (a, b, c) is independent from A over Ay. Then acl(abA) N
acl(acA) = acl(ad).

Proor. Let D = ad. Then D contains a4y and (b, ¢) is independent from D over
aAy. So Fact 2.4 of [2] applies to yield the lemma. -

PropoSITION 2.10. Suppose T has finite U-rank (namely every type has finite U-
rank). Suppose that every stationary type of U-rank 1 is CM-trivial. Then T is
CM -trivial.

ProOOF. Suppose by way of contradiction that T is not CM-trivial, so T is
2-ample, and let a,b, ¢ satisfy Definition 2.2, without loss of generality over 0.
Also we may assume ¢ to be a an element of M® (rather than an infinite tuple of
such elements). Let M be a saturated model which is independent from (g, b, ¢)
over (. Then, using Lemma 2.9, (i)—(iv) of Definition 2.2 hold of a, b, ¢ over M.
As tp(c/M) has finite U-rank (and M is saturated) there is a finite M -independent
tuple d each of whose elements realises a U-rank 1 type over M, and such that ¢
is domination equivalent to d over M. Thus d € acl(cM). So (i), (ii) and (iii)
of Definition 2.2 hold of a, b,d over M. As d dominates ¢ over M, we conclude
that d forks with @ over M, so actually also (iv) holds of @, b, d over M. We may
assume that d = (dy, ... ,d,) where each d; is a tuple of realisations of the U-rank
1 type p; € S(M), and where the p; are pairwise orthogonal. It follows that some
d; must fork with @ over M. But then clearly a, b, d; satisfy (1)—(iv) of 2.2, over M.
This contradicts the assumption that p; is CM -trivial. -

§3. Higher-dimensional generalizations. Our definition of 2-ampleness suggests
a hierarchy of strengthenings. We give the following tentative definition. Quite
possibly the “correct” notion is somewhat stronger.

DEerINITION 3.1. Let n be a natural number greater than or equal to 1. We will
say that T is n-ample if after possibly naming some set of parameters, there exist
aop, ... ,d, such that

(i) foreachi =0,...,n—1,
aCl(a0>'-' >a[) maCI(aOs--' >ai—l5ai+1) = aCI(aOa"- >ai—l)'

(i) foreachi =0,...,n — 1, a, is independent from (ay, ... ,a;) over a;, and
(iii) a, forks with ag over 0.

As amatter of notation, in the case i = 0, (i) in the Definition means that acl(ag)N
acl(a;) = acl(@). Note also that (by definition) n-ampleness of T is invariant under
naming parameters, and also that this definition agrees with Definition 2.2 in the
case n = 2.
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LeMMA 3.2. Assume that ay, . . . , a, satisfy Definition 3.1 over some set of parame-
ters which we now name. Then foreach0 < i < n, a, forks with a; over (ay, ... ,a;_1).

Proor. By induction oni. i = 1: If not, a, is independent from a; over ay. But
by (ii) a,, is independent from ag over a;. Thus Cb(stp(a,/apa;)) C acl(ag)Nacl(a;)
and the latter equals acl(()) by (i). So a, is independent from ag over @), contradicting
(iii). The inductive step has the same proof with (ay, ... ,a;—1) named. -

COROLLARY 3.3. Suppose that ay, . .. , a, witness n-ampleness of T over some set D
of parameters. Then for any 0 < m < n, a, ... ,a, witness (n — m)-ampleness of T
over Day . ..a,,_.

REMARK 3.4. T is l-ample iff T is not 1-based.

PrOOF. Remember that 1-basedness of T means that for any a and b, a is inde-
pendent from b over acl(a) Nacl(h) and that this property is invariant under naming
parameters. Itisclear that 1-ampleness contradicts 1-basedness. On the other hand
suppose that T is not 1-based, witnessed by ag, a; such that a; forks with a¢ over
D = acl(ag) Nacl(a;). Then ay, a; witness 1-ampleness over D. -

LEMMA 3.5. Suppose that ay, ... ,a, witness n-ampleness of T over D. Define
by downward induction on i < n, al, as follows: a’ | = Cb(stp(a,/a,—1D)), and
a!_, = Cb(stp(aj/a;_\D)). Thena,...,a’ _,, a, witness n-ampleness of T over D.

Proor. Like the proof of Lemma 2.4. -

DErINITION 3.6. Let p be a partial type over Dy. We say that p is n-ample if there
are ay, ... ,a, satisfying Definition 3.1 over some set of parameters including Dy
such that a, is a tuple of realisations of p.

REMARK 3.7. By Lemma 3.5, it follows, as in 2.7, that if p is n-ample then this
can be witnessed by elements and base set from p“?.

ProPosITION 3.8. Suppose T has finite U-rank,and is n-ample. Then some station-
ary type of U-rank 1 is n-ample.

Proor. Like the proof of Proposition 2.10, using repeatedly Lemma 2.9. 4

CONJECTURE 3.9. For each n > 0 there is a strongly minimal set which is n-ample
but not (n + 1)-ample.

Hrushovski’s construction gives the conjecture for the case n = 1. We would
imagine that some higher-dimensional versions of his constructions would yield the
full conjecture.

On the other hand the main result of [2] says that an infinite simple (noncommu-
tative) group of finite Morley rank is 2-ample.

CONJECTURE 3.10. There is an infinite simple noncommutative group of finite Mor-
ley rank which is not 3-ample.

