Das Seminar findet ab dem 23. April, immer donnerstags, 14-16 Uhr auf https://conf.wwu.de statt (bitte uns mailen für den präzisen URL).
Die Zilbersche Trichotomievermutung besagt, dass die Komplexität der durch den algebraischen Abschluss in einer streng minimalen Theorie induzierten Prägeometrie auf sehr enge Weise mit in der Theorie definierbaren algebraischen Strukturen (Gruppen, Körper) zusammen hängt. Sie gilt in allen klassischen Beispielen(unendlichen Menge ohne Struktur, Vektorraum über einem Schiefkörper, algebraisch abgeschlossene Körper), ist jedoch im Allgemeinen falsch, wie Hrushovski gezeigt hat. In seiner Konstruktion eines Gegenbeispiels verwendet Hrushovski eine Variante von Fraissés Amalgamierungsmethode, deren wesentliche Zutat eine geeignete Prädimensionsfunktion ist. Mit Hilfe dieser Methode wurden seitdem viele oft unerwartete Strukturen konstruiert. Im Seminar werden wir die Methode im Detail studieren und unter anderem Hrushovskis ursprüngliches Gegenbeispiel sowie seine Fusion zweier streng minimaler Strukturen behandeln. Überraschenderweise wird sich auch herausstellen, dass einige sehr interessante klassische mathematische Strukturen HrushovskiAmalgame sind.
Dieses Seminar bietet auch Gelegenheit zum Verfassen einer Bachelor- oder Masterarbeit.