
VERY HOMOGENEOUS GENERALIZED n-GONS OF FINITE

MORLEY RANK

K. TENT

A

(Almost strongly minimal) generalized n-gons are constructed for all n& 3 for which the automorphism
group acts transitively on the set of ordered ordinary (n­1)-gons contained in it, a new class of BN-pairs
thus being obtained. Through the construction being modified slightly, 2b

! many non-isomorphic almost
strongly minimal generalized n-gons are obtained for all n& 3, none of which interprets an infinite group.
Furthermore, a characterization is given of all graphs whose simple cycles all have length 2n for some
n& 3.

1. Preliminaries

A generalized n-gon is a bipartite graph (with respect to a predicate P and an inci-

dence relation I where two vertices are incident if they have a common edge) such that

the diameter of the graph is n and there are no simple cycles (that is, without repetitions)

of length less than 2n. Also, we require that the graph is thick, that is, that any

element is incident with at least three other elements. By an ordinary n-gon we just

mean a simple cycle of length 2n, that is, we drop the assumption of thickness. If we

fix labels x
!
,x

"
,… ,x

#n−"
,x

#n
¯x

!
and P(x

!
) for an ordinary n-gon, we call this tuple

an ordered ordinary n-gon. Note that a projective plane is nothing but a generalized

3-gon.

The construction proceeds via amalgamation and free extensions of bipartite

graphs. The properties can then be easily checked using the existence of countable

models satisfying rather strong universality and homogeneity conditions.

A similar approach was chosen in [10] for projective planes which are transitive

on ordinary quadrangles. However, the generalization of this construction to

generalized n-gons for arbitrary n in [5] is not correct, as was observed by

Wassermann [19], and until now there has been no general class of examples for

n-gons that are (n­1)-gon transitive.

For finite n-gons this is a rather restrictive condition; a complete classification of

finite n-gons with this property was obtained by Thas and Van Maldeghem [14, 17].

Joswig classified compact connected Moufang n-gons with this property [7, 8]. In

particular, in these classes the value of n is restricted to n¯ 3, 4 or 6 (see also [18, 6.8.9,

9.6.5]).

For generalized n-gons whose automorphism group acts transitively on ordered

ordinary n-gons, a free construction was described in [16], and it was shown in [15,

3.2.6, 3.11] that this property is equivalent to the automorphism group having a BN-

pair. See also the survey article by Funk and Strambach [4].

Our construction is inspired by that of Hrushovski [9], which has been adapted by

Baldwin [1] for the construction of projective planes of finite Morley rank. There, a
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non-bipartite graph was constructed; this was then duplicated to present both the set

of lines and the set of points of the projective plane. The same construction was used

in [3] to obtain n-gons of finite Morley rank for necessarily odd n (which, in contrast

to the polygons constructed in Section 4, are not even flag-transitive). We give here

a uniform construction for all n, using a predicate to distinguish between points and

lines instead of duplicating the graph.

To make the construction easier to understand for geometers, the condition

needed to ensure finite Morley rank is introduced only in Section 4. By a small change

in the requirements, we obtain 2b
! many non-isomorphic almost strongly minimal

n-gons which do not interpret an infinite group.

R 1.1. In contrast to this, it was shown in [13] that if " is a generalized

n-gon with strongly minimal point rows and line pencils, and if G%Aut(") is a group

of finite Morley rank acting transitively on the set of ordered ordinary n-gons in ",

then G is definably isomorphic to PSL
$
(K ), PSp

%
(K ) or G

#
(K ) for some algebraically

closed field K, and the corresponding polygon is either the projective plane, the

symplectic quadrangle, or the split Cayley hexagon over K.

2. The set-up

We start with some graph-theoretic notions.

D 2.1. (i) For a, b `A, the distance d(a, b) between a and b is the

smallest number m for which there exists a path a¯ a
!
, a

"
,… , a

m
¯ b with a

i
`A

where a
i
and a

i−"
are incident for i¯ 1,…,m.

(ii) If B is obtained from A by attaching a string of m elements from one element

of A to another element of A, we call this an extension by an arc of length m.

Hence an arc of length m yields a path of length m­1 between the elements of A

to which it was attached, since we also have to count the end elements in the path.

Note that, from now on, we fix n& 3. The standard metric on graphs is given by

the distance function defined above. For generalized n-gons we can also consider the

bounded metric defined as follows.

D 2.2. Let A be a bipartite graph with respect to a predicate P, and let

a, b `A. We define the bounded distance of a and b in A to be equal to the ordinary

distance d(a, b)¯k if k% n. If there is no path of length less than n we set d(a, b)¯ n

if a, b have the same colour with respect to P and n is even, or if a, b are different

in colour and n is odd, and d(a, b)¯ n®1 otherwise.

We think of P as inducing a colouring on the graph corresponding to the set of

points in the polygon that we are going to construct. The elements not in P are

considered as lines in the polygon.

For any finite graph A we define the weighted Euler characteristic as

y(A)¯ (n®1) rAr®(n®2) e(A)

where rAr denotes the number of elements in A, and e(A) denotes the number of edges

in A. If A and B are disjoint subgraphs of a graph M, then r(A,B) denotes the number
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of edges between elements of A and elements of B. If A and B are subgraphs of a

graph M, we denote by AB the subgraph of M whose vertices are in AeB, with the

incidence relation induced from M.

D 2.3. If A and B are bipartite with respect to a predicate P and AXB

is finite, we say that A is strong in B and write A%B if P(A)¯P(B)fA, and if for

any finite subgraph A« with AXA«XB we have y(A)% y(A«).

