Modelltheorie Übungsblatt 6

Aufgabe 1. Zeigen Sie, dass eine Theorie T genau dann Quantorenelimination hat, wenn jeder Typ bereits von seinen quantorenfreien Anteil impliziert wird.

Aufgabe 2.

- a) Sei \mathcal{L} eine abzählbare Sprache und M eine \mathcal{L} -Struktur. Zeigen Sie: Wenn $M \aleph_0$ kategorisch ist, ist der algebraische Abschluss einer endlichen Menge wieder endlich.
- b) Zeigen Sie, dass es keine \aleph_0 -kategorische \mathcal{L}_{ring} -Theorie T gibt, die die Körperaxiome T_{Kp} enthält.

Aufgabe 3.

- a) Zeigen Sie, dass T genau dann \aleph_0 -kategorisch ist, wenn für jedes $n \in \mathbb{N}$ es nur endliche viele Formeln $\phi(x_1, \ldots, x_n)$ bis auf Äquivalenz mod T gibt.
- b) Geben Sie ein Beispiel einer Theorie T an, so dass $S_1(T)$ endlich ist, aber T nicht \aleph_0 -kategorisch ist.

Aufgabe 4. Sei $\mathcal{L} = \{<, c_1, c_2, \dots\}$. Die \mathcal{L} -Theorie T bestehe aus den Axiomen T_{DLO} einer dichten linearen Ordnung vereinigt mit

$$\{\neg \exists x \forall y (x = y \lor x < y) \land \neg \exists x \forall y (x = y \lor y < x)\} \cup \{c_i < c_j \mid i < j\}_{i,j \in \mathbb{N}}.$$

Zeigen Sie:

unvollständig.

- a) T hat Quantorenelimination und ist vollständig.
- b) T hat (bis auf Isomorphie) genau drei abzählbare Modelle. Hinweis: Denken Sie an obere Schranken und Suprema der Menge $\{c_i\}_{i\in\mathbb{N}}$
- c) Geben Sie eine Sprache \mathcal{L}' und eine abzählbare \mathcal{L}' -Theorie T' an, die genau zwei abzählbare Modelle hat. Anmerkung: Nach dem Satz von Vaught ist jede solche Theorie notwendigerweise

Abgabe bis Montag, den 5.12., 09:00 Uhr, Briefkasten 168. Die Übungsblätter sollen zu zweit bearbeitet und abgegeben werden. Web-Seite: https://wwwmath.uni-muenster.de/u/baysm/logikII/