
The Journal of Symbolic Logic

Volume 79, Number 2, June 2014

THE FREE PSEUDOSPACE IS N -AMPLE, BUT NOT (N + 1)-AMPLE

KATRIN TENT

Abstract. We give a uniform construction of free pseudospaces of dimension n extending work in [1].

This yields examples of �-stable theories which are n-ample, but not n + 1-ample. The prime models of

these theories are buildings associated to certain right-angled Coxeter groups.

§1. Introduction. In the investigation of geometries on strongly minimal sets the
notion of ampleness plays an important role. Algebraically closed fields are n-ample
for all n and it is not known whether there are strongly minimal sets which are
n-ample for all n and do not interpret an infinite field. Obviously, one way of prov-
ing that no infinite field is interpretable in a theory is by showing that the theory is
not n-ample for some n.
In [1], Baudisch and Pillay constructed a free pseudospace of dimension 2. Its
theory is �-stable (of infinite rank) and 2-ample. F. Wagner posed the question
whether this example was 3-ample or not.
In Section 2 we give a uniform construction of a free pseudospace of dimension
n and show that it is n-ample, but not n + 1-ample. It turns out that the theory
of the free pseudospace of dimension n is the first order theory of a Tits-building
associated to a certain Coxeter diagram and we will investigate this connection in
Section 4.
In the final section we determine the orthogonality classes of regular types.
The construction given here is quite similar to the one given by Evans in [2] for a
stable theory which is n-ample for all n, but does not interpret an infinite group. In
contrast to the examples constructed by Evans, our theory is trivial and no infinite
group is definable.

§2. Construction and results. Fix a natural number n ≥ 1. LetLn be the language
for n + 1-colored graphs containing predicates Vi , i = 0, . . . n and an edge relation
E. If x ∈ Vi we also say that x is of level i .
By an Ln-graph we mean an n + 1-colored graph with vertices of types Vi ,
i = 0, . . . n and an edge relation E ⊆

⋃
i=1,...n Vi−1 × Vi . We say that a path in this

graph is of type Ei if all its vertices are in Vi−1 ∪ Vi and of type Ei ∪ . . . ∪ Ei+j if
all its vertices are in Vi−1 ∪ . . . ∪ Vi+j .
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The free pseudospaces will be modeled along the lines of a projective space as a
simplicial complex, i.e., we will think of vertices of type Vi as i-dimensional spaces
in a free pseudospace. Therefore we extend the notion of incidence as follows:

Definition 2.1.

1. We say that vertices xi , xj of type Vi and Vj , respectively, are incident (for
i ≤ j) if there are vertices xℓ of type Vℓ , ℓ = i + 1 . . . j, such that E(xℓ−1, xℓ)
holds. In this case the sequence (xi , . . . xj) is called a dense flag. A flag is a
sequence of vertices (x1, . . . xk), k ≥ 0 in which any two vertices are incident
(and hence no two vertices of a flag have the same level). (The levels of a flag
may be increasing or decreasing.) In particular, a vertex x is incident with
itself.

2. The residue R(x) of a vertex x is the set of vertices incident with x. We write
R<(x) (andR>(x), respectively) for the elements inR(x) of level less (greater,
respectively) than the level of x. Similarly for R≤(x) and R≥(x)

3. We say that two vertices x and y intersect in the vertex z, and write z = x ∧ y,
if R≤(x) ∩ R≤(y) = R≤(z). If R≤(x) ∩ R≤(y) = ∅, we say that x and y
intersect in the empty set.

4. Similarly, we say that two vertices x and y generate the vertex z, and write
z = x ∨ y, if R≥(x) ∩R≥(y) = R≥(z). If R≥(x) ∩R≥(y) = ∅, we say that x
and y generate the empty set.

5. A simple cycle is a cycle without repetitions.

We now give an inductive definition of a free pseudospace of dimension n:

Definition 2.2. A free pseudospace of dimension 0 is an infinite set of vertices.
Assume that a free pseudospace of dimension n − 1 has been defined. Then a free
pseudospace of dimension n is an Ln-graph such that the following holds:

(Σ1)n (a) The set of vertices of type V0 ∪ . . . ∪ Vn−1 is a free pseudospace of
dimension n − 1.

(b) The set of vertices of type V1 ∪ . . . ∪ Vn is a free pseudospace of
dimension (n − 1).

(Σ2)n (a) For any vertex x of typeV0,R>(x) is a free pseudospace of dimension
(n − 1).

(b) For any vertex x of typeVn,R<(x) is a free pseudospace of dimension
(n − 1).

(Σ3)n (a) Any two vertices x and y intersect in a vertex or the empty set.
(b) Any two vertices x and y generate a vertex or the empty set.

(Σ4)n (a) If a is a vertex of type V0 and b, b′ ∈ R>(a) with b′ /∈ R(b) are
connected by a path � of length k such that for some dense flags
f = (a, . . . b) and f′ = (b′, . . . , a) the concatenation of these paths
f ◦ � ◦f′ is a simple cycle, there is a path � ′ of length at most k from b
to b′ inR>(a) containing some interior vertex of � such thatf ◦� ′◦f′

is a simple cycle.
(b) If a is a vertex of type Vn and b, b′ ∈ R<(a) are connected by a
path � of length k such that for some dense flags f = (a, . . . b)
and f′ = (b′, . . . , a) the concatenation f ◦ � ◦ f′ of these paths is
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a simple cycle, there is a path � ′ of length at most k from b to b′ in
R<(a) containing some interior vertex of � such that f ◦ � ′ ◦ f′ is
a simple cycle.

Remark 2.3. Note that by (Σ4) any path � = (b = x0, . . . , xm = b′) with
b, b′ ∈ R<(a) and m ≥ 2 contains an interior vertex which lies in R<(a) unless
b′ ∈ R(b) (and dually for R>(a)).

Note that a free pseudospace of dimension 1 is a free pseudoplane, i.e., an
L1-graph which by (Σ4)1 does not contain any cycles and such that any vertex
has infinitely many neighbors.
Let Tn denote the Ln-theory expressing these axioms.
Note that the inductive nature of the definition immediately has the following
consequences:

1. The induced subgraphonVj∪. . .∪Vj+m is a free pseudospace of dimensionm.
2. The notion of a free pseudospace of dimension n is self-dual: if we putWi =
Vn−i , i = 0, . . . n, then W0, . . .Wn with the same set of edges is again a free
pseudospace of dimension n.

3. If a ∈ Vi , thenR<(a) is a free pseudospace of dimension i − 1 (and dually for
R>(a).)

Our first goal is to show that Tn is consistent1 and complete.

Definition 2.4. Let A be a finite Ln-graph. The following extensions are called
minimal strong extensions of A:

1. Add a vertex of any type to A which is connected to at most one vertex of A
of an appropriate type.

2. If (x0, x1, . . . , xk , xk+1) is a dense flag in A, add vertices y1, . . . , yk such that
(x0, y1, . . . , yk , xk+1) is again a dense flag.

We say that B is a strong extension of A, written A ≤ B, if B arises from A by a
sequence of finitely many minimal strong extensions.

Definition 2.5. LetKn be the class of finiteLn-graphsA such that the following
holds

1. The empty graph is strong in A.
2. If a, a′ ∈ A with R≤(a) ∩ R≤(a′) �= ∅, then there is a unique vertex z ∈ A
with R≤(a) ∩R≤(a′) = R≤(z).

3. If a, a′ ∈ A with R≥(a) ∩ R≥(a′) �= ∅, then there is a unique vertex z ∈ A
with R≥(a) ∪R≥(a′) = R≥(z).

4. If a ∈ Vi and b, b′ ∈ R(a) are connected by a path � of length k contained
in Vi−m ∪ . . . ∪ Vi such that for some dense flags f = (a, . . . b) and f

′ =
(b′, . . . , a) the concatenation of these pathsf ◦ � ◦f′ is a simple cycle, there is
a path � ′ from b to b′ of length at most k containing some interior vertex of �
and contained inR(a)∩(Vi−m∪. . .∪Vi−1) such thatf◦�◦f′ is a simple cycle.