Note that ‘% ’ is a transitive relation on finite subgraphs of a fixed graph. If A%B,

then A is isometrically embedded in B, that is, for a, b `A the bounded distance with

respect to A and the bounded distance with respect to B are the same. This is due to

the fact that if A%B and BW ¯BcA contains an arc of length k attached to two

elements of A, then the function y forces k& n®2, that is, the string must have at

least n®2 elements (not n®1 as claimed in [3]) ; see the following lemma.

L 2.4. (i) If B is obtained from A by attaching an arc of length m, then

y(B)¯ y(A)­m®n­2.

(ii) If B
!
%B

"
and CXB

"
, then CfB

!
%C [1, 3].

Proof. These are easy calculations. For (i) use the fact that if A and B are

disjoint, we have y(AB)¯ y(A)­y(B)®(n®2)[r(A,B). *

D 2.5. For A and B being finite subgraphs of M and i¯ 0, 1, we say

that B is i-simple over A if A and B are disjoint, y(AB)®y(A)¯ i and for every proper

nonempty subset C of B, we have y(AC )®y(A)" i. A graph B is minimally 0-simple

over A if it is 0-simple over A and if it is not 0-simple over any proper nonempty

subset of A.

By Lemma 2.4(i), the typical example for a 0-simple extension is the expansion of

a graph A by an arc of length n®2. This arc is minimally 0-simple if A consists only

of the two elements to which the arc is attached. Clearly, an expansion of a graph A

by a single element b incident with a unique element of A is 1-simple. In the class of

graphs that we consider below, this will in fact be the only kind of 1-simple expansion.

The following lemma collects together some rather easy but useful facts.

L 2.6. (i) If B
!
%B

"
and CXB

"
is 0-simple o�er FXB

!
, then CXB

!
or C

XB
"
cB

!
[1, 3]. In the latter case, C is 0-simple o�er B

!
and r(C,B

!
cF )¯ 0. Hence if C

and C «XB
"
cB

!
are isomorphic o�er F, they are isomorphic o�er B

!
.

(ii) If C is 0-simple o�er B
!
, then it is 0-simple o�er any FXB

!
with r(C,B

!
)¯

r(C,F ) [1, 3]. Thus there exists a unique FXB
!
with C minimally 0-simple o�er F, namely

the set of elements of B
!

that are incident with elements of C.

(iii) If B is a connected graph which does not contain any cycles, then y(B)¯
(n®2)­rBr.

Proof. The proofs in [3] also work in this context. The last assertion of

(ii) follows from the equality y(CB
!
)¯ y(C )­y(B

!
)®(n®2) r(C,B

!
), so y(C )¯

(n®2) r(C,B
!
). Part (iii) follows easily from the observation that, starting with any

b `B, the whole graph B is obtained by successive 1-simple expansions by single

elements. *
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3. The construction

In this section we prove the following theorem.

T 3.1. For all n& 3, there exist generalized n-gons for which the

automorphism group acts transiti�ely on the set of ordered ordinary (n­1)-gons

contained in it.

We will construct these generalized n-gons from a class + of finite bipartite

graphs partially ordered by the strong substructure relation ‘% ’ by free extensions

and amalgamation.

Throughout this section we fix n& 3.

D 3.2. Let (K,%) be a collection of finite relational structures closed

under substructures.

(i) We say that (K,%) has the amalgamation property if for A,B,C `K and

embeddings f
!
:AMNB and g

!
:AMNC with f

!
(A)%B and g

!
(A)%C there exists

some D `K and embeddings f
"
:BMND and g

"
:CMND such that f

"
(B), g

"
(C )%D

and f
"
a f

!
¯ g

"
a g

!
.

(ii) The class (K,%) is said to have the joint embedding property if for any

A,B `K there exists some C `K and embeddings f :AMNC and g :BMNC with

f(A), g(B)%C.

(iii) A countable structure M is called a (K,%)-homogeneous universal model if

the following conditions are satisfied.

(H1) If A `K is finite, then there exists an embedding f :AMNM such that

f(A)%M.

(H2) If AXM is finite, then A `K.

(H3) If A,B%M are finite and there exists an isomorphism f :AMNB, then

there exists an automorphism of M extending f.

We will use the following fact explored by Shelah, generalizing a construction by

Jo! nsson-Fraisse! (see [1]).

A 3.3. If (K,%) has the amalgamation property and the joint

embedding property, then there exists a countable (K,%)-homogeneous universal

model.

In view of condition (H3), in order to obtain generalized n-gons for which the

automorphism group acts transitively on ordinary (n­1)-gons, it will suffice to force

any (n­1)-gon to be strong in M. Therefore we choose our class + in the following

way.

D 3.4. Let + be the collection of finite graphs A, bipartite with respect

to P, with the following properties.

(K1) Graph A contains no ordinary k-gons for k! n.

(K2) If BXA contains an ordinary k-gon for k" n, then y(B)& 2n­2.

Condition (K2) allows for an easy characterization of 1-simple extensions.
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L 3.5 [1, 3]. If AXB `+, then BW ¯BcA is 1-simple o�er A, if and only if

B¯Ab where b is incident with a unique element in A.

We first need the following observation.

L 3.6. Let B be any bipartite graph satisfying condition (K1) with rBr& n­1.

If y(B)! 2n, then rBr& 2n­4.

Proof. Suppose that this is not true, and let B be a minimal counterexample. By

Lemma 2.6(iii), we may assume that B is connected and contains a cycle, so rBr& 2n.

