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DEFINABLY SIMPLE GROUPS IN O-MINIMAL STRUCTURES

Y. PETERZIL, A. PILLAY, AND S. STARCHENKO

Abstract. Let G = 〈G, ·〉 be a group definable in an o-minimal structure
M. A subset H of G is G-definable if H is definable in the structure 〈G, ·〉
(while definable means definable in the structure M). Assume G has no G-
definable proper subgroup of finite index. In this paper we prove that if G
has no nontrivial abelian normal subgroup, then G is the direct product of
G-definable subgroups H1, . . . ,Hk such that each Hi is definably isomorphic
to a semialgebraic linear group over a definable real closed field. As a corollary
we obtain an o-minimal analogue of Cherlin’s conjecture.

This is the first of two papers around groups definable in o-minimal structures
and semialgebraic groups over real closed fields.

An o-minimal structure is a structureM = 〈M,<, ....〉 where < is a dense linear
ordering of M , and any definable subset of M is a finite union of intervals (with
endpoints in M∪{±∞}) and points. A group G is said to be definable inM if both
G and the graph of the group operation on G are definable sets inM (i.e. definable
subsets of Mn, M3n for some n). The typical example is G = H(R) where H is
an algebraic group defined over a real closed field R. (Take M = 〈R, <,+, ·, 〉.)
We show a converse: suppose that G is definable in some o-minimal structure and
that G is nonabelian and has no proper nontrivial normal subgroup definable in the
structure 〈G, ·〉 (we say that G is G-definably simple). Then G is isomorphic to an
(open) semialgebraic subgroup of finite index of a group of the form H(R), where
R is a real closed field and H is an R-simple algebraic group. This gives a positive
answer to the o-minimal analogue of the (yet unproved) Cherlin-Zilber conjecture:
any simple group of finite Morley rank is an algebraic group over an algebraically
closed field.

The strategy of our proof is closely related to Poizat’s approach ([12]) to Cherlin’s
conjecture. Given G definable in o-minimalM, we try to find a real closed field R
definable inM which is intimately connected to G. We then try to show that G is
definably (inM) isomorphic to a linear semialgebraic group over R. The first step
is made possible by, among other things, the Trichotomy theorem. The second step
goes through developing Lie theory over o-minimal expansions of real closed fields.
This second step is possible, because, once we have a real closed field R definable
in an o-minimal structureM, then definable (inM) functions on Rn are piecewise
as differentiable as one wants.

In practice it is convenient to work with centerless and “semisimple” groups,
namely groups with no nontrivial normal abelian subgroups, and for these we prove
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the theorem stated in the abstract. The formal definition of o-minimality allows
several non-definably isomorphic real closed fields to live on a single o-minimal
structure; for example, let M be the structure on a dense linear ordering formed
by putting nonisomorphic real closed fields on two disjoint open intervals (a, b) and
(c, d). This presents various technical problems, which are dealt with in several
parts of this paper.

In the second paper ([9]) we begin with the end result of this paper: given
G a semialgebraic group over a real closed field R, and assuming that G is G-
definably simple, we show that 〈G, ·〉 is “bi-interpretable” with the field R or with
the algebraically closed field R(i). This says, in particular, that if G is a simple real
Lie group, then the abstract group G is “identical” in a definite model-theoretic
sense with either the real field or with the complex field. This automatically yields
various (well-known) rigidity theorems for simple real Lie groups.

We would like to thank the referee for the careful reading of the paper and for
many valuable comments and suggestions.

The structure of the paper. In Section 1 we establish some properties of definable
differentiable manifolds and their tangent spaces; prove technical lemmas about
groups definable in o-minimal structures; and develop basics of nonorthogonality.

In Section 2 we deal with groups definable in o-minimal expansions of real closed
fields. After establishing basic properties of the Lie correspondence, we prove the
main result for such groups.

In Section 3 we show that if a group G is G-definably connected, centerless
and is definable in an o-minimal structure M, then G is the direct product of G-
definable subgroups H1, . . . , Hk, such that each Hi is definably isomorphic to a
group definable in an o-minimal expansion of a real closed field.

In Section 4, combining results of Sections 2 and 3, we will prove the main
theorem.

After the paper was submitted the authors realized that the main result of this
paper, together with Strzebonski’s analysis of o-minimal abelian groups, yields the
positive answer to the following conjecture of Strzebonski [13]: If G is a definably
connected group definable in an o-minimal structure, then the Euler characteristic
of G is either 0 or ±1.

1. Preliminaries

We will assume that the reader is familiar with basic facts about o-minimal
structures. (They can be found in [1], [8], [4]). A good source of definitions and
properties of dimension and generic points is [11].

Throughout this paper M = 〈M,<, . . . 〉 will be an o-minimal structure. M
is equipped with the interval topology and Cartesian powers Mn with product
topologies. Unless otherwise stated, we will refer to these topologies.

Very often we will not distinguish between tuples and elements. So the notation
a ∈Mk is legitimate.

We say that a set D ⊆Mk is definable over a set A ⊆M if there is a first order
formula ϕ(x) with parameters from A such that D = {d ∈ Mk | M |= ϕ(d)}. A
set D ⊆ Mk is definable if it is definable over M . A function f : D ⊆ Mk → Mn

is definable if its graph is a definable set. A group 〈G, ·, e〉 is definable if G is a
definable set and the group multiplication is a definable function. Similarly, a field
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R is definable in M if its universe is a definable set and the field operations are
definable functions.

