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Existence of compressible φ-types

M a structure, φ(x ; y) a formula, A ⊆ My .

Theorem (A finite: Xi Chen, Yu Cheng, Bo Teng 2016;
A arbitrary: B, Itay Kaplan, Pierre Simon (BKS) 2021)

If VC∗(φ) ≤ d <∞, exists d2d+1-compressible p ∈ Sφ(A).

Remark

For finite A, Hu-Wu-Li-Wang ’17 find cd2-compressible p.
(“Quadratic bound on recursive teaching dimension”.)



Rounded average

Definition

The rounded average of p0, . . . , p2m ∈ Sφ(A) is

{ψ : |{i : ψ ∈ pi}| > m} ∈ Sφ(A).

Theorem (BKS)

Suppose d := VC∗(φ) <∞. Then exist n = n(d) and k = k(d) such that
any p ∈ Sφ(A) is the rounded average of n k-compressible types.



Externally definable sets

Definition

The externally definable subset of A defined by p ∈ Sφ(A) is the set
denoted in this talk by

φ(p;A) := {a ∈ A : φ(x ; a) ∈ p}.

More standard notation: φ(b;A) where M ≺ M ′ 3 b � p.

Fact (Shelah)

If φ is stable, its externally definable sets are uniformly definable, i.e.:
Exists θ(w ; y) s.t.
for any p ∈ Sφ(A) with A ⊆ My , |A| > 1,
exists d ∈ Aw s.t.

φ(p;A) = θ(d ;A).

Converse holds if we allow A ⊆ M ′y for M ′ � M.



Uniform honest definitions

Definition

φ(x ; y) has uniform honest definitions if there is θ(w ; y) s.t.
for any p ∈ Sφ(A) with A ⊆ My , |A| > 1,
and for any A0 ⊆fin A,
exists d ∈ Aw s.t.

φ(p;A0) ⊆ θ(d ;A) ⊆ φ(p;A).

Fact (Chernikov-Simon)

If Th(M) is NIP, φ has uniform honest definitions.



Local uniform honest definitions

Theorem (BKS)

Any NIP φ has uniform honest definitions.

Proof idea.

Let p ∈ Sφ(A).
Say p = Av(p0, . . . , pn−1) where pi is k-compressible.
Given A0, say pi `

∧
j<k φ(x , dij)

εij ` pi |A0 .
Then

θ((dij)i<n,j<k ; y) = Maji<n ∀x

∧
j<k

φ(x ; dij)
εij → φ(x ; y)


satisfies

φ(p;A0) ⊆ θ(d ;A) ⊆ φ(p;A).



Compressible types

Definition

A type p ∈ Sx(A) is compressible if for all φ(x ; y) exists ζ(x ; z) s.t. for
all A0 ⊆fin A exists a ∈ Az s.t. ζ(x ; a) ∈ p and ζ(M; a) ⊆ pφ|A0(M).

Fact

All types are compressible iff T is distal.
O-minimal ⇒ distal.

Using existence of compressible φ-types:

Theorem (BKS)

A countable theory T is NIP iff compressible types are dense,
i.e. for every A ⊆ M � T, formula θ(x ; y), and a ∈ Ay ,
exists compressible θ(x ; a) ∈ p ∈ Sx(A).



Transitivity
T countable NIP.

Theorem (“Rescoping” (BKS))

If tp(a/B) is compressible and C ⊆ B,
then tpB(a/C ) is compressible.

(But tp(a/C ) might not be compressible.)

Definition

If C ⊆ B ⊆ M � T ,
B is compressible over C if
tp(b/C ) is compressible for any b ∈ B<ω.

Corollary (“Transitivity of compressibility”)

If C ⊆ B ⊆ A ⊆ M � T,
and A is compressible over B, and B is compressible over C ,
then A is compressible over C .



Existence of compressible models

T countable NIP.

Theorem (BKS)

For any A ⊆ M � T, exists compressible model over A. 1

Proof.

By density, build model M0 = A ∪ {bi : i < λ} with tp(bi/A ∪ b<i )
compressible.
Conclude by transitivity of compressibility and transfinite induction.

1i.e. model of TA = DiagM(A) compressible over A.



Model-theoretic applications

T countable NIP.
Let S be a stable ∅-definable set (i.e. any S(x) ∧ φ(x , y) is stable).

Theorem (BKS)

Suppose T is unstable and M � T is ℵ0-saturated.
Then exist arbitrarily large N � M with S(N) = S(M).

Theorem (BKS)

Any model of Th(S ind) is the reduct of a model of T .



Compressibility in valued fields

Theorem (BKS)

Let K � ACVF with residue field algebraic over A ⊆ K eq.
Then K is compressible over A.

Proof.

(I) A 1-type tp(b/A) with A = acleq(A) is incompressible iff it extends
the residue field, i.e. dcleq(Ab) ∩ k ) A ∩ k .

(II) So K is compressibly constructed over A by alternating taking acl
and taking compressible non-algebraic extensions.

(III) Hence K is compressible by transitivity.

Corollary

If L ≤ K � ACVF is a valued field with finite residue field, then L is
compressible (in K) over any A ⊆ L.



Incidence bound
This recovers the following result, which was originally proven by B and
Jean-François Martin by a more direct method with effective bounds.

Corollary

Let L be a valued field with finite residue field, and let φ(x ; y) be a
quantifier-free valued field formula.
Then the binary relation E := φ(L; L) admits a distal cell decomposition
in the sense of Chernikov-Galvin-Starchenko, hence satisfies incidence
bounds.

In particular:
Let L be a finitely generated extension of a finite field.
Let E ⊆ Ln × Lm be a Kd ,s -free zero-set of polynomials.
Then there exist C , ε > 0 such that for any finite A ⊆ Ln and B ⊆ Lm,

|E ∩ (A× B)| ≤ C (|A|1−ε|B|
d−1
d (1+ε) + |A|+ |B|).



Cofinal systems of finite sets

Let C ⊆ P(X ) be a system of finite subsets of X which is cofinal:
I Any A ⊆fin X is a subset of some B ∈ C.

Theorem (B, Omer Ben-Neria, K, S)

(i) If |X | ≥ ℵn, then VC(C) > n.
(ii) This bound is tight for n = 1:

There exists such a C ⊆ P(ℵ1) with VC(C) = 2.
(iii) In particular, the existence of a finite VC-dimension cofinal system of

finite subsets of R is independent of ZFC.
(Indeed, |R| = ℵ1 and |R| > ℵω are both consistent.)
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