If rBr¯ 2n, then B is an ordinary n-gon and y(B)¯ 2n.

For rBr¯ 2n­1, B must be a 1-simple expansion of an ordinary n-gon since it is

not possible to attach an arc of length 1 to an ordinary n-gon without contradicting

condition (K1). Therefore y(B)¯ 2n­1.

If rBr¯ 2n­2, B can be either an ordinary (n­1)-gon or an n-gon expanded by

two 1-simple expansions, and in either case we have y(B)¯ 2n­2. If n¯ 3, B can also

be an ordinary 3-gon with one arc of length 2 attached, in which case y(B)¯ 2n­1.

Note that for n& 4 it is not possible to attach an arc of length 2 to an ordinary n-gon

without contradicting condition (K1).

If rBr¯ 2n­3, B can be either an (n­1)-gon or an n-gon expanded by one or three

1-simple expansions, respectively. In either case y(B)¯ 2n­3. For n% 4, B can also

be an expansion by an arc of length 3, in which case y(B)& 2n­1, and for n¯ 3 it

is finally also possible that B is an expansion of an ordinary triangle by an arc of

length 2 and a 1-simple expansion, but then also y(B)¯ 2n­2. For n& 5 it is again

impossible to attach an arc of length 3 without contradicting condition (K1).

This finishes the proof of the lemma. *

We need the following lemmas.

L 3.7. Suppose that A is a graph that does not contain any simple k-cycles

for k1 2n. If Γ
"
,Γ

#
XA are two distinct ordinary n-gons, then they intersect in 0, 1, 2

or n­1 elements. If Γ
"
fΓ

#
contains at least two elements, then it contains elements that

ha�e distance n with respect to both Γ
"

and Γ
#
.

Proof. It is clear that Γ
"
,Γ

#
can intersect in zero or one elements. If they intersect

in exactly two elements, it can easily be seen that they must have distance n. If they

intersect in at least three elements, then at least two of them must have distance less

than n, and we must find some k-gon for k1 n, unless Γ
"
,Γ

#
agree on a string of n­1

elements. If they agree on more than n­1 elements, we obtain a k-gon with k! n

unless Γ
"
¯Γ

#
. *

L 3.8. Suppose that A is a graph that does not contain any simple k-cycles

for k1 2n. If Γ
i
XA, where i¯ 1, 2, 3, are distinct n-gons such that Γ

"
fΓ

#
and Γ

#
fΓ

$

both contain at least two elements, then also 4
i=",#,$

Γ
i
contains at least two elements.

Proof. Suppose that Γ
"
and Γ

#
intersect in a and b, where a and b have distance

n, and that Γ
#

and Γ
$

intersect in c, d at distance n. Then we obtain a k-gon for

k" n by moving from a to b inside Γ
"
, then inside Γ

#
from b to d, then in Γ

$

from d to c, and finally inside Γ
#

back to a. This path has no repetitions unless

²c, d ´¯ ²a, b´. *
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For graphs A not containing any simple k-cycles for k1 2n, it follows from

Lemma 3.8 that we have an equivalence relation ‘C ’ on the set of ordinary n-gons

contained in A defined by Γ
"
CΓ

#
if and only if Γ

"
fΓ

#
contains at least two elements.

By a stack of n-gons we denote the subgraph of A consisting of one equivalence

class of ordinary n-gons with respect to this equivalence relation. The intersection of

all n-gons in the same stack contains at least two elements at distance n, and we call

these elements the glueing points of the stack.

Note that a stack has the property that any two elements have distance at most

n inside this subgraph. Hence any two elements of the same stack are contained in

some ordinary n-gon belonging to the stack.

L 3.9. Suppose that A is a graph that does not contain any simple k-cycles

for k1 2n. Let Γ
"
,Γ

#
XA be distinct n-gons in the same stack, and suppose that Γ

$
XA

is another n-gon intersecting both Γ
"

and Γ
#
. Then either Γ

$
is in the same stack as

Γ
"
,Γ

#
or it intersects Γ

"
and Γ

#
in a common point.

Proof. Suppose that Γ
$
fΓ

"
¯²a´ and Γ

$
fΓ

#
¯²b´. If a1 b, then there is an

ordinary n-gon Γ« in the same stack as Γ
"
,Γ

#
containing a and b. However, now Γ

$

intersects Γ« in two elements, and therefore belongs to the same stack. *

We call two n-gons Γ
"
,Γ

#
XA neighbours if they intersect in at most one element

and if there is an element in Γ
"
which is incident with an element of Γ

#
. These elements

are called the touching points.

L 3.10. Let A be a graph that does not contain any simple k-cycles for

k1 2n. Suppose that Γ
"
CΓ

#
and Γ!

"
CΓ!

#
in A. If Γ

"
and Γ!

"
are neighbours and Γ

#

and Γ!

#
are neighbours, then they ha�e the same touching points.

Proof. If not, we can again use the touching points to find a k-gon for

k" n. *

By Lemma 3.10, if two stacks contain neighbouring n-gons, there is a unique

touching point. In this case we will say that the stacks are neighbours.

The following theorem is crucial for the construction, and might be interesting in

its own right.

T 3.11. Suppose that A is a connected graph that does not contain any

simple k-cycles for k1 2n. Then A can be described as a tree in which single nodes are

replaced by stacks of n-gons.

Proof. Let A be a connected graph, all cycles of which have length 2n. First

assume that A does not contain any cycles at all. Then, clearly, A is a tree and we are

done.