5. If a ∈ Vi and b, b′ ∈ R(a) are connected by a path � of length k contained in
Vi∪. . .∪Vi+m such that for somedense flagsf = (a, . . . b) andf′ = (b′, . . . , a)

1Readers familiar with buildings will notice that any building of type A∞,n+1 with infinite valencies
is a model of Tn .
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the concatenation of these paths is a simple cycle, there is a path � ′ from b to
b′ of length at most k containing some interior vertex of � and contained in
R(a) ∩ (Vi+1 ∪ . . . ∪ Vi+m) such that f ◦ � ′ ◦ f′ is a simple cycle.

6. If a ∈ Vi , c ∈ Vi+j and b, b′ ∈ R(a) ∩ R(c) are connected by a path
� ⊂ Vi ∪ . . . Vi+j of length k, then there is a path � ′ ⊂ R>(a) ∩ R<(c) ⊆
(Vi+1 ∪ . . . Vi+j−1) from b to b′ of length at most k containing some interior
vertex of � .

Note that for the whole structure the property corresponding to 6. follows
from Tn .

Remark 2.6. Note that if A ∈ Kn, then A ∩ (Vi ∪ . . . ∪Vi+j) ∈ Kj . Conversely,
any A ∈ Kj can be considered as a graph in Kn for any n ≥ j.

We next show that (K,≤) has the amalgamation property for strong extensions.
This will be enough to obtain a strong limit which is well-defined up to isomorphism
(see [8]).
For any finite Ln-graphs A ⊆ B,C we denote by B ⊗A C the free amalgam of B

and C over A, i.e., the graph on B ∪ C containing no edges between elements of
B \ A and C \ A.

Lemma 2.7. If A ≤ B,C are in Kn , then D := B ⊗A C ∈ Kn and B,C ≤ D.

Proof. Clearly, B,C ≤ D. To see that D ∈ Kn, note that if B ∈ Kn and B ′ is a
minimal strong extension ofB, then alsoB ′ ∈ Kn. This is clear for strong extensions
of type 1. For strong extensions of type 2 suppose that we have added a dense flag
(y1, . . . , ym) to B connecting yo, ym+1 ∈ B. Conditions 1, 2, and 3 are clear. To
see that Condition 4 holds, let a ∈ Vi , b, b′ ∈ R(a), and suppose that we have a
path � = (b, . . . , b′) ⊂ B ′ of length k in Vi−m ∪ . . . ∪ Vi containing a new vertex
yi as in the assumptions of Condition 4. We may assume � �⊂ B. Since the new
vertices have exactly two neighbors, note that a cannot be one of the new vertices.
Furthermore, either the entire flag is contained in � and can be replaced by a flag
of the same type in B or an initial or end segment of � is contained in the flag. By
symmetry assume that an end segment of � is contained in the new flag, so b′ = yi
for some i ∈ {1, . . . , m}. In this case the entire flag (y1, . . . , ym) is in R<(a), and
so are y0, ym+1. By assumption we may replace the flag (y1, . . . , ym) by a flag in
B ∩R(a) connecting y0 and ym+1. By Condition 4 we find a path from b to y0 inside
R(a) ∩B. This can be extended to the required path from b to b′ = yi inside R(a).
Conditions 5 and 6 are similar. ⊣

This shows that the class (Kn ,≤) has a Fraı̈ssé limitMn .

Proposition 2.8. The Hrushovski limitMn is a model of Tn .

Proof. This is clear for the case n = 1. By construction,Mn satisfies (Σ3)n and
(Σ4)n . By Remark 2.6 and induction, Vi ∪ . . . ∪ Vi+j is a model of Tj for any
i + j < n. In particular, Mn satisfies (Σ1)n. It is left to show that Mn satisfies
(Σ2)n . So let a ∈ Vn. We have to show that R(a) is a pseudospace of dimension
n − 1. Clearly, (Σ3)n−1 continues to hold. By induction applied to V1 ∪ . . . ∪ Vn,
R(a)∩ (V1 ∪ . . .∪Vn−1) is a pseudospace of dimension n− 2, so (Σ1)n−1(b) holds.
Similarly (Σ2)n−1(b) and (Σ4)n−1(b) hold. Note that (Σ4)n−1(a) holds for R(a) by
condition 6. It is left to show that (Σ1)n−1(a) and (Σ2)n−1(a) hold for R(a), that
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is we have to show that R(a) ∩ (V0 ∪ . . . Vn−2) and R(a) ∩ R(c) for c ∈ V0 are
pseudospaces of dimension n − 2.
(Σ1)n−1(a): To see thatR(a)∩ (V0 ∪ . . . Vn−2) is a pseudospace of dimension n− 2
note that by induction (Σ1)n−2(b), (Σ2)n−2(b), (Σ3)n−2(a) and (b) and (Σ4)n−2(a)
and (b) hold and it is left to show thatR(a)∩ (V0 ∪ . . .∪Vn−2) satisfies (Σ1)n−2(a)
and (Σ2)n−2(a). That is we have to show that R(a) ∩ (V0 ∪ . . . Vn−3) and R(a) ∩
(V1 ∪ . . . Vn−2)∩R(c) for c ∈ V0 are pseudospaces of dimension n− 3. In this way
we reduce to show that R(a) ∩ (V0 ∪ V1) and R(a) ∩ (V1 ∪ V2) ∩ R(c) for c ∈ V0
are pseudospaces of dimension 1, and this is obvious.
(Σ2)n−1(a): To see that R(a) ∩ R(c) for c ∈ V0 is a pseudospace of dimension
n − 2 note that (Σ2)n−2(a) and (b), (Σ3)n−2(a) and (b), and (Σ4)n−2(a) and (b)
hold. It is therefore left to show that R(a) ∩ (V1 ∪ . . . Vn−2) ∩ R(c) and R(a) ∩
(V2 ∪ . . . Vn−1) ∩ R(c) are pseudospaces of dimension n − 3. The first part was
shown above in the proof for (Σ1)n−1(a) for R(a), the second follows by reduction
to R(a) ∩ (V2 ∪V3) ∩R(c), which is a pseudospace of dimension 1. ⊣

Note that (Σ4) implies the following:

Lemma 2.9. Let M be a model of Tn, a, c ∈ M with a /∈ R(c). Let �1 = (x0 =
a, . . . xs ), �2 = (y0 = a, . . . yt) be paths with xs , yt ∈ R(c) and let i, j be minimal
with xi , yj ∈ R(c). Suppose that �1, �2 do not contain any element of higher level than
the level of c. Then (xi , yj) is a flag.

Proof. Since xi , yj ∈ R<(c) the claim follows directly from (Σ4) as otherwise the
path (xi , xi−1, . . . , x0 = y0, y1, . . . , yj) would have to contain an element of R(c)
in its interior, which it doesn’t. ⊣

Corollary 2.10. Let M be a model of Tn , a, c ∈ M with a /∈ R(c). There is a
flag C ⊂ R<(c) such that for any b ∈ R<(c) and any path from a to b not containing
an element of higher level than the level of c enters R<(c) via an element of C .

From now on we work inside models of Tn unless specified otherwise.
Let us say that a path � = (a = x0, . . . , xm = b) changes direction in xi if xi ∈ Vj
and either xi−1, xi+1 ∈ Vj−1 or xi−1, xi+1 ∈ Vj−1 for some j. Clearly, a path which
never changes direction is a dense flag.

Definition 2.11. Let � = (y0, . . . , y1, . . . , yk+1) be a path changing direction
exactly in y1, . . . yk . We say that � is reduced if for all i = 0, . . . k − 1 we have

yi ∨ yi+2 = yi+1 or yi ∧ yi+2 = yi+1.

Clearly, any part of a reduced path is again reduced.