Usually, we will denote a group 〈G, ·, e〉 by the same letter G as its universe.
However, if we need to explicitly refer to the first order structure of a group, we
will use letters G, H, etc., for them.

If 〈G, ·, e〉 is a group definable inM, then a subset A ⊆ Gk is called G-definable
if it is definable in the structure G (i.e., it is definable in the group language),
otherwise, definable means definable in M.

A definable group G is G-definably simple if it is infinite, not abelian and does
not contain a G-definable proper nontrivial normal subgroup.

A definable group G is G-definably connected if it has no proper G-definable
subgroup of finite index.

Recall that if M is an o-minimal expansion of a real closed field R, then a
definable subset A ⊆ Mk is semialgebraic if it is definable by a formula (with
parameters from M) in the field language.

IfM is an expansion of a real closed fieldR, then the usual definition of derivative
makes sense there; and we say that a function f from an open set D ⊆ Mn into
M l is of class Cp on D if its k-th derivative exists for 1 ≤ k ≤ p, and is continuous.
Also basic differentiable calculus is true for functions definable in such structures
(see [1] for details).

Let X be a definable set. Recall that a definable subset Y of X is called large
in X if dim(X \ Y ) < dim(X).

We will use extensively the following fact.

Fact 1.1. Let D be a subset of Mk with dim(D) = k and let f : D → Mn be a
definable function. Assume that both D and f are definable over a set A. Then
there is a definable over A large subset S of D such that S is open in Mk and f is
continuous on S. In addition, if M is an expansion of a real closed field, then for
any p ≥ 0, S can be chosen so that f is Cp on S.

The following fact will be needed in Section 1.1.2.

Fact 1.2. Suppose M is an o-minimal expansion of a real closed field and D is an
open subset of Mk. If f : D →Mn is a definable C1-function with k = dim(f(D)),
then there is d ∈ D such that the rank of the differential of f at d is equal to k.

1.1. Definable manifolds over o-minimal structures. The notion of a defin-
able manifold over an o-minimal structure was introduced in [11]. In this paper we
are interested mostly in definable differentiable manifolds and their tangent spaces.
In the case of o-minimal expansions of the field of the real numbers, such manifolds
were extensively studied in [2].

We fix an integer p ≥ 0, and we will always assume that if p > 0, then M is an
expansion of a real closed field.

Let X be a definable set.
A definable chart on X is a triple c = 〈U,ϕ, n〉, where U is a definable subset

of X , n ≥ 0 and ϕ is a definable bijection from U onto an open subset of Mn. If
c = 〈U,ϕ, n〉 is a definable chart, then n is called the dimension of c.

Two definable charts c = 〈U,ϕ, n〉 and c′ = 〈U ′, ϕ′, n′〉 are Cp-compatible if either
U∩U ′ = ∅ or ϕ(U∩U ′) is open, ϕ′(U ′∩U) is open, and the two transition mappings
ϕ ◦ ϕ′−1 and ϕ′ ◦ ϕ−1 are of class Cp on their domains; note that in the last case
n = n′.
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A definable Cp-atlas on X is a finite set C of definable charts on X , each pair
of which is Cp-compatible and whose domains cover X .

A definable Cp-manifold X is a pair 〈X,C〉, where X is a definable set and C is
a definable Cp-atlas on X .

If X = 〈X,C〉 is a definable Cp-manifold, and c is a definable chart on X , then
we say that c is a definable Cp-chart on X if C ∪ {c} is a definable Cp-atlas, i.e. c

is Cp-compatible with every chart in C.
We say that two definable Cp-manifolds 〈X1,C1〉 and 〈X2,C2〉 are equal if X1 =

X2 and C1 ∪ C2 is a definable Cp-atlas on X1.
We will use bold letters X,Y, . . . to denote definable manifolds whose underlying

sets are X,Y, . . . . If for a definable Cp-manifold X = 〈X,C〉 we want to specify
that X and C are definable in the structure M, then we say that X is a definable
Cp-manifold overM.

Let c = 〈U,ϕ, n〉 be a definable chart on a definable Cp-manifold X. For a ∈ U
we say that c is a chart on X at a; and call n the dimension of X at a.

Let X and Y be definable Cp-manifolds, f : X → Y a function and a ∈ X . For
k ≤ p, we say that f is of class Ck at a if, for any charts 〈U,ϕ, n〉 on X at a and
〈V, ψ, n′〉 on Y at f(a), the mapping

F = ψ ◦ f ◦ ϕ−1 : ϕ(U)→ ψ(V )

is of class Ck. (Since all transition maps are Cp, we can replace in the above
definition “for any charts” by “for some charts”.) We say that f is of class Ck on
X if it is Ck at every a ∈ X .

If X is a definable C0-manifold, then we can equip X with a unique topology
τ so that, for any definable chart 〈U,ϕ, n〉 on X, a subset V of U is open in τ if
and only if ϕ(V ) is an open subset of Mn. We will refer to this topology τ as the
manifold topology of X.

1.1.1. Definable connectedness. A definable subset S of Mn is definably connected
if there are no definable open (in the product topology ofM) disjoint sets U1, U2 ⊆
Mn such that S ⊆ U1 ∪ U2 and S ∩ Ui 6= ∅, i = 1, 2.