Now suppose that A does contain 2n-cycles. Then we form a new graph T by

replacing each stack of A by a single node, the edges of which are all the edges that

were connected to the stack. To show that T is a tree, we have to show that between

two nodes of T there is at most one edge, and that T does not contain any simple

cycles. For the first part, let a, b be two nodes of T. There are three cases to consider,

depending on whether a and b came from nodes in A or from stacks in A. If both a

and b were nodes in A, then there is only a single edge between them in A, and hence
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in T. If a comes from a stack ah in A, and b from a single node, then in A, the node

b is incident with a unique element of ah (as all nodes in one stack have at most distance

n from each other) ; thus there is only a single edge between a and b in T.

If both a and b come from stacks ah and bh in A, respectively, then by Lemma 3.10,

there is a unique touching point. Thus there is a unique edge between a and b in T.

Now suppose that T contains a simple cycle γ. Then, clearly, there must be a

simple cycle Γ in A which yields γXT after the stacks of A are replaced by nodes in

T. However, by assumption, Γ is a cycle of length 2n and was thus replaced by a single

node in T. Thus there are no simple cycles in T, which shows that T is indeed a tree.

This proves the theorem. *

Since a stack can be obtained from an ordinary n-gon by successively attaching

arcs of length n®1, the y-value of any stack is at least 2n.

L 3.12. Suppose that A `+ with rAr& n­2. Then y(A)& 2n. Moreo�er, we

ha�e in fact y(A)& 2n­2, unless A has at most n­3 elements, or A is an ordinary

n-gon with either a single arc of length n®1 or a single element attached.

Proof. By Lemma 3.6 it suffices to prove the second part of the lemma. Assume,

moving towards a contradiction, that A is a minimal counterexample, so A is not of

the form described in the statement and y(A)% 2n­1. By definition of +, A cannot

contain any ordinary k-gons for k1 n. By the proof of Lemma 3.6, we must have

rAr& 2n­4, and we may assume that A is a connected graph (as otherwise some of

the components would form a smaller counterexample).

We may also assume that any element in A is incident with at least two other

elements (otherwise we could remove an element with only one incidence, yielding a

smaller counterexample). Using similar considerations we conclude that any element

of A must lie inside some ordinary n-gon. Suppose that x `A is not contained in any

ordinary n-gon and let k& 2 be the number of elements incident with x. By changing

the colour of x and identifying x with the elements incident with x, we are removing

k elements and k instances of incidence, thereby obtaining a smaller counterexample.

By Theorem 3.11 we know that A can be described as a tree in which certain nodes

were replaced by stacks. Since A is finite, there are only finitely many stacks. At least

one of these stacks has at most one neighbour, as otherwise there must be a circle of

at least three stacks, yielding a k-gon for k" n.

Now let SXA be a stack with at most one neighbouring stack. If this stack

consists of a single ordinary n-gon, then by removing S and leaving only the touching

point we reduce the y-value of the graph by n­1. Thus the remaining graph has y-

value at most n, and so consists of at most n­1 elements. Therefore A must have been

an n-gon with an arc of length n®1 attached.

Finally, suppose that S consists of at least two n-gons with glueing points a, b and

touching point c. Let ΓXS be an n-gon containing c. Then one path from a to b

inside Γ does not contain c, and no element on this path is incident with more than

two elements. Therefore, by removing the n®1 elements of this path between a and

b, we again obtain a graph of smaller y-value. Therefore, A must again have been an

ordinary n-gon with an arc of length n®1 attached. *

C 3.13. If A `+, then for any non-empty graph BXA we ha�e y(B)&
n®1, and if rBr& n­2, then y(B)& 2n.
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Proof. This follows from Lemmas 3.6, 3.12 and 2.6(iii). *

Thus the empty graph is strong in any element of +. Note also that (by the

previous corollary) singletons, ordinary n-gons and ordinary (n­1)-gons are strong in

all graphs containing them with the same colouring.

The following lemma (adapted from [1, 3]) shows that we can add certain free

extensions inside +.

L 3.14. Suppose that A `+ and a, b `A are not connected by a path of length

at most n. Consider the graph B obtained from A by adding an arc of length k between

a and b, that is, by adding new �ertices ²b
"
,… , b

k
´ and new edges

(a, b
"
), (b

"
, b

#
),… , (b

k
, b)

where k¯ n®1 if a and b ha�e the same colouring with respect to P and n is e�en, or

if a and b ha�e different colours and n is odd, and k¯ n®2 otherwise. Then with the

colouring of ²b
"
,… , b

k
´ induced from a and b, we ha�e A%B and B `+.

Proof. It is clear from Lemma 2.4(i) that A%B, and obviously B satisfies

condition (K1).

In order to check condition (K2), we assume now that CXB contains an ordinary

k-gon Γ with k" n and y(C )! 2n­2. By the proof of Lemma 3.12 we must have

rC r& 2n­3. Therefore CfA contains at least n­2 elements, and thus y(CfA)& 2n.

By Lemma 2.4(ii), we have CfA%C. Thus, if CfA contains an ordinary k-gon for

k" n then 2n­2% y(CfA)% y(C ), yielding a contradiction. Hence we can apply

Lemma 3.12 to see that CfA must be a string of n­3 elements, and therefore C is

an ordinary (n­1)-gon with y(C )¯ 2n­2. All other possibilities for AfC described

in Lemma 3.12 do not contain elements of distance greater than n­1, and therefore

cannot be extended by γ in such a way as to contain an ordinary k-gon for k" n.