Lemma 2.12. If � = (a, . . . , b) ⊆ Vj ∪ . . . ∪ Vj+m has length s , there is a reduced
path from a to b inside Vj ∪ . . . ∪ Vj+m of length at most s .

Proof. Let � = (a = y0, . . . , y1, . . . , yk+1 = b) ⊆ Vj ∪ . . . ∪ Vj+m change
direction exactly in y1, . . . yk . We can reduce � by putting z0 = y0 and replacing for
i = 1, . . . k inductively yi by zi = zi−1 ∨ yi+1 (or zi = zi−1 ∧ yi+1, respectively)
filling the path with flags between zi and zi+1. The new path � ′ has length at most
s , is still in Vj ∪ . . . ∪ Vj+m, and changes direction at most in z1, . . . , zk . Note that
if � was not reduced, then the length must go down. We repeat the procedure with
those vertices zi in which � ′ changes direction. This process stops after finitely many
reductions with a reduced path of length at most s . ⊣
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We need the following lemmas:

Lemma 2.13. If a ∈ R(b), then any reduced path from a to b is a flag. If a, b ∈
R≤(c) are connected by a reduced path �, then � ⊆ R≤(c).

Proof. We prove both claims by induction on the length k of a reduced path
from a to b. For k = 1 both statements are clear.
Now suppose that both statements are proved for paths of length at most k − 1.

Let � = (a = x0, . . . , xk = b) be a reduced path with a ∈ R<(b). By induction
assumption we have (x1, . . . , xk = b) ⊂ R≥(a), and hence xk−1 ∈ R(a) ∩ R(b).
Hence again by induction (a = x0, x1, . . . , xk−1) is a flag. Since � is reduced, it
cannot change direction in xk−1. It follows that � is a flag.
For the second assertion let � = (a = x0, . . . , xk = b) be a reduced path with

a, b ∈ R≤(c). If xi ∈ R≤(c) for some 1 ≤ i ≤ k − 1, then � ⊂ R≤(c) by induction
assumption. So suppose there is no 1 ≤ i ≤ k − 1 with xi ∈ R≤(c). Then by
Remark 2.3 � contains some element whose level is higher than the level of c. Let
� ′ = (a, y1, . . . , c, . . . , b) be a path consisting of flags (a, . . . , c) and (c, . . . , b). So
� ∩ � ′ = {a, b}. Let 1 ≤ i ≤ k − 1 be such that the level of xi is maximal. Let j0, j1
be minimal (maximal, respectively) such that xj0 , xj1 ∈ R(xi) and consider

� ′′ = (xj0 , . . . , x1, x0 = a, y1, . . . , c . . . , b = xk , xk−1, . . . , xj1).

Again by Remark 2.3, the path � ′′ contains in its interior some vertex y ∈ R<(xi).
By choice of j0, j1 wemust have y ∈ (a, . . . , c . . . , b). If y lies between a and c, then
we have a ∈ R<(xi) and hence j0 = 0 and (a = x0, . . . , xi) is a flag by induction.
But then a is not an interior point of � ′′. Similarly if y lies between c and b, and
this finishes the proof. ⊣

Note that if a ∈ R<(c), b ∈ R>(c), then a reduced path from a to b is a flag, but
need not contain c.

Lemma 2.14. Let � = (x0, . . . xs ) be a reduced path and let (y0 = x0, . . . yk) be a
flag. Let m ≤ s be minimal such that yk /∈ R(xm). Then for some i ≥ m − 1 the path
(yk , . . . , xi , xi+1 . . . , xj , . . . , xs) is reduced and changes direction in xi .

Proof. First suppose (yk , . . . , x0, . . . , xs ) does not change direction in x0 and,
say, yk ∈ R<(x0). Let j ≥ m be minimal such that � changes direction in xj . Then
z = yk ∨ xj ∈ R(xm−1). Hence we may assume that z ∈ {xs : s = m − 1, . . . , j}
and the claim follows.
Now assume that (yk , . . . , x0, . . . , xs ) changes direction in x0 with yk ∈ R>(x0).

Then xm−1 = yk ∧xm ∈ R<(xm) and (yk , . . . , xm−1, . . . , xs ) is reduced and changes
direction in z = xm−1. ⊣

As in the theory of buildings we can show here that residues are gated, i.e., the
following holds in any modelM of Tn:

Lemma 2.15. LetM be a model of Tn. For all a, c ∈ M with a /∈ R(c) there is a
flag f = (b1, . . . bk) ⊂ R(c) such that any reduced path from a to c enters R(c) via
some element of f.

Proof. The proof is by induction on the rank of the pseudospace. The claim is
clear if the rank is 1. Assume now that the claim is proved for rank less than n. For
rank n, it suffices to prove the following:
If �1 = (x0 = a, . . . xs = c), �2 = (y0 = a, . . . yt = c) are reduced paths and i, j

are minimal with xi , yj ∈ R(c), then xi = yj or (xi , yj) is a flag.
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Note that by the definition of a reduced path and by Lemma 2.13, xi , yj are
exactly the last vertices where �1, �2 change direction.
We do induction on min{i, j}, by symmetry we may assume i ≤ j. If i = 1, then
a, c ∈ R>(x1) (up to duality) and �1, �2 ∈ R≥(x1) by Lemma 2.13. In particular,
yj ∈ R ≥ (x1).
Now let i > 1. If � = (x1, a, y1, . . . yt = c) is reduced we apply the induction
hypothesis to the paths starting at x1. So we may assume that (x1, a, y1, . . . yt = c)
is not reduced.
First assume that � changes direction in a. Letm be minimal such that �2 changes
direction in ym , so m ≤ j. Since � is not reduced, we have x1 ∈ R(ym). So we
may assume that y1 = x1 and apply the induction hypothesis to the paths starting
from x1.
If � does not change direction in a, let us assume for fixing notation that x1 ∈
R<(a). Let m be minimal with x1 /∈ R(ym) and such that �2 changes direction
in ym and put z = x1 ∨ ym. Then (x1, . . . , z, . . . ym, . . . , c) is a reduced path. If
j ≥ m, we may apply the induction hypothesis to x1. If j < m, then x1 ∈ R<(yj).
If c ∈ R>(yj), then x1 ∈ R(c), contradicting i > 1. Hence x1, c ∈ R<(yj) and we
finish by Lemma 2.13 as (x1, x2, . . . c) ⊆ R≤(yj). ⊣

As a first step toward showing that Tn is a complete theory, we show that any
finite subset of a model of Tn is contained in a nice subset.
We call two reduced paths �1, �2 from a to b equivalent, �1 ∼ �2 if they have the
same set of vertices in which they change direction. Note that if �1 ∼ �2, then �1 is
reduced if and only �2 is.

Definition 2.16. Following [1] we call a subsetA of amodelM ofTn nice (inM )
if A is in Kn and the following holds:

1. if a, b ∈ A are connected (in M ) by a reduced path � of length k con-
tained in Vi−m ∪ . . . ∪ Vi in M there is an equivalent path � ′ from a to b
inside A.

2. If a, a′ ∈ A, then a ∨ a′ ∈ A if a ∨ a′ exists inM .
3. If a, a′ ∈ A, then a ∧ a′ ∈ A if a ∧ a′ exists inM .

Remark 2.17.

1. Note that (the proof of) Lemma 2.12 implies that ifA is nice in amodelM and
a, b ∈ A are connected by a path inM , then they are connected by a reduced
path inA. Therefore conditions 4, 5, and 6 for graphs inKn automatically hold
for a nice set A.

2. IfA is nice, a, b ∈ A, and � = (a = x0, . . . , xm = b) is a reduced path changing
direction in y1, . . . , yk , then y1, . . . , yk ∈ A.