Let X be a definable C0-manifold. A definable subset S of X is definably con-
nected in X if there are no nonempty open (in the manifold topology) disjoint
definable sets U1, U2 ⊆ X such that S ⊆ U1 ∪ U2 and S ∩ Ui 6= ∅, i = 1, 2. A
definable C0-manifold X is definably connected if its underlying set X is definably
connected in X.

Claim 1.3. Let N be an o-minimal expansion of M.
1. If U is an open subset of Nn, definable in M, then there are unique definable,

open, definably connected in N sets V1, . . . , Vm ⊆ U such that U is the disjoint
union of V1, . . . , Vm. Moreover, all Vi are definable in M.

2. If X is a definable C0-manifold over N , then there are unique definable,
open, definably connected in X sets V1, . . . , Vm ⊆ X such that X is the dis-
joint union of V1, . . . , Vm. Moreover, if X is definable in M, then all Vi are
definable in M.

Proof. By standard arguments, uniqueness follows easily from the existence of such
Vi.

First, note that every cell definable in N is definably connected in N .
1. By cell decomposition, U is a finite union of cells C1, . . . , Ck that are definable

in M, since U is definable in M. We will prove the statement by induction on k.
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If k = 1, then U is a cell, and it is definably connected in N .
Induction step. Suppose U is not definably connected in N . Then there are
nonempty open definable in N sets U1, U2 ⊆ U such that U is the disjoint union of
U1 and U2. Since every cell is definably connected in N , for every i ∈ {1, · · · , k}
either Ci ⊆ U1 or Ci ⊆ U2. So the cells Ci, such that Ci ⊆ U1, cover U1. Hence,
since all Ci areM-definable, U1 isM-definable, and, by the induction hypotheses,
U1 is the disjoint union of open definably connected in N sets which are definable
in M. The same is true for U2, and therefore for U .

2. We assume that X = 〈X,C〉 is a manifold over M. Applying cell decom-
position to sets ϕ(U) for every chart 〈U,ϕ, n〉 ∈ C, we obtain a finite collection of
definable in M sets C1, . . . , Ck such that X =

⋃k
i=1 Ci and for every Ci there is a

chart 〈U,ϕ, n〉 ∈ C such that ϕ(Ci) is a cell. The rest of the proof is as in 1.

Let X be a definable manifold overM. The definably connected sets V1 . . . , Vk
from the previous claim will be called the definably connected components of X. By
the same claim, if N is an o-minimal expansion of M, then definably connected
components of X in N are the same as in M. For example, if M is an expansion
of a real closed field R, and U is an open semialgebraic subset of Mn, then the
definably connected components of U in M are semialgebraic.

1.1.2. Differentiable manifolds and their tangent spaces. In this section M will
denote an o-minimal expansion of a real closed field R. We fix an integer p > 0.

Let X, Y be definable Cp-manifolds, and let f, g : X → Y be definable C1-
functions. We say that f and g are tangent at a ∈ X if f(a) = g(a) and for any
charts 〈U,ϕ, n〉 on X at a and 〈V, ψ, n′〉 on Y at f(a) the mappings ψ ◦ f ◦ϕ−1 and
ψ ◦ g ◦ ϕ−1 have the same differential at ϕ(a). Once again, we can replace in the
above definition “for any charts” by “for some charts”.

Claim 1.4. Let X, Y, and Z be definable Cp-manifolds, f1, f2 : X → Y and
g : Y → Z definable C1-mappings, and x ∈ X. If f1 and f2 are tangent at x, then
g ◦ f1 is tangent to g ◦ f2 at x.

Proof. Follows from the Chain Rule.

Let X be a definable Cp-manifold and x ∈ X . Consider the relation “f1 and f2

are tangent at 0” on the set of all definable C1-functions f from R into X with
f(0) = x.

Claim 1.5. The relation “f1 and f2 are tangent at 0” is an equivalence relation.

Proof. Easy.

The equivalence classes for this relation are called the tangent vectors to X at x,
and the set of all classes is denoted by Tx(X).

For every definable chart c = 〈U,ϕ, n〉 on X at x there is a canonical bijection
Θc : Tx(X) → Rn that maps the class of a function f : R → X to the vector
d (ϕ ◦ f)(0). Thus we can use Θ−1

c to transpose the vector space structure of Rn
onto Tx(X). If c′ = 〈U ′, ϕ′, n〉 is another chart, then the mapping Θc′ ◦ Θ−1

c is a
bijective linear mapping, and therefore this vector space structure on Tx(X) does
not depend on the choice of c.

The set Tx(X), endowed with this vector space structure, is called the tangent
vector space (or, simply, the tangent space) of X at x.
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Notice that Tx(X), defined this way, is not a definable object. However, after
fixing a chart c, we can identify, by virtue of Θc, Tx(X) with the vector space Rn.

If Y, X are definable Cp-manifolds, m ∈ X , and f : X → Y is a definable
C1-mapping, then, by Claim 1.4, f induces a mapping from Tm(X) into Tf(m)(Y).
We will denote this mapping by dm(f). Obviously, dm(f) is linear. Also, if c =
〈U,ϕ, n〉 is a chart on X at m and c′ = 〈V, ψ, k〉 is a chart on Y at f(m), then the
linear mapping Θc′ ◦dm(f)◦Θ−1

c is equal to the differential of ψ ◦ f ◦ϕ−1 at ϕ(m).

Claim 1.6. If f is a definable C1-mapping from a definable Cp-manifold X into a
definable Cp-manifold Y, then there is m ∈ X such that the rank of dm(f) is equal
to the dimension of f(X) at f(m).

