
MODEL THEORY I — EXERCISE 9

Question 1

(1) Prove that the theory DOAG of infinite divisible ordered abelian groups1 in the lan-

guage {+, 0, <} is complete and has quantifier elimination.

(2) Show that |S1 (DOAG)| = 3 (i.e., DOAG has exactly 3 complete one-types over ∅)

but S2 (DOAG) = 2ℵ0 .

Question 2

Suppose that T is a universal theory in a finite relational language such that its class of

finite structures K has AP and JEP.

(1) Show that K has a Fräıssé limit M (i.e., M is a K-saturated structure).

(2) Show that T ∗ = Th (M) is the model completion of T so that T ∗∀ = T (in particular

T has a complete model completion).

(3) Show that T ∗ can be axiomatized as follows. For every finite models N0 ⊆ M0 |= T

such that ||M0|| = ||N0||+ 1, write an axiom saying that if x0, . . . , xk−1 is isomorphic

to N0 then there is some xk such that x0, . . . , xk is isomorphic to M0.

Question 3

What do you get in Question 2 when you apply it to:

(In each case show briefly that Question 2 is applicable.)

(1) T= = the theory of equality.

(2) TE = the theory of equivalence relations in the language {E}.

(3) TP1,...,Pn = the theory of n unary predicates {P1, . . . , Pn}.

(4) T< = the theory of linear orders in {<}.

(5) T<1,<2 = the theory of two linear orders in the language {<1, <2}.

(6) T<,P = < is a linear order and P is a unary predicate.

(7) Show that T ∗P1,...,Pn
⊆ T ∗P1,...,Pm

for all n ≤ m, and that T ∗<1,...,<n
⊆ T ∗<1,...,<m

.

1An abelian group is divisible if for every non-zero element b and every positive integer n there is an element

c such that nc = b. It is ordered if it carries a linear ordering relation < such that a < b implies a+ c < b+ c

for all a, b, c.
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Question 4

(1) Show that the assumptions of Question 2 hold for T = Graphs in the language

L = {R} where R is a binary relation symbol.

(2) Show that the axiomatization αn,m which we had for the random graph in Exercise

6, Question 1 is equivalent to the axiomatization given in Question 2(4) for T ∗.

(3) Conclude from the theorems we had in class that the theory RG of the random graph

is complete and has quantifier elimination.

Question 5

Recall the definition of a metric space (X, d).

Let L = {Rq | q ∈ Q} where Rq is a binary relation. Let K be the class of finite metric

spaces with rational distances (i.e., where d maps into Q). We consider spaces in K as

L-structures, interpreting Rq (x, y) as d (x, y) = q.

(1) Show that K is countable (has countably many isomorphism types).

(2) Show that K has AP, JEP and HP.

(3) Conclude that K has a Fräıssé limit U0 which is a metric space that contains all finite

metric spaces with rational distances. This space is called the rational Urysohn space.

Question 6 *

See Question 5. Let U be the completion of U0. Show that one U contains a copy of all

finite (in fact all separable) metric spaces. U is called the Urysohn space.

Hint: prove the following lemma. For any finite subset x1, . . . , xn ∈ U and positive real

numbers αi for i = 1, . . . , n such that |αi − αj | ≤ d (xi, xj) ≤ αi + αj there is some y ∈ U

such that d (y, xi) = αi.

For the proof, first find z1, . . . , zn ∈ U0 and βi ∈ Q such that d (xi, zi) and |αi − βi| are

very small and the appropriate inequalities still hold.

Next, find y1 ∈ U0 such that d (zi, y1) = βi so that |d (y1, xi)− αi| < α/2 where α =

min {αi}. Now add y1 to the xi’s and α/2 to the αi’s.

Question 7

Do (3) + ((1) or (2))

(1) Prove that elementary embeddings have the amalgamation property: if f : M0 →M1

and g : M0 → M2 are elementary embedding then there is some M3 and elementary

embeddings h : M1 →M3 and r : M2 →M3 such that h ◦ f = r ◦ g.
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(2) Suppose that K is a class of finitely generated L-structures. Let M1,M2 be K-

saturated. Without citing the theorem we proved in class saying that they are iso-

morphic, show that if M1 is finitely generated, then so is M2 and that they are

isomorphic in this case.

(3) In class we showed that if T is small then it has no binary tree of consistent formulas.

Show that if T is countable, then the converse is also true. (Hint: look at the solution

to Exercise 6, Question 4).

Question 8 *

In class we showed that if T is countable and the isolated types are dense, then T has an

atomic model. Prove that the same is true for theories of size ℵ1 (remark: it stops being true

for ℵ2).

Hints:

Start with an ℵ1-saturated model M |= T . A set A ⊆ M is atomic if the type of every

finite tuple from it is isolated.

(1) Show that it is enough to prove that if A is atomic and countable and ϕ (x) ∈ L (A)

is a formula such that M |= ∃xϕ (x), then for some c ∈ N , A ∪ {c} is atomic and

M |= ϕ (c).

(2) Find such a c as a realization of a countable type over A. Note that if tp (ā) is isolated,

then also tp (ā′) for any subtuple ā′ of ā.