*

Since the empty graph is strong in every graph of the class + defined in Section

2, and + is clearly closed under substructures, it suffices to verify the amalgamation

property in order to obtain a (+,%)-homogeneous universal model. Thus the next

step will be to show that we can amalgamate inside the class + with respect to the

strong substructure relation ‘% ’.

If A%B and A%C, we denote by BC
A
C the tri�ial amalgamation of B and C

over A, obtained as the graph whose set of vertices is the disjoint union

(BcA)�(CcA)�A with incidence and colouring induced by B and C. Note that if A

is non-empty, then the colouring of B and C will be consistent with that of A, and

hence BC
A
C will again be bipartite with respect to P. If A is empty, then BCC will

be a disjoint union, and will hence again be bipartite. Thus the colouring never poses

a problem in the amalgamation.

T 3.15. (+,%) satisfies the amalgamation property.

Proof. Let B
!
%B

"
,B

#
, BW

i
¯B

i
cB

!
. The proof is obtained by induction on

rBW
"
r­rBW

#
r, and it follows the proof of [1, 3.2]. The corresponding proof in [3, Theorem

10] needs some amendments in step 4.



   n-     9

Case 1: There is a proper subset X of BW
"
with y(XB

!
)¯ y(B

!
). Then B

!
%B

!
X%

B
"
, and we can use the induction hypothesis to amalgamate B

!
X with B

#
over B

!
to

get D«, and then B
"

with D« to get D.

Case 2: Case 1 fails and y(B
"
}B

!
)¯ 0. Since Case 1 does not apply, we must have

BW
"

0-simple over B
!
. Now the result follows from Lemma 3.17 below.

Case 3: Case 1 fails and y(B
"
}B

!
)¯ 1. If there is a proper subset X of B

"
with

y(X}B
!
)¯ 1, then the failure of Case 1 implies that B

!
%B

!
X%B

"
and we again use

induction. If not, then B
"

is 1-simply algebraic over B
!
, and we use Lemma 3.16

below.

Case 4: Assume that case 1 fails and y(B
"
}B

!
)" 1. By the failure of case 1 we

must have y(b}B
!
)& 1 for all b `BW

"
. First, suppose that there is some b `BW

"
with

y(bB
!
}B

!
)¯ 1. Therefore we can use case 3 to amalgamate b and B

#
over B

!
into some

D«. Again, by the failure of case 1, it follows that bB
!
is strong in B

"
and we can use

induction to amalgamate B
"
with D« over bB

!
. (Note that in this case b `BW

"
cannot be

chosen arbitrarily because if r(b,B
!
)¯ 0, then y(bB

!
}B

!
)¯ n®1, so for n" 3, the

subgraph bB
!

need not be strong in B
"
.)

If for all b `BW
"
we have y(bB

!
}B

!
)" 1, we must have r(b,B

!
)¯ 0 and y(bB

!
}B

!
)¯

n®1 for all b `BW
"
. Now let b `BW

"
be arbitrary. Clearly, b and B

#
can be freely

amalgamated over B
!
into some D«. Also, bB

!
is strong in B

"
because r(BW

"
,B

!
)¯ 0 and

y(C )& n®1 for any CZBW
"
. Using induction again, we amalgamate D« and BW

"
over

bB
!

to obtain the required amalgam.

It is left to show the decisive lemmas.

L 3.16. If B
!
%B

"
,B

#
and BW

"
¯B

"
cB

!
is 1-simple o�er B

!
, then D¯

B
"
C

B
!

B
#
`+ with B

"
,B

#
%D.

Proof. By Lemma 3.5, B
"
is obtained from B

!
by attaching a single new element

b to some element a in B
!
. Thus D is obtained from B

#
by attaching b at a `B

!
as

before. Therefore, clearly, B
"
,B

#
%D. Also, it follows that D cannot contain any

ordinary k-gons for any k that are not already contained in B
#
, showing that D

satisfies conditions (K1) and (K2). *

The proof of the following lemma is not correct in [3].

L 3.17. If B
!
,B

"
,B

#
`+ with B

!
%B

"
,B

#
and BW

"
¯B

"
cB

!
is 0-simple o�er

B
!
, then either D¯B

"
C

B
!

B
#
`+ with B

"
,B

#
%D, or there is an isomorphic copy of B

"

o�er B
!

inside B
#
.

Proof. Here, the proof of condition (K1) in [3, Lemma 13] is wrong. Suppose that

D contains an ordinary k-gon for k! n. Then this 2k-cycle cannot lie entirely inside

either B
"

or B
#
, and hence there must be paths γ

"
, γ

#
inside BW

"
,BW

#
, respectively,

connecting elements of B
!
. Since BW

"
is 0-simple over B

!
, γ

"
must consist of n®2

elements and must be all of BW
"
. However, B

!
is strong in B

#
; hence B

#
cannot contain

arcs of lengths less than n®2, so γ
#
must also consist of n®2 elements, and γ

"
and γ

#

must meet in some elements a
"
, a

#
`B

!
. However this implies that B

!
extended by γ

#

is an isomorphic copy of B
"

over B
!

inside B
#
, and we have achieved the

amalgamation.

Therefore we may assume now that D does not contain an ordinary k-gon for

k! n. Using Lemma 2.4(ii), it is immediate that B
"

and B
#

are strong in D.



10 . 