Proof. Follows from Fact 1.2 after choosing appropriate charts on X and Y.

Claim 1.7. If X is a definably connected definable Cp-manifold, and f is a defin-
able C1-function from X into a definable Cp-manifold Y such that d x(f) = 0 for
any x ∈ X, then f is a constant function.

Proof. Easy.

Claim 1.8. If f is a definable injective C1-function from a definable Cp-manifold
X into a definable Cp-manifold Y, then there is x ∈ X such that d x(f) is injective.

Proof. By Claim 1.6, there is x ∈ X such that the rank of d x(f) is equal to the
dimension of f(X) at f(x). Let k be the rank of d x(f). Since f is injective the
dimension of X at x cannot be greater than k, and therefore the kernel of d x(f)
must be 0.

A definable Cp-mapping f from a definable Cp-manifold X into a definable Cp-
manifold Y is called an immersion if for any y ∈ X the mapping d y(f) is injective.

Definition 1.9. Let X be a definable Cp-manifold.
1. A definable Cp-manifold Y is a submanifold of X if Y ⊆ X and idY : Y → X

is an immersion.
2. A definable subset Y of X is a submanifold of X if Y possess a definable
Cp-manifold structure Y such that Y is a submanifold of X.

Note. If Y is a submanifold of X and y ∈ Y , then d y(idY ) is injective,and we can
always consider Ty(Y) as a subspace of Ty(X).

1.2. Groups definable in o-minimal structures. In this section we present
some basic facts about groups definable in o-minimal structures. Most of them can
be found in [11].

We fix an integer p ≥ 0, and, as usual, if p > 0, then M is assumed to be an
expansion of a real closed field.

Let G be a group definable inM. A pair 〈G,A〉 is a definable Cp-group if A is a
definable Cp-atlas on G and group multiplication and inversion are Cp-mappings.

Note that if 〈G,A〉 is a definable C0-group, then for all a, b ∈ G the function
x 7→ xa−1b is a homeomorphism that maps a into b. Therefore the dimension of
〈G,A〉 at any point is the same and equals dim(G).

Fact 1.10. [11] If G is a group definable in M, then there is an atlas A on G such
that 〈G,A〉 is a definable Cp-group.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



GROUPS IN O-MINIMAL STRUCTURES 4403

Proof. If p = 0, then this is a restatement of Proposition 2.5 in [11]. If p > 0, then
the same proof works when one replaces “continuous” by “Cp”.

Lemma 1.11. Let 〈G,A〉, and 〈H,B〉 be definable Cp-groups. If f : H → G is a
definable group homomorphism, then f is Cp.

Proof. Since f is a homomorphism and the group operations are Cp, by the Chain
Rule, it is sufficient to show that f is Cp at one point. Let 〈Ui, ϕi, n〉, i = 1, . . . , k,
be a list of all charts in A, and 〈V, ψ,m〉 be a chart in B.

Since V ⊆
⋃

1≤i≤k f
−1(Ui), there is j ∈ {1, . . . , k} such that

dim(ψ(f−1(Uj)) ∩ ψ(V )) = dim(ψ(V )).

Thus there is an open definable V0 ⊆ V such that f(V0) ⊆ Uj . By Fact 1.1, there
is c ∈ V0 such that the function ϕ ◦ f ◦ ψ−1 is Cp at ψ(c), and therefore f is Cp at
c.

Corollary 1.12. If G is a definable group, then the definable Cp-group structure
on G is unique.

Proof. Let A and B be two definable atlases on G such that both G1 = 〈G,A〉
and G2 = 〈G,B〉 are definable Cp-groups. Applying Lemma 1.11 to the identity
mapping id : G→ G we obtain that every chart in A is Cp-compatible with every
chart in B.

If G is a definable group, then it possesses a unique definable C0-manifold struc-
ture that makes it a definable C0-group. We will use the same letters G,H, . . . , to
denote the definable C0-manifold structures on G,H, . . . , and refer to the manifold
topology of a definable group G as the topology of G.

Until the end of this section G will be a group definable in M.

Fact 1.13 ([11]). G satisfies the descending chain condition on definable subgroups.

Fact 1.14 ([11]). For a definable subgroup H of G the following conditions are
equivalent.

1. H has a finite index in G.
2. dim(H) = dim(G).
3. H contains an open neighborhood of e.
4. H is open in G.

We will denote by G0 the definably connected component of e in G.

Fact 1.15 ([11]). G0 is the smallest definable subgroup of G of a finite index.

Corollary 1.16. Let S be a subset of G (definable or not). Then CG(S)
= {g ∈ G | gs = sg for all s ∈ S}, the centralizer of S in G, is a G-definable
subgroup. (In fact, there is finite S0 ⊆ S such that CG(S) = CG(S0)).

Proof. Follows from Fact 1.13.

Corollary 1.17. If A is an abelian subgroup of G (definable or not), then the
center of CG(A) is a G-definable abelian subgroup containing A, which is normal
if A is normal.

Corollary 1.18. Assume G is centerless. If G is the direct product of subgroups
H1 and H2, then both H1 and H2 are G-definable.

Proof. It can be easily checked that H1 = CG(H2) and H2 = CG(H1).
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1.3. Nonorthogonality. In this section we establish some basic properties of
nonorthogonality for intervals and prove some technical lemmas that will be used
in Section 3.