3. If A is nice, then also A ∩ (Vj ∪ . . . ∪ Vj+m) is nice in the sense of the
pseudospace (Vj ∪ . . . ∪ Vj+m) for all j + m ≤ n. In particular, since
Ei -paths between elements are unique, any Ei -path between elements of A
lies entirely in A and if a, b ∈ A are contained in a dense flag inM , they are
contained in a dense flag of A. Furthermore, if A is nice and b ∈ A, then by
Lemma 2.13R≥(b)∩A,R≤(b)∩A and henceR(b)∩A are nice. Note also that
R>(b) ∩A,R<(b)∩A are nice in the sense of the pseudospaceR<(b), R>(b),
respectively.
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Lemma 2.18. Let M be a model of Tn and let A,B be finite subsets of M with
A ≤ B. If a, b ∈ A are connected by a path � ⊂ B, then there is an equivalent path
� ′ ⊂ A. In particular, if B is nice, then so is A.

Proof. Write B =
⋃
i<k Bi with B0 = A and such that Bi−1 ≤ Bi is a minimal

strong extension for i = 1, . . . . , k. Let � = (a = x0, . . . , xm = b) and let j be
minimal with � ⊆ Bj . Then Bj must be a strong extension of Bj−1 of type 2, and
we may replace the new flag of Bj by a flag in Bj−1 to obtain an equivalent path in
Bj−1. Continuing in this way we eventually find an equivalent path in A. ⊣

We will show that any finite set is contained in a nice strong finite set. To sim-
plify inductive proofs we define a pointed pseudospace (of dimension n) as a free
pseudospace V of dimension n together with a new vertex x ∈ Vn+1 or x ∈ V−1

incident exactly with the elements of Vn (or of V0). Thus, if V is a free pseudospace
of dimension n and b ∈ Vi , thenR≤(b) is a pointed pseudospace of dimension i−1
and R≥(b) is a pointed pseudospace of dimension n − i − 1. We say that a subset
of a pointed pseudospace is nice if it satisfies the conditions in Definition 2.16.

Lemma 2.19. LetM be a pseudospace or a pointed pseudospace. IfA ⊂M is finite
and nice inM and a is arbitrary, then there is a nice finite set B containing A ∪ {a}
such that A ≤ B.

Proof. The proof is by induction on the dimension n of the (pointed) pseu-
dospace. The claim is clear for n = 0, so assume it has been proved for all (pointed)
pseudospaces of dimension less than n. IfM is a pointed pseudospace, let x ∈ M
be the additional point. Of course we may assume a /∈ A. We may also assume that
there is some reduced path � = (a = x0, . . . b) for some b ∈ A and � ∩ A = {b} as
otherwise A ∪ {a} is nice. It therefore suffices to prove the claim for the case where
a ∈ Vi has a neighbor b ∈ A of type Vi+1 (the other case being dual to this one).
If b = x and any reduced path from a to an element of A passes through x, then
A ∪ {a} is nice. Otherwise we may assume that b �= x so that we may apply the
induction hypothesis to R≤(b).
By Remark 2.17 we know that R≤(b) ∩ A is nice. By induction hypothesis we

find a nice finite set B ⊆ R≤(b) containing a such that (R≤(b) ∩ A) ≤ B. We
claim that A ≤ A ∪ B and A ∪ B is nice. To see this we write B =

⋃
j<r Bj as a

union of minimal strong extensions overB0 = A∩R≤(b) and show inductively that
A ∪ Bj−1 ≤ A ∪ Bj and A ∪ Bj is nice. Note that by Lemma 2.18 each Bj is nice.
Case I IfBj = Bj−1∪{c} is a strong extension ofBj−1 of type 1 by some c ∈ R<(b),
then since Bj is nice and c ∈ R<(b), we must have c ∈ R<(d ) for a unique neighbor
d of c with d ∈ Bj−1. Since c ∈ R<(b) (and Bj is nice in the sense of R<(b)), we
have R<(c) ∩ (A ∪ Bj) = R<(c) ∩ Bj = ∅.
If c had another neighbor d ′ ∈ A \ Bj−1, then d, d

′ could not have the same
level since otherwise by induction c ∈ A ∪ Bj−1. So (d, c, d ′) must be a flag,
contradicting our assumption. So c has no other neighbor in A ∪ Bj−1, and hence
A ∪ Bj−1 ≤ A ∪ Bj .
To see that A ∪ Bj is nice, note that for x ∈ A \ Bj we must have c ∨ x = d ∨ x

since otherwise the path (d, c, . . . c∨x, . . . , x) is reduced and changes direction in c,
yielding c ∈ Bj−1 by induction assumption. Hence Condition 2. holds.
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To see that Condition 3 holds, note that for x ∈ A we have d ∧ x ∈ Bj−1. If
∅ �= c ∧ x �= d ∧ x, then the path (c, . . . , c ∧ x, . . . d ∧ x) is reduced and changes
direction in c ∧ x. Since Bj is nice we have c ∧ x ∈ Bj . So by assumption we must
have c = c ∧ x, i.e., c ∈ R<(x).
Now suppose that c is connected to x ∈ A ∪ Bj−1 by a reduced path � =
(c = x0, . . . , xm = x). Consider the extension � ′ = (d, c = x0, . . . , xm).
If � ′ did not change direction in c, then � ′ could not be reduced since oth-
erwise xi ∈ R<(c) ∩ Bj−1 for some 0 < i < m, a contradiction. So let i, j be
minimal such that � ′ changes direction in xi and xj . It is easy to see that we can
reduce � ′ to a path (d, . . . , y = d ∧ xj , . . . , xj , xj+1, . . . , xm = x) changing direc-
tion in y ∈ Bj−1. But then xi = c ∧ y ∈ R<(c) ∩ Bj by Condition 3, again
a contradiction.
Hence � ′ changes direction in c. Then � ′ cannot be reduced since other-
wise by niceness of A ∪ Bj−1 we have c ∈ Bj−1. We can reduce � ′ to a path
(d, . . . , xi , . . . , xm = x) where i is minimal such that � changes direction in
xi . Then the path (c, d, . . . , xi , . . . xm = x) is equivalent to � and by induction
assumption we may replace the path (d, . . . , xi , . . . , xm = x) by an equivalent one
inside A ∪ Bj−1.
Case II IfBj arises fromBj−1 by a strong extension of type 2, then there are b1, b2 ∈
Bj−1 which are connected by a flag inside Bj−1 and Bj = Bj−1 ∪ {x1, . . . , xk}
where (b1, x1, . . . , xk , b2) is a flag, b1 ∈ R<(b2), say. If for some i ∈ {1, . . . , k}
the vertex xi has a neighbor d ∈ A \ Bj−1, then since d /∈ R<(b), we must have
xi = d ∧ b2 ∈ Bj−1 by induction assumption. This is impossible since Bj is a
minimal strong extension of Bj−1. Hence A ∪ Bj is a minimal strong extension
of A \ Bj−1.
To see that A ∪ Bj is nice, let c, d ∈ A ∪ Bj . If c, d ∈ A ∪ Bj−1 or c, d ∈ Bj
there is nothing to show. So assume c ∈ A \ Bj and d = xi ∈ Bj \ Bj−1 for some
1 ≤ i ≤ k. For Condition 2, we claim that c ∨ d = c ∨ b2. Suppose to the contrary
that c ∨ d �= c ∨ b2 and consider the path (b2, . . . , d, . . . , d ∨ c, . . . , c). If this path
is reduced, then since it changes direction in d , by induction assumption we have
d ∈ A ∪ Bj−1 and hence d ∈ Bj−1, a contradiction. Hence we find a reduced path
(b2, . . . , y . . . , d ∨ c, . . . , c) with y = b2 ∧ (d ∨ c) ∈ Bj−1. Since Bj is a minimal
strong extension ofBj−1, wemust have y = b2 and hence b2 ∈ R<(d ∨c). Therefore
b2 ∨ c = d ∨ d , contradicting the assumption.
Similarly, for Condition 3, we claim that c ∧ d = c ∧ b1, the argument being
exactly dual to the one for Condition 2.
For Condition 1, assume now that c, d are connected by a reduced path
� = (d = y0, . . . , yℓ = c) and extend � by the flag (b2, . . . , xi = d = y0) to a path
� ′. Then since c /∈ R<(b2) ⊆ R<(b), there is a minimal t such that yt /∈ R<(b2).
By Lemma 2.14 there is a reduced path from b2 to c changing direction in ys for
some s ≥ t − 1. Then ys ∈ A ∪ Bj−1, and so ys ∈ R<(b) implies ys ∈ Bj−1 by
induction assumption. By induction assumption and niceness of Bj we find inside
A ∪ Bj a path from d to c equivalent to �. ⊣

Remark 2.20. The construction shows that for a path � = (x0, . . . , xk) changing
direction in y1, . . . , yk there is a nice finite setA ⊃ � withA ⊆

⋃
i=1,...k R�(yi) where

� ∈ {≤,≥} depending on the change of direction in yi .
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Corollary 2.21.