Assume now that there is a set CXA that contains an ordinary k-gon Γ with

k" n and y(C )! 2n­2. Set C
i
¯CfB

i
and note that C

i
%C, for i¯ 1, 2. If either

y(C
"
)& 2n­2 or C

#
& 2n­2, then y(C )& 2n­2, and we have a contradiction.

Therefore, both C
"
and C

#
are of the form described in Lemma 3.12. Since C

!
contains

at least two elements and C contains an ordinary k-gon with k" n, we can check the

different possibilities for C
"

and C
#
.

Case 1: Suppose that C
"
is just an ordinary n-gon, or an ordinary n-gon with an

arc of length n®1 attached. Then any two elements of C
"
have distance at most n. If

C
#
is either an ordinary n-gon with or without an arc or a single point attached, the

distance of elements of C
#
is at most n­1, and hence C would not contain any k-gon

for k" n. Therefore C
#
must be a string of n­3 elements. Then C

!
contains exactly

two elements and y(C )¯ y(C
"
)­2¯ 2n­2, a contradiction.

Case 2: Suppose now that C
"
is an ordinary n-gon with a single element attached

to it. Then any two elements of C
#
have distance at most n­1, and there are exactly

two elements that have distance n­1. Since C contains a k-gon for k" n, C
#
must also

contain elements of distance at least n­1. Hence C
#

is also an ordinary n-gon with

a single extra element attached, in which case also C
#
contains exactly two elements

at distance n­1 and these must be the elements of C
!
. Then we obtain C from C

"
by

attaching one arc of length n and one arc of length n®1, and therefore y(C )¯
y(C

"
)­3¯ 2n­4. Alternatively, C

#
is a string of at least n­2 elements, and hence

y(C )& y(C
"
)­1¯ 2n­2, again yielding a contradiction.

Case 3: Finally, suppose that C
"
is a string of either n­2 or n­3 elements. Then

either C
#
is also a string of the same length, in which case C is just an ordinary (n­1)-

or (n­2)-gon and y(C )& 2n­2, or C
#
is an ordinary n-gon with or without an extra

arc or extra point, and we can apply one of the previous cases with the roles of C
"
and

C
#

exchanged.

This finishes the proof of Lemma 3.17 and Theorem 3.15. *

It now follows that there is a countable (+,%)-homogeneous universal structure

M, and it is easy to check that M is a generalized n-gon. Clearly, M is a bipartite

graph, which does not contain ordinary k-gons for k! n. Next, we have to show that

any two elements a, b%M are connected by a path of length at most n (and are of

the same colour if n is even, and of different colours in cases where n is odd). Say

a, b `A%M (such a set A always exists since y(B)" n®2 for all finite subgraphs B

of M ). If a, b are connected in A by a path of length at most n, we are done.

Otherwise, by Lemma 3.14, B¯Ae²b
"
,…, b

n−"
´ with incidence (a, b

"
),… , (b

n−"
, b) is

a strong extension of A and also in +, so there is an embedding f :BMNM with

f(B)%M. By condition (H3) the restriction of f to A extends to an automorphism

of M. However, since f(a) and f(b) are connected by a path of length at most n, the

same must be true of a and b.

To see that M is thick, it suffices to observe that the graph ²(a, b), (a, c), (a, d )´ with

P(a) is in +. Since all single elements are strong in M, all x `M with P(x) are

conjugate under an automorphism of M. It follows that all elements in P are incident

with at least three elements, and similarly for all elements not in P. It is left to show

that all ordered (n­1)-gons are conjugate under an automorphism of M. However,

this follows easily from the fact that by condition (K2) any ordinary (n­1)-gon

contained in M is a strong subgraph of M. Since any two ordered ordinary

(n­1)-gons are isomorphic, this isomorphism lifts to an automorphism of M.
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Now Theorem 3.1 follows from Theorem 3.15 and the preceding paragraphs.

*

R 3.18. (i) The n-gons with this property are far from being unique: in

Section 4 we will show that there are at least countably many non-isomorphic

countable n-gons that are (n­1)-gon transitive.

(ii) Clearly, if the automorphism group acts transitively on the set of ordered

ordinary (n­1)-gons, it also acts transitively on the flags, and on the set of ordered

ordinary n-gons. Thus, as pointed out in the introduction, this class of n-gons gives

rise to a new class of BN-pairs.

(iii) The action of the automorphism group is not regular on the ordered ordinary

(n­1)-gons; in fact, the stabilizer of any (n­1)-gon is at least countable. This is easily

seen through the following observation. Consider an ordinary (n­1)-gon Γ¯
(x

!
,… ,x

#n−"
) and k new elements b

"
,…, b

k
incident with x

!
. This graph can be

identified with some A%M, which easily implies that Γ extended by each of the b
i

is strongly embedded into M. Clearly, Γb
i
FΓb

j
for all i, j and thus there is an

automorphism of M fixing Γ and taking b
i
to b

j
.

(iv) It is a surprising result due to Feit and Higman that finite generalized n-gons

exist only for n¯ 3, 4, 6 and 8. It is curious to notice that the n-gons constructed in

this section do not contain any finite generalized n-gons. This can easily be seen by

computing the y-value of a finite generalized n-gon using the coordinatization as

described, for example, in [11] or [12, 1.6] to compute the cardinalities of the sets of

points, lines and flags, that is, ordered pairs (a, F) with a and F incident. However, it

might be possible to embed the smallest generalized quadrangle (with three points per

line and three lines through a point) into the projective plane just constructed, and the

smallest finite generalized hexagon into the generalized k-gons with k! 6. For

n¯ 8, the smallest octagon (with three points per line and five lines through a point)

cannot be embedded in any of these k-gons for k" 2. This observation is due to

Norbert Knarr and Hendrik Van Maldeghem.

