
MODEL THEORY I — EXERCISE 8

Question 1 (Presburger Arithmetic)

Complete all the missing details in the proof that Th (Z,+,−, 0, 〈Pn | 2 ≤ n < ω〉) elimi-

nates quantifiers, where Pn is a unary predicate interpreted as Pn (m) iff n divides m and ′−′

is a unary function symbol.

Write x ≡n y for Pn (x− y) (equality modulo n).

Use the following criterion (from Exercise 7, Question 7 (b)): suppose that M is a saturated

model of some large cardinality, and f : A→ B is a homomorphism, which you want to extend

by adding some a ∈M to its domain.

Step 1: We may assume that A (and B) are subgroups such that if n · x ∈ A for some

x ∈M then x ∈ A.

We may assume a /∈ A. Let q = tpqf (a/A) be the quantifier-free type of a over A: it is

(determined by) the set of formulas of the form x = c and mx ≡n c for 2 ≤ n < ω,m ∈ Z and

c ∈ A and their negations. We want to show that f (q) is consistent.

Step 1.5: we can ignore formulas of the form x 6= c as we can always find infinitely (hence

||M ||-many) solutions to the rest of f (q), if one exists.

Step 2: use the Chinese Remainder Theorem to prove that it is enough to show that for

every prime p, the set rp = f (qp) is consistent, where qp is the restriction of q to the language

Lp =
{

+,−, 0,
〈
Ppk

∣∣ k < ω
〉}

. Here the saturation of M might help.

Step 3: Show that rp is indeed consistent, by dividing into the following cases.

Case 1 — for some c ∈ A, ¬Pp (c) (i.e., p does not divide c). Note that in this case,

M |= ∀x∃!i < pk
(
x ≡pk ic

)
. Let q′p be the collection of formulas of the form x ≡pk ic for

i < pk which belong to qp. Then q′p |= qp (i.e., all d ∈ M which realizes q′p, realizes qp), and

the same is true for r′p = f
(
q′p
)
. Explain all this, and show that r′p is consistent.

Case 2 — every d ∈ A is divisible by p, so the same is true in B. Let q′′p ⊆ qp be the set

of formulas of the form x ≡pk 0 and their negation. Then q′′p |= qp and the same is true for

r′′p = f
(
q′′p
)
. Again show that r′′p is consistent.

Question 2
1
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(1) Prove Robinsons’s joint consistency lemma: suppose that L1, L2 are languages and

L = L1 ∩L2. Suppose that T1, T2 are L1, L2 consistent theories such that T = T1 ∩T2
is complete (and consistent). Show that T1 ∪ T2 is consistent.

(2) Show that the assumption that T is complete is necessary.

(3) Prove Craig’s interpolation theorem: Suppose L1, L2 and L are as above. Suppose

that ϕi ∈ Li for i = 1, 2 are sentences and that |= ϕ1 → ϕ2 (in the language L1 ∪L2).

Show that there is some sentence ψ ∈ L, |= ϕ1 → ψ and |= ψ → ϕ2.

Hint: you may assume (for all questions) that for some κ large enough, we have the continuum

hypothesis.

Question 3*

This question is a continuation of Exercise 7, Question 4. Let T ′ be an L′ theory and

T = T ′ � L. (Both closed under logical implications.) Suppose that M is a saturated model

of T of cardinality κ ≥ |T ′| show that it can be enriched to be a model of T ′.

You may assume that κ > |T ′| but the solution for |T ′| = κ is essentially the same.

Hints: Explain why we may assume that both T and T ′ are complete.

Enumerate M = {ai | i < κ}, and add new constants ci to the language to be interpreted

as ai. For a set C of constants, let L′ (C) be L′ ∪ C. Construct an increasing continuous

sequence of sets Cα ⊆ {ci | i < κ} = Cκ and consistent L′ (Cκ)-theories Tα for α < κ all

containing DiagL (M) ∪ T ′ such that:

• Tα � L′ (Cα) is complete and Tα = Tα � L′ (Cα) ∪ DiagL (M); |Cα| < κ; If ϕ (x) ∈

L′ (Cα2) then for some i < κ, Tα2+1 contains ∃xϕ (x)→ ϕ (ci); cα ∈ Cα2+2.

You may assume, as usual, that for some λ as large as you want, λ+ = 2λ. In the α2 + 1

stage, let C be a saturated model of Tα2+1 of size λ, then it is also a saturated model of T .

Work within C and use its homogeneity to define a model of Tα2+2.

Question 4

A structure is called minimal if it has no proper elementary substructures.

(1) Suppose that T is countable and complete. Show that if T has a prime model, then

any minimal model is prime.

(2) Find an example of a countable atomic model in a countable language that is not

minimal.
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(3) * Show that while (Z,+, 0, 1) is both minimal and atomic, (Z,+, 0) is minimal yet

not atomic (use Question (1)).

(4) Conclude that Th (Z,+, 0) has no prime model.

Question 5

(1) For each n < ω, find a countable theory T which has exactly n models up to isomor-

phism.

Hint: consider (Q, <, P0, . . . , Pn−2, c0, c1, . . .) where Pi form a partition of Q into

dense subsets and c0 < c1 < c2 < . . . all in P0.

(2) Find an (incomplete) countable theory with exactly two models up to isomorphism.

(3) Show that a countable complete theory T is ω-categorical iff it has a model which is

both prime and saturated.

(4) Show that the Ryll–Nardzewski theorem on countable ω-categorical theories is false

in an uncountable language. I.e., find a complete theory T which has exactly one

countable model up to isomorphism, but has infinitely many formulas modulo T .

Question 6

Let U be a non-principal ultrafilter on ω and let Mn for n < ω be a sequence of L-structure.

Show that the ultraproduct M =
∏
n<ωMn/U is countably saturated which means: every

countable consistent set of formulas Γ (x) with parameters from M is realized in M (consistent

= every finite subset of Γ is realized in M). (Note that this is stronger than saying that M

is ℵ0-saturated if L is countable, and not as strong as saying that M is ℵ1-saturated).

Hint: first, for every parameter [f ] ∈M appearing in Γ fix a representative f . Enumerate

Γ = {ϕi (x) | i < ω} where ϕi+1 → ϕi. Given n < ω, let an ∈ |Mn| be such that an |= ϕi for

the largest possible i ≤ n (make this statement precise).

Question 7

Let L = {Pn |n < ω} where Pn is a unary predicate. For n < ω, let Ln = {Pk | k < n}.

Let Tn be the empty theory in Tn, and similarly T is the empty theory in L.

(1) Show that for all n < ω, Tn has a model completion T ∗n and write down axioms for it.

(2) Show that T ∗n is increasing with n and that T ∗ =
⋃
T ∗n is the model completion of T .

(3) Show that T ∗n is ω-categorical yet T ∗ is not, and moreover, T ∗ has no prime model,

and moreover no (consistent) formula in T ∗ isolates a complete type.