1. If A is a finite subset of a model M of Tn, there is a nice finite set B in M
containing A.

2. For any two vertices a and b, up to equivalence there are only finitely many
reduced paths from a to b.

3. Reduced paths � = (a = x0, . . . , xk = b), �
′ = (a = y0, . . . , yk = b) from a to

b are equivalent if (and only if ) xi , yi have the same level for all i = 0, . . . , k.

Proof. Part 1. is clear and Part 2. follows directly from 1. The proof of the
nontrivial direction for 3. is by induction on the number of vertices in which �
(and � ′) change direction. If they change direction exactly once, the claim is clear.
By Lemma 2.15 the last change of direction of � and � ′ is in the same element of
R(b). Hence the claim follows from the induction hypothesis. ⊣

We also note the following corollary:

Corollary 2.22. IfA0 ⊆Mn is a nice finite set, then we can writeMn =
⋃
i<� Ai

with Ai ≤ Ai+1.

We say that a modelM of Tn is Kn-saturated if for all nice finite sets A ⊂M and
strong extensionsC ofA withC ∈ Kn there is a nice embedding ofC intoM fixing
A elementwise. The following lemma shows thatMn is Kn-saturated:

Lemma 2.23. WriteMn =
⋃
i<� Ai with Ai ∈ Kn and Ai ≤ Ai+1. Then each Ai is

nice inMn.

Proof. Fix i and let a, b ∈ Ai . If � = (a = x0, . . . , xk = b) is a path, then
� ⊆ Ai+s for some s > i . By Lemma 2.18 there is an equivalent path inside Ai , so
Ai is nice. ⊣

Lemma 2.24. An Ln-structureM is an �-saturated model of Tn if and only ifM
is Kn-saturated.

Proof. LetM be an �-saturated model of Tn . To show thatM is Kn-saturated,
let A ⊂ M be a nice finite set and A ≤ B ∈ Kn . By induction we may assume that
B is a minimal strong extension of A. By �-saturation it is easy to see that B can
be nicely embedded over A into M . Conversely, assume that M is Kn-saturated.
Since any finite subset A of M is contained in a nice finite set B ⊆ M we see
that M is back-and-forth equivalent to Mn and so is a model of Tn . Choose an
�-saturatedM ′ ≡ M . Then by the above M ′ is Kn-saturated. So M ′ and M are
also back-and-forth equivalent, which implies thatM is �-saturated. ⊣

Corollary 2.25. The theory Tn is complete.

Proof. Let M be a model of Tn. In order to show that M is elementar-
ily equivalent to Mn choose an �-saturated M ′ ≡ M . By Lemma 2.24, M ′

is Kn-saturated. Now M
′ and Mn are back-and-forth equivalent and therefore

elementarily equivalent. ⊣

Remark 2.26. Note that this implies also that for nice finite setsA the quantifier
free type of A already determines the complete type of A.

We will see in Section 4 that Tn is the theory of the building of type A∞,n+1 with
infinite valencies.
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Corollary 2.27. The algebraic closure acl(A) of a finite set A is the intersection
of all nice sets containing A.

Proof. Clearly, the intersection of all nice sets is contained in acl(A) by
Lemma 2.19. For the converse, assume B is a nice set containing A and x /∈ B.
Let D ⊃ B ∪ {x} be a nice set. SinceMn is Kn-saturated and the free amalgam of
any finite number of copies of D over B is again in Kn , we can find infinitely many
copies of D over B in Kn. ⊣

Using the fact thatMn is �-saturated we can now give an explicit description of
the algebraic closure:

Proposition 2.28. A vertex c �= a, b is in acl(ab) if and only if there is a reduced
path from a to b changing direction in c. Hence acl(ab) = {a, b} if and only if a, b is
a flag or a and b are not connected.

Proof. By Corollary 2.27 any c for which there is a reduced path from a to b
that changes direction in c is in acl(ab).
Now let c �= a, b and suppose that there is no reduced path between a and b
changing direction in c. If there is no (reduced) path from a to b, the set {a, b} is
already nice. So let � = (a = x0, . . . , . . . xs = b) be a reduced path. We may assume
c /∈ �. We construct a nice set containing a, b but not c. We may also assume that
|� ∩R(c)| is minimal. For rank n = 1 this is easy. So we may assume that we have
proved the claim for all pseudospaces of rank less than n. Also, if R(c) does not
intersect �, then Remark 2.20 shows that we can find a nice set containing � but not
c. So let k be maximal such that for some i ≤ s we have xi , xi+k ∈ R(c). Note that
� must change direction in xi and xi+k as otherwise we could replace xi , xi+k by
other elements to minimize |� ∩R(c)|. Suppose that c ∈ Vm.
First suppose that k > 0 and both xi , xi+k ∈ R<(c) (or by symmetry both in
R>(c)) so that R<(c) ∩ � = (xi , . . . , xi+k) by Lemma 2.13. Note that this implies
that xi , xi+k have level at most m − 2. Then � must change direction at some place
between xi and xi+k as this path cannot be a flag. If xi ∨xi+k = c then we claim that
we can obtain a reduced path from a to b changing direction in c: namely if a is the
last place where � changes direction before xi , then z1 = a ∧ c ∈ R<(a). Similarly
if b is the first place where � changes direction after xi+k , then z2 = b ∧ c ∈ R<(b).
Replacing in � the path (a, . . . , b) by (a, . . . , z1, . . . , c, . . . , z2, . . . , b), we obtain a
path, which is easily seen to be reduced, changing direction in c.
Hence z = xi ∨ xi+k ∈ R<(c). We may assume that the path from xi to xi+k
consists of flags (xi , . . . , z) and (z, . . . , xi+k). By induction assumption and the fact
that z ∈ R<(c) we find an absolutely nice setD1 ⊆ R<(c) containing (xi , . . . , xi+k)
(andnot containing c). SoD1 ⊆ V0∪. . .∪Vm−1. Sincexi−1, xi+k+1 ∈ V0∪. . .∪Vm−1
we can extend D1 to a nice set D2 ⊂ V0 ∪ . . . ∪ Vm−1 containing xi−1, xi+k+1. We
extendD2 to a nice setD containing (x0, . . . xi−2) and (xi+k+2, . . . , xs ) as described
in Lemma 2.19. Since c /∈ R(xj), j = 0, . . . , i − 2, i + k + 2, . . . , s we have c /∈ D.
Now suppose that k = 0 and xi ∈ R<(c). Let a′, b′ be the last place before (and
the first place after) xi where � changes direction, so a′, b′ ∈ R>(xi).
Claim: There is no reduced path from a′ to b′ changing direction in c.
Suppose otherwise and let � ′ = (a′ = y0, . . . , ys = b′). Then c cannot be the first
or last place where � ′ changes direction since k = 0. If y1 ∈ R<(a′), ys−1 ∈ R<(b′),
then replacing (a′, . . . , xi , . . . , b′) by � ′ in � yields a reduced path changing direction
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in c, contradicting the assumption. If y1 ∈ R>(a
′) let d0 = a