An open interval I ⊆ M is transitive if for all a, b ∈ I there are open definably
homeomorphic subintervals Oa, Ob of I, containing a and b respectively, and a
definable homeomorphism f : Oa → Ob with f(a) = b.

An open rectangular box I1× . . .×In is transitive if all intervals Ik are transitive.
Two open transitive intervals I, J ⊆M are nonorthogonal if there is a definable

homeomorphism between some open subintervals I0 ⊆ I and J0 ⊆ J .
Two open transitive intervals I, J ⊆M are orthogonal if they are not nonorthog-

onal.
Two open rectangular transitive boxes I1×. . .×Ik and J1×. . .×Js are orthogonal

if each Ii, i = 1, . . . , k, is orthogonal to every Jj , j = 1, . . . , s.

Claim 1.19. Let B1, B2 be two orthogonal open transitive rectangular boxes. If U
is an open rectangular subset of B1, then U is orthogonal to B2.

Proof. Easy.

Claim 1.20. 1. Let J, J1, . . . , Js be transitive open intervals with J orthogonal
to every Ji, i = 1, . . . , s. If f is a definable continuous function from J1 ×
· · · × Js into J , then f is a constant function.

2. Let B1, B2 be open rectangular transitive orthogonal boxes. If f is a definable
continuous function from B1 into B2, then f is a constant function.

Proof. Obviously, 2 follows from 1.
To prove 1 it is sufficient to show that for any i ∈ {1, . . . , s} and any 〈a1, . . . , as〉

∈ J1 × · · · × Js the function

f i : x 7→ f(a1, . . . , ai−1, x, ai+1, . . . , as)

is constant on Ji. If not then, by Monotonicity Theorem, there would be a subinter-
val I ⊆ Ji such that f i was strictly monotone on I, so f i would be a homeomorphism
from I into a subinterval of J .

The following definition and fact can be found in [5].

Definition 1.21. An element a ∈ M is nontrivial if there is an open interval I
containing a, an open interval J and a definable continuous function F : I×J →M
which is 1-1 in each argument.

Fact 1.22. An element a ∈M is nontrivial if and only if there is an open transitive
interval I containing a.

The following definition is taken from Stability Theory.

Definition 1.23. We say that a set B = {a1, a2, a3} is a triangle over a set A if
ai ∈ acl(A ∪ (B \ {ai})), for i = 1, 2, 3, and ai is not in acl(A ∪ {aj}), for i 6= j.

Claim 1.24. If c is a part of a triangle over a set A, then c is nontrivial.

Proof. Easy.

Claim 1.25. Let A and B = {b1, . . . bk} be subsets of M . If a ∈ acl(AB) and a is
not in acl(A ∪ {bi}) for any bi ∈ B, then a is nontrivial.
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Proof. By induction on k.
If k = 2, then it can be easily checked that {a, b1, b2} is a triangle over A, and

we are done by Claim 1.24.
If k > 2, then it suffices to show that we can decrease B, probably increasing A,

preserving the conditions of the claim. If a ∈ acl(A, b1, bk), for some bk ∈ B, then
a, b1, bk form a triangle, and we are done. If not, then A∪ {b1}, {b2, . . . , bk} and a
satisfy the conditions of the claim.

An open rectangle B = I1 × . . . × Ik is unidimensional if all intervals Ij are
transitive and pairwise nonorthogonal.

A definable inM group G is unidimensional if there is a definable chart 〈U,ϕ, n〉
on G at e such that ϕ(U) is a unidimensional set.

Claim 1.26. 1. If B is a unidimensional open rectangle of dimension k, then
there is an open transitive interval I and definable continuous injection f :
Ik → B.

2. If G is a definable unidimensional group, then there is a definable chart
〈U,ϕ, n〉 on G at e such that ϕ(U) has the form In for some open transi-
tive interval I, and ϕ(e) = 〈d, . . . , d〉 for some d ∈ I.

Proof. Easy.

Lemma 1.27. Let G be a group definable inM, and let c = 〈U,ϕ, n〉 be a definable
chart on G at e. Then there is an element g ∈ U such that for 〈a1, . . . , an〉 = ϕ(g)
every ai is nontrivial.

Proof. Since, by Fact 1.22, the nontriviality of any element can be witnessed by a
formula, it is sufficient to show the existence of such g in an ω-saturated extension
ofM. Without loss of generality we can assumeM is ω-saturated. We will also as-
sume that G, the group multiplication, and the chart c are definable over the empty
set. Since the group multiplication is continuous on U , we can find independent
generic elements m,h ∈ U such that g = mh is in U . Let a = 〈a1, . . . , an〉 = ϕ(g).

Since g,m and h are pairwise independent, we have

dim(ϕ(g)/m) = dim(ϕ(g)/h) = n.

Thus ai 6∈ acl(m) and ai 6∈ acl(h) for any i ∈ {1, . . . , n}. As a ∈ acl(m,h), by
Lemma 1.25, every ai is nontrivial.

Lemma 1.28. Let G be a group definable in M. Then there is a definable chart
=〈U,ψ, n〉 on G at e such that ψ(U) is a transitive rectangular box.