4. Finite Morley rank

In this section we modify the construction by putting an extra condition on the

class + to ensure that the n-gons have finite Morley rank. We need some control over

how algebraic closure behaves, and for this reason we are introducing the following

multiplicity function and condition (K3) from [1, 3].

D 4.1. Fix a function µ from pairs (A,B) of finite graphs with B

minimally 0-simple over A into the natural numbers, which satisfies the following

properties.

(M1) If the isomorphism types of (A,B) and (A«,B«) are the same, then

µ(A«,B«)¯µ(A,B).

(M2) If A¯²a
!
, a

n−"
´ and B¯²a

"
,… , a

n−#
´ with AB having edges

(a
!
, a

"
),… , (a

n−#
, a

n−"
),

then µ(A,B)¯ 1; otherwise µ(A,B)&max²y(A), n´.

For any finite graph N and a pair (A,B) where AXN and B is minimally 0-simple

over A, we define χ
N
(A,B) to be the number of pairwise disjoint graphs B«XN such

that B«F
A
B.
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D 4.2. Now let +µ be the class of finite graphs bipartite with respect

to P, and satisfying conditions (K1) and (K2) and the following extra condition.

(K3) For every pair of subgraphs (A,B) of N with B minimally 0-simple over A,

we have χ
N
(A,B)%µ(A,B).

Clearly, +µ is closed under substructures and, as before, the empty set and

singletons are strong in any graph. We have to check that condition (K3) survives the

amalgamation and the extension by an arc of length n®1 or n®2 as in Lemma 3.14.

L 4.3. Let A `+µ and let B be an extension of A by an arc of length n®1

or n®2 as in Lemma 3.14. Then A%B and B `+µ.

Proof. Of course, conditions (K1) and (K2) still hold for B and A%B as before.

For condition (K3) we have to check that for any pair (F,C )XB with C minimally

0-simple over F we have χ
B
(F,C )%µ(F,C ). This is the content of [3, Lemma 9]. *

T 4.4. The class (+µ,%) has the amalgamation property.

Proof. Following the proof of Theorem 3.15 we have to check that Lemma 3.17

and Lemma 3.16 still work for +µ.

Thus suppose that B
!
%B

"
,B

#
and BW

"
¯B

"
cB

!
is a 1-simple extension of B

!
, say

BW
"
¯²b´. Conditions (K1) and (K2) have already been checked in Lemma 3.16. For

condition (K3) it suffices to note that no 0-simple extension inside D¯B
"
C

B
!

B
#
can

contain b, and if CXD is minimally 0-simple over FXD with b `F, then 1¯
χ
D
(C,D)%µ(C,D) since b is incident with a unique element of B

!
.

If BW
"
¯B

"
cB

!
is 0-simple over B

!
, then it was shown in Lemma 3.16 that D¯

B
"
C

B
!

B
#
is in + unless BW

"
is an arc of length n

#
of which there is an isomorphic copy

over B
!

inside B
#
. In this case B

#
is the required amalgam, and we do not have to

worry about condition (K3). If D `+, it was shown in [3, Lemma 13] that either D

also satisfies condition (K3), or there is an isomorphic copy of BW
"
over B

!
inside B

#
.

*

Obviously, as in Section 3, the (+µ,%)-homogeneous universal model M whose

existence follows from Theorem 4.4 is a generalized n-gon.

It is a well-known fact that any generalized n-gon is in the definable closure of a

point row and a line pencil plus a finite number of further elements (see, for example,

[12, 1.6]). This is due to coordinates that can be introduced for n-gons in much the

same way as for projective planes. The set D(a)¯²b `M ; bIa´ is called a line pencil if

a is a point, and is known as a point row if a is a line. Note that there exist definable

bijections between any two line pencils (or, respectively, between any two point rows).

For odd n, the situation is even better : there are definable bijections between any

point row and any line pencil (given by so-called ‘projecti�ities ’). (See, for example,

[11, 12] for more background and model-theoretic properties.) Therefore, for odd n,

any n-gon is in the definable closure of a single point row and two additional points.

As in [1, 3], for M to have finite Morley rank it therefore suffices to show that for

any element a `M the set of elements incident with it is strongly minimal. For n odd,

this is already enough to conclude that the n-gon is almost strongly minimal, as

pointed out above.

The author has observed that it follows easily from a criterion given in [6] that M
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is countably saturated; the argument was later included in [3]. The same proof as that

given in [1] now shows that the point rows and line pencils are strongly minimal.

T 4.5. Let M be the (+µ,%)-homogeneous-uni�ersal model. Let b `M and

F¯²a `M ; aIb´. Then F is strongly minimal. Hence there are generalized n-gons of

finite Morley rank for all n!ω.

For even n, the strong minimality of the point rows and line pencils is not enough

to imply that the n-gon is almost strongly minimal. However, the almost strong

minimality follows from the following, more-involved, geometric argument.

T 4.6. Let M be the (+µ,%)-homogeneous uni�ersal model. Then M is

almost strongly minimal.

Proof. We already know that the point rows and line pencils are strongly

minimal. As pointed out above, for odd n, it follows that the n-gon is almost strongly

minimal for trivial reasons.

Suppose now that n is even. We will show that there is a definable surjective finite-

to-1 map from a line pencil to a point row, showing that the line pencil is in the

algebraic closure of the point row. By the remarks preceding Theorem 4.5 this is

enough for it to be concluded that the n-gon is almost strongly minimal.