′, d1, d2, . . . ∈ �
′ an

enumeration of the places where � ′ changes direction and let a1 be the last place
before a′ where � changes direction. Put z1 = a1 ∨ d2 ∈ R≤(d1), so z1 ∧ d3 = d2.
We can now reduce the path starting from z1 from right to left as in Lemma 2.12. If
necessary we can do the same on the right end of � ′ and thus obtain a reduced path
from a to b changing direction in c, a contradiction proving the claim.
By the claimwe can apply the induction assumption toR>(xi). So letD ⊂ R>(xi)

be a nice set in the sense ofR>(xi) containing xi−1, xi+1, but not containing c. Then
D1 = D ∪ {xi} is nice in the sense of the V0 ∪ . . . ∪ Vn and we can extend D1 to
a nice set D2 as in Lemma 2.19. Since c /∈ R(xj), j = 0, . . . , i − 2, i + 2, . . . , s we
have c /∈ D2.
Finally suppose that xi ∈ R<(c), xi+k ∈ R>(c) (the other case is similar), so

that (xi , . . . , xi+k) is a flag and hence a nice set. If xi+k ∈ Vk for k < n, then
we can extend the nice set {xi , . . . , xi+k} by induction assumption to a nice set
containing xi−1, xi+k+1, but not containing c and we continue as in Lemma 2.19.
If xi+k ∈ Vn and every reduced path from a to b passes through xi+k , then we can
use the induction assumption to construct a nice set in V0 ∪ . . . ∪ Vn−1 containing
(xi−1, . . . , xi+k−1) and not c. This can be extended to a nice set in V0 ∪ . . . ∪Vn by
adding the necessary elements in Vn. We can also construct a nice set containing
(xi+k+1, . . . b). The union of these two sets together with xi+k will be a nice set since
every path from one of these sets to the other set has to pass through xi+k .
Now suppose that there is a path from xi+k−1 to xi+k+1 not passing through

xi+k . Since xi+k−1, xi+k+1 ∈ R<(xi+k), by (Σ4) there is such a path �
′ = (xi+k−1 =

y0, . . . , yt = xi+k+1) in R<(xi+k). We can now apply the induction assumption to
find a nice set inV0∪. . .∪Vn−1 containing (xi−1, xi , . . . xi+k+1), but not containing c.
We extend this to a nice set D in V0 ∪ . . . ∪Vn by adding the necessary elements of
Vn and continue as in Lemma 2.19. ⊣

Proposition 2.29. For any set A we have acl(A) = dcl(A).

Proof. It suffices to prove the proposition for finite sets A. If |A| = 1, we have
acl(A) = A by �-saturation of Mn . Now assume that the statement is true for A
and let a /∈ acl(A) = dcl(A). By Corollary 2.21 it suffices to prove the following:

Claim 2.30. We have c ∈ acl(aA) \ acl(A) if and only if there is a reduced path
� = (a = x0, . . . , xs = b) for some b ∈ acl(A) changing direction in c.

Clearly, if there is a reduced path � = (a = x0, . . . , xs = b) for some b ∈ acl(A)
changing direction in c, then c ∈ dcl(aA) by Proposition 2.31 and Corollary 2.21.
For the converse, it suffices to construct a nice setD containingA∪{a} but not c. So
let D0 be a nice finite set containing A and not c and let � = (a = x0, . . . , xm = b)
be a reduced path with b ∈ acl(A). Exactly as in Proposition 2.28, we construct a
nice set D ≥ D0 containing a but not c. ⊣

In Section 4 we will see that in the prime model the algebraic closure will be
described by reduced words in the Coxeter group associated to the building.
We next show that algebraically closed sets are weakly gated in the following

sense:

Proposition 2.31. For any set A and a /∈ acl(A), there is a flag C ∈ acl(A) such
that for any b ∈ acl(A) and any reduced path from a to b there is an equivalent one
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entering acl(A) through one of the elements of C and this is the last vertex where the
path changes direction.

The proposition follows from the following lemma:

Lemma 2.32. Let b1, b2 ∈ acl(A), a /∈ acl(A) and let �1 = (a = x0, . . . , xs = b1)
and �2 = (a = y0, . . . , yt = b2) be reduced paths.Assume that �1, �2 are chosen in their
equivalence classes such that i, j are minimal with xi , yj ∈ acl(A). Then xi ∈ R(yj).

Proof. Let � denote the extension of �2 by (xi , . . . , x1, a). If � is reduced, then
(xi , . . . , a, y1, . . . yj) is a flag by minimality of i, j and we are done. Now assume
that � is not reduced.
Case I: Suppose that � does not changedirection ina. To fixnotation letx1 ∈ R<(a).
We do induction on min{i, j}. By symmetry we may assume i ≤ j. First assume
i = 1. Let m be minimal such that x1 /∈ R(ym). Note that in this case �2 must
change direction in ym−1. If j < m we are done. Otherwise as in Remark 2.14 we
obtain a reduced path (x1, . . . , ym−1, ym , . . . , yt) containing a flag from x1 to ym−1.
Then ym−1 ∈ acl(A), contradicting the minimality of j.
So now assume that i > 1 and consider the path � ′ = (x1, a, y1, . . . , yt). If � ′ is
reduced we may apply the induction hypothesis to � ′ and the path from x1 to b1.
Otherwisewe reduce � ′ as inRemark 2.14: letm beminimal such thatx1 /∈ R(ym), so
ym−1 = x1∨ym . If j > m we obtain again a reduced path (x1, . . . , ym−1, ym, . . . , yt)
containing a flag from x1 to ym−1 and use the induction hypothesis on this path
and �1 starting from x1. If j < m we have x1 ∈ R(yj). Let k be minimal such
that xk /∈ R(yj). If k > i we are done. Otherwise we obtain a reduced path
(yj−1, . . . , xk−1, xk , . . . , xs = b1) and apply the induction hypothesis to this and �2
starting from yj−1.
Case II: Suppose that � changes direction in a, say x1 ∈ R>(a). We do induction
on min{i, j}. By symmetry we may assume i ≤ j. Let m be minimal such that �2
changes direction in ym.
We start with i = 1. Since � is not reduced, we have x1 ∈ R(ym) since we must
have x1 ∧ ym = x1. Since a /∈ acl(A), the path (x1, a, y1, . . . yj) is not reduced as
it changes direction in a. But (a, y1, . . . yj) is reduced and we have a, ym ∈ R(x1).
Since x1, y1 have the same level, we conclude that x1 = y1 ∈ acl(A) and we finish.
Now assume i > 1 and consider the path � ′ = (x1, a, y1, . . . yt). If � ′ is reduced,
wemay apply the induction hypothesis to the paths starting atx1. Otherwise we have
as before x1 ∈ R(ym). If x1 /∈ R(yj), then by the proof of Lemma 2.14 we see that
the path (yj , . . . , y1, a, x1, . . . , xi ) is reduced and changes direction in a implying
that a ∈ acl(A). Hence x1 ∈ R(yj). In �2 wemay therefore replace (a, y1, . . . , yj) by
(a, x1, . . . , yj)and apply the induction hypothesis to �1, �2 starting from x1 = y1. ⊣

Corollary 2.33. For any type tp(a/A), if C is a flag in acl(A) such that for any
b ∈ acl(A) and any reduced path from a to b there is an equivalent one entering acl(A)
through one of the elements of C and if no proper subset of C has this property, then
C is uniquely determined.