Proof. Let 〈U,ϕ, n〉 be a chart on G at e. By the previous lemma, there is g ∈ U
such that for a = 〈a1, . . . , an〉 = ϕ(g) each ai is nontrivial. Let Ii, i = 1, . . . , n, be
open transitive intervals such that I1 × · · · × In ⊆ ϕ(U) and a ∈ I1 × · · · × In. Let
V = a−1 ·ϕ−1(I1×· · ·× In), and let ψ : V → I1×· · ·× In be defined as x 7→ ϕ(ax).
It is easy to see that c = 〈V, ψ � V, n〉 is a desirable chart.

2. Groups definable in o-minimal expansions of real closed fields

In this section M will be an o-minimal expansion of a real closed field R.
Let G be a group definable in M. In the case when R is the field of reals,

by Fact 1.10 and Lemma 1.11, every definable group is a Lie group, and every
definable homomorphism of two definable groups is Lie. The converse, however, is
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not true. Even in the case when M = R there are Lie isomorphic definable groups
which are not definably isomorphic. The purpose of this section is to show that a
part of classical Lie theory still can be generalized to groups definable in o-minimal
expansions of arbitrary real closed fields, when one replaces Lie groups by definable
groups and Lie homomorphisms by definable homomorphisms.

Since M is an o-minimal expansion of a field, it has elimination of imaginaries.
It implies, in particular, that whenever G and H are definable groups then we can
consider G/H as a definable object.

2.1. Basics of Lie algebras. In this section we will recall some basic properties of
Lie algebras. All the facts from this section are well-known. (See [3], for example.)

We fix a field k = 〈k,+, ·〉 of characteristic 0.

Definition 2.1. A vector space L over k with a bilinear operation [ , ] : L×L→ L
is a Lie algebra over k if [x, x] = 0 for all x ∈ L and [ , ] satisfies the Jacobi identity:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

We will consider only finite dimensional Lie algebras.

Remark 2.2. If 〈L, [ , ]〉 is a Lie algebra over k where L is a subspace of kn, then
〈L, [ , ]〉 is definable in k. Indeed, if v1, . . . , vk is a basis for L, then, since [ , ] is
linear, using vectors vi and vectors ui,j = [vi, vj ], it is easy to write a first-order
formula that defines [ , ].

Definition 2.3. 1. A subspace I of L is called an ideal of L if [x, y] ∈ I for all
x ∈ I, y ∈ L.

2. An ideal I of L is abelian if [x, y] = 0 for all x, y ∈ I.
3. A Lie algebra L is simple if it has no ideals except itself and {0}.
4. A Lie algebra is semisimple if it has no abelian ideals except for {0}.
5. A Lie algebra L is the direct sum of its ideals I1, . . . , In if L is the direct sum

of subspaces I1, . . . , In.

Fact 2.4. Let L be a semisimple Lie algebra, and let I be an ideal of L. Then there
is an ideal J of L such that L is the direct sum of I and J .

Fact 2.5. Let L be a semisimple Lie algebra. Then there are ideals L1, . . . , Ln of
L which are simple, as Lie algebras, such that L is the direct sum of L1, . . . , Ln.

Remark 2.6. If L = 〈V, [ , ]〉 is a Lie algebra, where V is a subspace of kn, then L
is definable in the field k, and the group Aut(L) of all automorphisms of L is an
algebraic subgroup of GL(n, k).

Fact 2.7. If L = 〈V, [ , ]〉 is a semisimple Lie algebra over R, where V is a subspace
of Rn, then dim(L) = dim(Aut(L)).

It will be shown later that every definable centerless group can be definably
embedded into the group of automorphisms of its Lie algebra. The following claim
and some simple dimension arguments, shows that in the case when the Lie algebra
is semisimple the range of the embedding is semialgebraic.

Claim 2.8. If L = 〈V, [ , ]〉 is a semisimple Lie algebra over a real closed field R,
where V is a subspace of Rn, then dim(L) = dim(Aut(L)).
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Proof. Fix n ∈ N. By the definability of dimension the following statement can be
expressed by a first order sentence: If L = 〈V, [ , ]〉 is a semisimple Lie algebra over
a R, where V is a subspace of Rn, then dim(L) = dim(Aut(L)). Since the first
order theories of R and R are the same, and this statement holds in R, it is true in
R.

2.2. Definable Cp-actions. In this section we will show that every definable tran-
sitive action of a definable group is Cp in an appropriate manifold structure.

An action α : G × A → A of a definable group G on a definable set A is a
definable action if α is a definable mapping.

Recall that the action α : G×A→ A of a group G on a set A is transitive if for
all a, b ∈ A there is g ∈ G such that α(g, a) = b.

The following technical claim will be used in the proof of Theorem 2.11.

Claim 2.9. Let α be a definable transitive action of a definable group G on a
definable set A, and let C be a set such that G, A, and α are defined over C. If
a ∈ A and g is generic in G over C∪{a}, then α(g, a) is generic in A over C∪{a}.
Proof. We will assume C = ∅. Let K < G be the stabilizer of a in G, n = dim(G),
and k = dim(K). Obviously, A is definably bijective to G/H and, by the dimension
formula for quotients (see [5]), dim(A) = n− k. Also, for all b, c ∈ A the dimension
of the set {x ∈ G | α(x, b) = c} is equal to k.

Let a1 = α(g, a). We have dim(a1g/a) = dim(g/a) = n, dim(a1/a) ≤ dim(A) =
n− k, and dim(g/a1a) ≤ k. Since dim(a1g/a) = dim(a1/a) + dim(g/aa1) we have
dim(a1/a) = n− k, and therefore a1 is generic in A over a.