First, notice that we always have the following special situation of a minimally 0-

simple pair (A,B) : choose p
"
, p

#
, p

$
`P(M ) with d(p

i
, p

j
)¯ n, for 1% i1 j% 3. Let A

be the graph consisting of these three points (without any incidence holding), so

y(A)¯ 3(n®1). Now extend A by an element a `P(M ) with d(a, p
"
)¯ 2 and d(a, p

#
)¯

d(a, p
$
)¯ n®2, and let B be the graph containing Aa and the shortest paths between a

and the p
i
, for i¯ 1, 2, 3. It is easy to calculate y(B), that is, B can be described as a path

of length n from p
"
through a to p

#
with a path of length n®2 from a to p

$
attached,

such that the path from a to p
#
and the path from a to p

$
are disjoint. Thus, using the

formula described in the set-up, y(B)¯ (2n®1)­(2n®4)®(n®2)¯ 3n®3, showing

that BW ¯BcA is a 0-simple expansion of A. Clearly, BW is even minimally 0-simple over

A. Since M is saturated, there are m¯µ(BW ,A) copies of BW over A in M, that is, M

contains exactly m elements b lying in the same configuration with p
"
, p

#
, p

$
as a. Note

also that m does not depend on the choice of p
"
, p

#
, p

$
and a because µ depends only

on the configuration.

a′ k′ k

p1

p3

p2

a

F b = φ(k)

F 1.
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Now let p
"
, p

#
, p

$
be as above, and fix a line F through p

#
with d(F, p

"
)¯ d(F, p

$
)¯

n®1 (see Figure 1 for n¯ 6, where for clarity we have represented points by points

and lines by edges, rather than drawing the incidence graph). Consider the following

map φ from D(p
"
) into D(F). For any line k `D(p

"
) we have d(k, p

$
)¯ n®1, so there

is a unique point a on the line k with d(a, p
$
)¯ n®2. Similarly, there is a unique point

b on the line F with d(a, b)¯ n®2. Put φ(k)¯ b.

As we vary k, we vary a and it follows from the previous paragraph that φ is an

m-to-1 function with m¯µ(BW ,A) as above. By the (+µ,%)-homogeneity of M, the

image of φ must be all of D
"
(F), and therefore D

"
(p

"
) is in the algebraic closure of

D
"
(F). Thus M is almost strongly minimal. *

Given any elements p, q with d(p, q)¯ n, the trace of p with respect to q is defined

as pq¯²x r d(x, p)¯ 2gd(x, q)¯ n®2´. The following corollary is an immediate

consequence of the proof of Theorem 4.6.

C 4.7. The generalized n-gon has the property that any two traces pq

and pq« meet in exactly µ(BW ,A) elements (where BW ,AXM are as in the proof of

Theorem 4.6).

Note that we have countably many choices for µ(BW ,A)& 3n®3 with BW and A as

in the previous paragraph. Since the (+µ,%)-homogeneous universal model is

saturated and satisfies χ
M

µ(BW ,A)¯µ(BW ,A) (see [1, 5.1]), for different choices of

µ(BW ,A) the corresponding models M µ cannot be isomorphic. Therefore we have the

following corollary.

C 4.8. For all n, there exist at least countably many non-isomorphic

almost strongly minimal generalized n-gons for which the automorphism group acts

transiti�ely on the set of ordered ordinary (n­1)-gons contained in it.

Clearly, these n-gons are also flag-transitive (in contrast to [3, Proposition 28]) and

homogeneous for the set of ordered ordinary n-gons. Thus, this class of n-gons gives

rise to a new class of BN-pairs acting on almost strongly minimal generalized

polygons. However, it can be shown exactly as in [1, 6.4] that none of these n-gons

interprets an infinite group. Therefore, the automorphism group and the BN-pair

cannot be definable in the polygon. As pointed out in the introduction, if a

generalized n-gon has strongly minimal point rows and line pencils and a definable

automorphism group acting transitively on ordered ordinary n-gons, then n¯ 3, 4 or

6 and the group is a simple algebraic group over an algebraically closed field. Thus

the construction cannot be modified in order to obtain examples of (automorphism)

groups of finite Morley rank which are not algebraic.

All the proofs in this section obviously also work for the class of bipartite graphs

satisfying conditions (K1) and (K3) and the following weakened form of condition

(K2).

(K2«) If BXA is non-empty, then y(B)& n®1.

This class gives rise to almost strongly minimal generalized n-gons that are no

longer flag transitive (by [3, Proposition 28]). For this class it can be shown, similarly

to [1, 3], that by varying the multiplicity function µ we obtain 2b
! many non-

isomorphic such n-gons. For odd n, the proof in [3] suffices. For even n, the graph in

[3, p. 506] with k¯ n}2 is minimally 0-simple over the graph consisting of c and a

vertex incident with c. Then the same argument shows that for even n we also obtain
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2b
! many non-isomorphic n-gons, and that none of these interprets an infinite group.

Therefore we now have the following result.

T 4.9. There are 2b
! many non-isomorphic almost strongly minimal

generalized n-gons for all n& 3 not interpreting an infinite group.

R 4.10. It is worth noticing that all the known examples of generalized

polygons of finite Morley rank are almost strongly minimal. If the Morley rank of any

point row and line pencil is necessarily 1, this would have strong implications. In

particular, any split sharply 2-transitive group of finite Morley rank would then be of

the form K
+
nK* for some algebraically closed field K (see [12]).
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