Proof. LetD ⊂ acl(A) be another flagwith the same property and let d ∈ D\C .
If � = (a, . . . , d ) is a reduced path, we may assume � to enter acl(A) via an ele-
ment c ∈ C ⊂ acl(A). Thus we may assume that � = (a, . . . , c, . . . , d ). Now
by assumption there is an equivalent path from a to c entering acl(A) via
an element d ′ of D. So we may assume that � = (a, . . . , d ′, . . . , c, . . . , d ) is
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a reduced path. Thus any reduced path from a to an element of acl(A) which
contains d is equivalent to one that enters acl(A) via some element of D \ {d},
contradicting the minimality of D. ⊣

The flagC is called the projection from a toA and we writeC = proj(a/A). Note
that proj(a/A) = ∅ if and only if a is not connected to any vertex of acl(A).
It is now easy to show the following:

Theorem 2.34. The theory Tn is �-stable.

Proof. Let M be a countable model and let d̄ be a tuple fromM . Let C ∈ M
be the finite set of projections from d̄ toM . Then the type tp(d̄ /M ) is determined
by tp(d̄ /C ). By Lemma 2.19, d̄ ∪ C is contained in a nice finite subset ofMn and
for such subsets the quantifier-free type determines the type by Remark 2.26. Hence
there are only countably many types over a countable model. ⊣

In fact, using the characterization of forking independence in stable theories
(see [6] Ch. 8) it is easy to see directly without counting types that Tn is superstable.
Note that since for any set A we have acl(A) = dcl(A) this is an example of a
stationary independence relation as defined in [7].

Theorem 2.35. Forking independence in models of Tn is given by

A |⌣
C

B

if and only if for all a ∈ acl(AC ), b ∈ acl(BC ) and any reduced path from a to b
there is an equivalent path passing through an element of acl(C ).

Proof. It is easy to see that this notion of independence satisfies the characterizing
properties of forking in stable theories (see [6] Ch. 8) and hence agrees with the usual
one. The existence of nonforking extensions follows from the construction ofMn as
a Hrushovski limit. Since we have just seen that for any type tp(a/A) there is a finite
set A0 ⊆ acl(A) such that a |⌣A0

A this shows directly (without counting types)

that Tn is superstable. ⊣

For convenience we also state the following special case:

Corollary 2.36. The vertex a is independent from A over C if proj(a/AC ) ⊆
acl(C ), i.e., if for any b ∈ acl(AC ) connected to a and any reduced path from a to
b there is an equivalent path passing through an element of acl(C ). In particular, a is
independent from A over ∅ if and only if a is not connected to any vertex of acl(A) by
a path.

This characterization of forking now directly implies the following:

Corollary 2.37. The free pseudospace has weak elimination of imaginaries, i.e.,
any type has a canonical basis consisting of a finite set of real elements: for any vertex
a in a saturated model M of Tn, the projection proj(a/M ) of a onto a saturated
elementary submodelM is a canonical basis for the type of a overM .

§3. Ampleness. We now recall the definition of a theory being n-ample given by
Pillay and Evans in [2,5], in slightly more symmetrized form:

Definition 3.1. A theory T is called n-ample if (possibly after naming
parameters) there are tuples a0, . . . an inM such that the following holds:
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1. for i = 0, . . . n − 1 we have

acl(a0, . . . , ai−1, ai ) ∩ acl(a0, . . . ai−1, ai+1) = acl(a0, . . . ai−1);

2. ai � |⌣ aj for i, j = 1, . . . n, and

3. a0 . . . ai−1 |⌣ ai
ai+1, . . . , an for i = 1, . . . n − 1.

Remark 3.2. If a0, . . . an witness n-ampleness over some parameters A, then for
any i = 1, . . . n we have

acl(a0, ai) ∩ acl(a0, ai−1) ⊆ acl(a0A).

Theorem 3.3. The theory Tn is n-ample, but not n + 1-ample.

Proof. Any maximal flag (x0, . . . xn) in Mn is a witness for n-ampleness. This
follows immediately from the description of acl in Proposition 2.28 and of forking
in Corollary 2.36.
To see that the free pseudospace of dimension n is not n + 1-ample, suppose
toward a contradiction thatA0, . . . An+1 are witnesses forTn being n+1-ample over
some set of parameters A. We have

An+1 � |⌣
A

A0,

A0 . . . Ai−1 |⌣
AAi

Ai+1 . . . An+1, i = 0, . . . n.

By the first condition there are vertices a0 ∈ acl(A0A) \ acl(A) and an+1 ∈
acl(An+1A) \ acl(A) which are in the same connected component and not indepen-
dent overA. We may choose a0 and an+1 at minimal distance with this property, i.e.,
in such away that no reduced path from a0 toan+1 contains an element b ∈ acl(A0A)
with b � |⌣A

an+1.

Since a0 |⌣AnA
an+1 and a0 � |⌣A

an+1 by the characterization of independence in

Corollary 2.36 there is a flagCn ⊂ acl(AnA), Cn �⊂ acl(A) such that for any reduced
path from a0 to an+1 there is an equivalent one passing through an element of Cn,
so a0 |⌣Cn

an+1. Clearly, we may assume that Cn is minimal with this property.

Let � be a reduced path from a0 to an+1 not equivalent to a path containing
an element of acl(A). Let an ∈ Cn be such that � or an equivalent path passes
through an, then a0 � |⌣A

an. If � changes direction in some b between a0 and an
or in an, then by the previous remark b ∈ acl(a0, an+1) ∩ acl(a0, an) ⊆ acl(A0A)
and b � |⌣A

an+1, contradicting the choice of a0. Therefore (a0, an) form a flag with

an /∈ Vn ∪ V0 as otherwise � changes direction in an. Now there is some flag
Cn−1 ∈ acl(An−1A), Cn−1 �⊂ acl(A) such that a0 |⌣Cn−1

an. Inductively, we find

ai ∈ acl(AiA) such that (a0, ai , . . . an) is a flag for i = 1, . . . n−1. This is impossible
if an /∈ V0 ∪Vn. ⊣

The proof shows that in fact the following stronger ampleness result holds:

Corollary 3.4. If a0, . . . an are witnesses for Tn being n-ample, then there are
vertices bi ∈ acl(ai) such that (b0, . . . bn) is a flag.

The following was pointed out by Itay Ben Yacov:

Remark 3.5. If we let T� denote the theory of �-colored graphs with vertices
of type

⋃
i<� Vi such that for all i, j ∈ � the restriction to Vi ∪ . . . Vi+j is a model



THE FREE PSEUDOSPACE IS N -AMPLE, BUT NOT (N + 1)-AMPLE 425

of Tj , we see that T� is �-stable, n-ample for all n < � and does not interpret an
infinite group.

§4. Buildings and the prime model of Tn . Let M be a model of Tn. We say that
maximal flags �1, �2 are totally connected if for i = 0, . . . n − 1 the Vi -vertices of
�1, �2 are Ei - and Ei+1-connected (whenever this makes sense). Given a flag � in
M we letM 0(�) be its totally connected component. SinceMn is homogeneous for
maximal flags, all totally connected components ofMn are isomorphic.
The uniqueness part of Proposition 4.4 follows directly from the following the-

orem and Proposition 5.1 of [4] which states that this type of building is uniquely
determined by its associated Coxeter group and the cardinality of the residues.

Theorem 4.1. M 0n is a building of type A∞,n+1 all of whose residues have
cardinality ℵ0.

Recall the following definitions (see, e.g., [3]). LetW be the Coxeter group

W = 〈t0, . . . tn : t
2
i = (ti tk)

2 = 1, i, k = 0 . . . n, |k − i | ≥ 2〉,

whose associated diagram we call A∞,n+1.

Definition 4.2. Abuilding of typeA∞,n+1 is a set Δ with aWeyl distance function
� : Δ2 →W such that the following two axioms hold:

1. For each s ∈ S := {ti , i = 0, . . . n}, the relation x ∼s y defined by �(x, y) ∈
{1, s} is an equivalence relation on Δ and each equivalence class of ∼s has at
least 2 elements.

2. Let w = r1r2 . . . rk be a shortest representation of w ∈W with ri ∈ S and let
x, y ∈ Δ. Then �(x, y) = w if and only if there exists a sequence of elements
x, x0, x1, . . . , xk = y in Δ with xi−1 �= xi and �(xi−1, xi) = ri for i = 1, . . . , k.