Definition 2.10. Let p ≥ 0 be an integer. If G is a definable group and A is a
definable Cp-manifold, then an action α : G×A→ A is called a definable Cp-action
if α is a definable Cp-mapping. (We consider G as a definable Cp-group.)

Theorem 2.11. If A is a definable set and α is a definable transitive action of a
definable group G on A, then for any integer p ≥ 0 there is a definable Cp-manifold
structure on A such that f is a definable Cp-action.

Proof. The proof is similar to the proof of Proposition 2.5 in [11], so we will be
brief.

We will assume thatM is sufficiently saturated, and thatG,A and α are definable
over the empty set.

Claim 2.12. If X is a large subset of A, then finitely many translates of X cover
A.

Proof. Since the proof is almost the same as the proof of Lemma 2.4 in [11], we
will omit some details.

Let M0 <M be a small model over which X is defined. It is sufficient to show
that for any a ∈ A there is g ∈ G ∩M0 such that a ∈ α(g,X). Let m ∈ X ∩M0.
Since the action is transitive, there is h ∈ G such that a = α(h,m). Let g be
generic in G over M0 ∪ {h} such that tp(g/M0 ∪ {h}) is finitely satisfiable in M0.
Let g1 = g−1h. Then h = gg1 and g1 is generic in G overM0∪{h}. Let b = α(g1,m),
so a = α(g, b). As g1 is generic over M0 and m ∈M0, by Claim 2.9, b is generic in
A, and therefore, since X is large in A, b ∈ X .

Proceeding as in the proof of Proposition 2.5 in [11], we can find definable Cp-
charts 〈Vi, ϕi, n〉, i = 1, . . . r, such that Vi ∩ Vj = ∅, i 6= j, and

⋃r
i=1 Vi is large
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in G. Since M is an expansion of a real closed field we can choose ϕi so that
ϕi(Vi) ∩ ϕj(Vj) = ∅, i 6= j. Let V =

⋃r
i=1 Vi and ϕ : V → Mn defined as

ϕ � Vi = ϕi. Then V is large in G and is in definable bijection with an open subset
of Mn. Without loss of generality we can assume that V is definable over the empty
set, V is an open subset of Mn, and ϕ is the identity mapping.

In the same way we can find a large subset A0 of A, which is in definable bijection
with an open subset of Mk, such that A0 and the bijection are defined over the
empty set. For simplicity we will also assume that A0 is an open subset of Mk. Let
A1 = α(V,A0) ∩ A0. Then A1 is large in A, and, by Fact 1.1, there is large open
Y ⊆ V ×A0 such that α(Y ) ⊆ A1 and α is Cp on Y .

Now we can find a large open subset X of A0 such that for every a ∈ X if g is
generic in G over a, then (g, a) ∈ Y and (g, α(g−1, a)) ∈ Y .

Claim 2.13. For every g ∈ G the set Z = {x ∈ X α(g, x) ∈ X} is open in X, and
the function x 7→ α(g, x) is Cp on Z.

Proof. It is sufficient to show that for every a ∈ Z the mapping f : x 7→ α(g, x) is
Cp at a.

Let a ∈ Z and b = α(g, a). Let g1, g2 be generic in G over {a, b} such that
g = g2g1. Since g1 is generic over a (g1, a) ∈ Y and the function x 7→ α(g1, x)
is Cp at a. Let c=α(g1, a). By the Chain Rule, it is sufficient to show that the
function x 7→ α(g2, x) is Cp at c. Since c = α(g−1

2 , b) and g2 is generic in G over b,
(g2, c) ∈ Y .

By Claim 2.12, there are g1, . . . , gs ∈ G such that A =
⋃n
i=1Xi, where Xi =

α(gi, X). For i = 1, . . . , s let ϕi be the function from Xi onto X defined as ϕi(x) =
α(g−1

i , x). It follows from Claim 2.13 that the set {〈Xi, ϕi, k〉|i = 1, . . . , s}, where
k = dim(A), is a definable Cp atlas on A, and for any g ∈ G the function x 7→ α(g, x)
is Cp in this manifold structure on A. It is routine to check that α is Cp action.

Corollary 2.14. If H is a definable subgroup of a definable group G, and p ≥ 0 an
integer, then G/H can be equipped with a definable Cp-manifold structure so that
the canonical action of G on G/H is Cp.

If α is a definable action of a definable group G on a definable set A, then for
m ∈ A by αm we will denote the function from G into A defined as g 7→ α(g,m).

Claim 2.15. Let α be a definable C1-action of a definable group G on a definable
C1-manifold X and m ∈ X. Then for any g ∈ G Rank(d g(αm)) = Rank(d e(αm)).

Proof. Let g ∈ G. Since

αm(x) = α(gg−1x,m) = α(g, αm(g−1x))

using the Chain Rule, we obtain

d g(αm(x)) = dm(α(g, x)) ◦ d e(αm(x)) ◦ d g(g−1x).

Since α(g, x) and g−1x are invertible C1-functions whose inverses are C1, the linear
mappings dm(α(g, x)) and d g(g−1x) are invertible, and therefore Rank(d g(αm)) =
Rank(d e(αm)).

Corollary 2.16. Let α be a definable C1-action of a definable group G on a defin-
able C1-manifold X, m ∈ X, and H = {g ∈ G |α(g,m) = m}. Then, for any g ∈ G,
Rank(d g(αm)) = dim(G)− dim(H), and therefore dim(ker(d g(αm))) = dim(H).