Finally we will show that if an infinite field F is type-definable in M then T
is n-ample for all » > 0. As this is similar in spirit and details to the proof of
Proposition 3.2 of [2] (where it is shown that such T is not CM -trivial), we will
be brief with the proofs. Let us begin by making a couple of remarks. Firstly,
as we are working in a stable structure which may impose more structure on F'
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than just the field structure, what we are claiming is more than simply a fact of
algebraic geometry. Secondly, if we assumed that T has finite U-rank, or is even
just superstable, then U-rank arguments would make the proofs easier. In our
general stable context, the proofs depend on the theory of generic types in stable
groups.

Let us now fix an infinite type-definable field F, defined without loss over 0.
We will work for now in affine n + 1-space V' = F"*!, By an m-dimensional affine
subspace A4 of ¥ we mean an additive translate of an m-dimensional vector subspace
of V. We call 4 generic (as an m-dimensional affine subspace of V') if A4 is defined
by a system of equations:

Xm+l = Am+1.0 + Q11 X1+ oo+ G 1m-Xim
Xm42 = Ap420 + Q21 X1 + o oo+ Q2 m-Xim

Xp+l = p+1,0 F Gpy1.1-X1 + oo o+ Al Xm

where {a;; :i =m+1,... ,n+1,j =0,...,m} is an independent (over () set of
generic (over @) elements of F.

Note that the tuple of a;;’s forms a canonical tuple of definition for 4 in the
sense of M. In any case let 4 be as above. Then by a generic hyperplane of 4 we
mean an m — 1-dimensional affine subspace B of ¥ which is contained in 4 and is
determined (modulo being contained in 4) by an equation:

Xm = bO + b].X] + .. 'bml‘xm—h

where by, ... , b, are generic independent elements of F' over the set of a; ;s.
Now let Ao, ..., 4, be defined as follows: A is a generic hyperplane (i.e. n-

dimensional affine subspace) of V', and 4;, is a generic hyperplane of 4;. Note

that 4, is simply a point of V. Identifying each 4; with its canonical parameter,

we will show that the sequence Ay, ... . , A, satisfies Definition 3.1, proving that T is
n-ample. The main point is:
LEMMA 3.11. Foreachr =0,... ,n — 1 we have:

(i) A, is a generic n — r-dimensional affine subspace of V', and
(ll) aCl(Ao, vy Apy, A,) N aCl(Ao, ey Ay, A,-+[) = aCl(A(), e A,'_l).

PrOOF. We give the proof only in the case r = 0. So we have to prove:
(i) A4, is a generic n — 1-dimensional affine subspace of ¥, and
(i) acl(4g) Nacl(4;) = acl().
Let A be defined by:
Xpyl = Ao +ap.xy + ...+ ay.xy,,

where the ay,... ,a, are generic independent in F over (). Let 4; be the unique
hyperplane of A4 defined by:

Xp=bo+br.x1+...+b_1.X,1,

where by, ... , b, are generic independent over {ag, ... ,a,}.
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We first prove (ii). Let 4{ be a conjugate of 4y which is independent from A
over (), namely A is defined by x,.1 = aj + a|.x; + ...+ a),.x, where al, ... ,a,,
are generic independent over {ao,....a,}. Then 4y and A4; clearly intersect in a
unique » — 1-dimensional affine subspace B of V, satisfying the equation

Xp = (a(/) - aO)/(an - az/1) +- ((alll—l - an—l)/an - a,l,))'xn—l'

Cram. (aj—ao)/(a,—a)),...,(a,_;—an—1)/(a, — a}) are generic independent

over{ag,...,a,}, as well as over {aj, ... ,a,}.

Proor oF cLamm. Note that g is generic over {ag,...,a,,ai,...,a,}. So by
properties of generic types we see that first a) — ao and then (a — ao)/(a, — a},) is
genericover {ay, ... ,a,,aj,...,a,}. So(aj—ag)/(a,—a)).af,... a’_, aregeneric
independent over {ao, ... ,a,, a,}. Continuing this way (replacing successively a;
by (a] — a;)/(a, — a!)) we prove the first part of the claim. The second part follows
in the same way. 4

By uniqueness and stationarity of the generic type of F, we see from the claim
that

tp((ﬂ')fzou.,.m ((a»- - a/)/(ﬂn - al))/*()mun—l)
)/a,, - n)) ‘:O.A.Hu—l)

So clearly tp(4y, B) = tp(4(, B) = ( 0,A1). So we may assume that B = A4,
and we see that acl(4g) N acl(Al) C acl(4o) Nacl(4(). But 4 is independent from

o over 0, so acl(4g) N A = acl(D). So acl(4y) N acl( 1) = acl(P), proving (ii).

To prove (i), note that 4; is defined in ¥ by two equations, the first being
the given x, = by + by.x; + ... + b,_1.x,—1 and the second an equation x| =
o+ c1xy + ...+ ¢y,—1.x,—1, Which is obtained by substituting the first into the
equation defining 4y. Computing the values of ¢; and doing another argument
involving generic points of F, we see that by,...,b,_1,co,...,c,_1 are generic
independent over @. This proves the r = 0 case of the lemma. 4

We finally leave the reader to prove, using similar arguments:

LemMa 3.12. (i) 4, forks with Ay over 0, and
(i) for each r = 0,... ,n — 1, A, is independent from A, ... , A, over A,.

From Lemmas 3.11 and 3.12, we see that A4, ..., 4, witness n-ampleness of T'.
So:

ProPOSITION 3.13. Suppose that an infinite field is type-definable in M. Then T is
n-ample for all n.
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