A sequence as in 2. is called a gallery of type (r1, r2, . . . , rk). The gallery is called
reduced if the word w = r1r2, . . . , rk is reduced, i.e., a shortest representation of w.
We now show how to considerM 0n as a building of type A∞,n+1.

Proof. (of Theorem 4.1) We extend the set of edges of the n + 1-colored graph
M 0n by putting edges between any two vertices that are incident in the sense of
Definition 2.1.2.1. In this way, flags ofM 0n correspond to a complete subgraph of
this extended graph, which thus forms a simplicial complex. A maximal simplex
consists of n + 1 vertices each of a different type Vi . (Such a simplex is called a
chamber.) Let Δ be the set of maximal simplices in this graph. Define � : Δ2 → W
as follows:
Put �(x, y) = ti if and only if the flags x and y differ exactly in the vertex of

type Vi . Extend this by putting �(x, y) = w for a reduced word w = r1r2 . . . rk if
and only if there exists a sequence of elements x = x0, x1, . . . , xk = y in Δ with
xi−1 �= xi and �(xi−1, xi) = ri for i = 1, . . . , k.
Clearly, with this definition of �, the set Δ satisfies the first condition of

Definition 4.2. In fact, for all s ∈ S every equivalence class ∼s has cardinality
ℵ0. We still need to show that � is well-defined, i.e., we have to show the follow-
ing for any x, y ∈ Δ: if there are reduced galleries x0 = x, x1, . . . , xk = y and
y0 = x, y1, . . . , ym = y of type (r1, r2, . . . , rk) and (s1, . . . sm), respectively, then
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inW we have r1r2 . . . rk = s1 . . . sm. Equivalently, we will show the following, which
completes the proof of Theorem 4.1:
Claim: There is no reduced gallery a0, a1, . . . , ak = a0 for k > 0 inM

0
n .

Proof of Claim. Suppose otherwise. Let a0, a1, . . . , ak = a0 be a reduced gallery
of type (r1, . . . rk) for some k > 0. Note that the flags ai−1 and ai contain the same
vertex of type Vj as long as ri �= tj .

Now consider the sequence of vertices of type Vn and Vn−1 occurring in this
gallery. Since Vn ∪Vn−1 contains no cycles, the sequence of vertices of type Vn and
Vn−1 occurring in this gallery will be of the form

(x1, y1, x2, y2, . . . , xi , yi , xi , yi−1, . . . y1, x1) (1)

with xi ∈ Vn, yi ∈ Vn−1 and xi a neighbor of yi and yi−1 in the original graph. This
implies that at some place in the gallery type there are two occurrences of tn which
are not separated by an occurrence of tn−1 (or conversely). Since tn commutes with
all ti for i �= n − 1 and the word r1 . . . rk is reduced, the first case cannot happen.
Hence there are two occurrences of tn−1 which are not separated by an occurrence
of tn , say rj , rj+m = tn−1 with rj+1, . . . , rj+m−1 �= tn.
We now consider the gallery aj , . . . aj+m of type (rj = tn−1, rj+1, . . . , rj+m =
tn−1). Notice that by (1), the flags aj and aj+m have the same Vn and the same
Vn−1 vertex. Since M

0
n does not contain any En−1-cycles, the sequence of Vn−1-

and Vn−2-vertices appearing in this sequence must again be of the same form as
in (1). Exactly as before we find two occurrences2 of tn−2 in the gallery type of
aj , . . . aj+m which are not separated by an occurrence of tn−1. Continuing in this
way, we eventually find two occurrences of t1 which are not separated by any ti .
Since t21 = 1 this contradicts the assumption that the gallery be reduced. ⊣

The proof shows in fact the following:

Corollary 4.3. A model of Tn is a building of type A∞,n+1 if and only if it is
Ei -connected for all i and every vertex is contained in a maximal flag.

Proposition 4.4. M 0(�) is a model ofTn. FurthermoreM 0n is the unique countable
model of Tn which is Ei -connected for i = 1, . . . n and such that every vertex is
contained in a maximal flag.

(The corresponding Remark 3.6 of [1] uses Lemma 3.2, which is not correct as
phrased there:M 0n andM

0
n ∪ {a} with a an isolated point are not isomorphic, but

satisfy the assumptions of Remark 3.6.)

Theorem 4.5. The buildingM 0n is the prime model of Tn.

Proof. To see thatM 0n is the prime model of Tn note that for any flags C1, C2 ∈
M 0n and gallery C1 = x0, . . . , xk = C2 the set of vertices occurring in this gallery
is Ei -connected for all i . Hence by Remark 2.26 its type is determined by the
quantifier-free type.
Thus, given a maximal flagM in any model of Tn and a maximal flag c0 ofM 0n
we can embedM 0n intoM by moving along the galleries ofM

0
n . ⊣

2If tn−2 does not occur in the type of the gallery, this would contradict the assumption that the type
is reduced since tn−1 commutes with all ti for i �= n, n − 2.
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§5. Ranks and types. Recall that for vertices x, y ∈ M 0n with x ∈ Vi , y ∈ Vj
the Weyl-distance �(x, y) equals w ∈ W if there are flags C1, C2 containing x, y,
respectively, with �(C1, C2) = w ′ and such thatw is the shortest representative of the
double coset 〈tk : k �= i〉w ′〈tk : k �= j〉 (where as usual 〈X 〉 denotes the subgroup
ofW generated by X ).
Note that the Weyl distance between two vertices describes exactly the reduced

paths between these vertices. Therefore we have the following:

Proposition 5.1. The theoryTn has quantifier elimination in a language containing
predicates �i,jw for Weyl distances between vertices of type Vi and of type Vj .

Proof. Since the predicates �i,jw describe the reduced paths between vertices, in
this language two tuples have the same quantifier-free type if and only if they are
contained in isomorphic nice sets. For nice sets the quantifier-free type determines
the type, whence the claim. ⊣

Using the description of forking given in Theorem 2.35 it is easy to give a list
of regular types such that any nonalgebraic type is nonorthogonal to one of these.
This is entirely similar to the list given in [1] and we omit the details. It is also clear
from this description of forking that the geometry on these types is trivial.
For any small set A in a large saturated model we have the following kinds of

regular types:

(I) tp(a/A) where a ∈ Vi is not connected to any element in acl(A)
(II) tp(a/A) where a ∈ Vi is incident with some b ∈ acl(A) ∩ Vj but not

connected in R(b) to any vertex in acl(A) ∩R(b).
(III) tp(a/A) where a ∈ Vi is incident with some x, y ∈ acl(A) such that (x, a, y)

is a flag with x ∈ Vk , y ∈ Vj ; and as a special case of this we have
(IV) tp(a/A) where a ∈ Vi has neighbors x, y ∈ acl(A) such that (x, a, y) is a

(necessarily dense) flag.

By quantifier elimination any of these descriptions determines a complete type.
Using the description of forking in Corollary 2.36 one sees easily that each of these
types is regular and trivial.
Clearly, any type in (IV) has U -rank 1 and in fact Morley rank 1 by quantifier

elimination. It also follows easily thatMR(a/A) = �n if tp(a/A) is as in (I). In case
(II) we find that MR(a/A) = �n−j−1 or MR(a/A) = �j−1 depending on whether
or not i < j. In case (III) we have MR(a/A) = �|k−j|−2.
Just as in [1] we obtain:

Lemma 5.2. Any regular type in Tn is nonorthogonal to a type as in (I ), (II ),
or (III ).

Proof. Let p = tp(b/ acl(B)). If b is not connected to acl(B), then p is as in
(I), so we may assume that proj(b/B) = C �= ∅. Let a be a vertex on a short path
from b to C incident with an element of C . Then by Corollary 2.36 we see that p is
nonorthogonal to tp(a/C ) and tp(a/C ) is of type (II) or (III). ⊣
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