Proof. Follows from the above claim and Claim 1.6
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2.3. Tangent spaces of definable groups.

Lemma 2.17. If H is a definable subgroup of a definable group G, then H is a
submanifold of G.

Proof. Let f be the identity mapping from H into G. We need to show that for
any h ∈ H the rank of d h(f) is equal to dim(H).

Let α : H × G → G be the action of H on G by multiplication on the left. It
is obvious that f(x) = αe(x). Since, by Lemma 1.11, α is C1, Rank(d h(f)) =
dim(H)− 0 for all h ∈ H by Corollary 2.16.

Definition 2.18. For a definable group G the tangent space of G at e is called the
tangent space of G.

By the previous lemma, if H is a definable subgroup of a definable group G, then
the differential of id : H → G is an embedding of Te(H) into Te(G), and we can
identify Te(H) with a subspace of Te(G). Also, for any definable group G, since
Te(G) depends only on the manifold structure of G at e, the tangent space of G is
equal to the tangent space of the definably connected component of G.

Theorem 2.19. Let G be a definable group, α a definable C1-action of G on a
definable C1-manifold X, a ∈ X, and Fixa(G) = {g ∈ G | αa(g) = a}.

1. If H is a definably connected definable subgroup of G, then H ⊆ Fixa(G) if
and only if Te(H) ⊆ ker(d e(αa)).

2. The tangent space of Fixa(G) is ker(d e(αa)).

1. If H ⊆ Fixa(G), then αa(x) is constant on H , and therefore d e(αa) is 0 on
Te(H).

Suppose Te(H) ⊆ ker(d e(αa)). Let β be the restriction of α on H ×X . Obvi-
ously, β is a definable C1-action of H on X with Rank(d e(βa)) = 0. Since H is
definably connected, by Corollary 2.16 and Claim 1.7, βa(H) = {a}.

2. Applying 1 to the definably connected component of Fixa(G), we obtain
Te(Fixa(G)) ⊆ ker(d e(αa)). By Corollary 2.16

dim(ker(d e(αa))) = dim(Fixa(G)).

Since dimension of the group Fixa(G) is equal to the dimension of its tangent
space, the vector spaces Te(Fixa(G)) and ker(d e(αa)) have the same dimension,
hence they must be equal.

Claim 2.20. Let H1 and H2 be definably connected definable subgroups of a defin-
able group G. Then H1 = H2 if and only if Te(H1) = Te(H2).

Proof. Applying Theorem 2.19 to the canonical action of G on the set G/H2 of
the left cosets of H2, we obtain that H1 ⊆ H2 if and only if Te(H1) ⊆ Te(H2).
Similarly, H2 ⊆ H1 if and only if Te(H2) ⊆ Te(H1).

Theorem 2.21. Let f : G→ H be a definable homomorphism of definable groups
and H1 be a definable subgroup of H. Then the tangent space of the definable
subgroup G1 = f−1(H1) of G is equal to (d e(f))−1(Te(H1)).

Proof. Let α be the canonical action of H on H/H1. Then β(x, y) = α(f(x), y) is
a definable C1-action of G on H/H1 and G1 = FixH1(G). By Theorem 2.19

Te(G1) = ker(d e(βH1)) = ker(d e(αH1) ◦ d e(f)).

Since ker(d e(αH1)) = Te(H1), we have Te(G1) = (d e(f))−1(Te(H1)).
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Corollary 2.22. If f is a definable automorphism of a definable group G, then
d e(f) is an automorphism of Te(G)

Proof. d e(f) is a linear transformation of a finite dimensional vector space whose
kernel is trivial by Theorem 2.21.

Remark 2.23. 1. Let L(n,R) be the space of all square matrices of order n over
R. We will identify L(n,R) with Rn2

in the obvious way. The group GL(n,R)
of all invertible matrices has a canonical definable Cp-atlas with a single chart
c = 〈GL(n,R), ϕ, n2〉, where ϕ : A 7→ A − In, and the tangent space of GL(n,R),
by means of Θc, can be identified with L(n,R).

2. Let V be an n-dimensional vector space over R. After fixing a basis for V ,
we can identify, in the obvious way, the group Aut(V ) with GL(n,R), and the
group End(V ) with L(n,R). If f is a function from a definable set X into Aut(V )
(or End(V )), then we say that f is definable if, after the above identification, the
corresponding function from X into GL(n,R) (or L(n,R)) is definable. In the
same manner we transfer the notion of a definable Cp-function to functions whose
domain and range can be Aut(V ) or End(V ). Thus if f is a definable C1-function
from a definable group G into Aut(V ), then we can consider its differential at e as
a definable linear function from Te(G) into End(V ). Moreover, using the change of
a basis formula, it is easy to see that all these notions are independent of the choice
of basis.

Theorem 2.24. Let G be a definable group, V an n-dimensional vector space over
R, f : G→ Aut(V ) a definable homomorphism, and U ⊂ V a subspace.

1. The tangent space of the definable subgroup G1 = {g ∈ G | f(g)(U) ⊆ U} is
Te(G1) = {ξ ∈ Te(G) | d e(f)(ξ)(U) ⊆ U}.

2. The tangent space of the definable subgroup G2 = {g ∈ G | f(g) � U = idU} is
Te(G2) = {ξ ∈ Te(G) | d e(f)(ξ) � U = 0}.

Proof. 1. Let H1 = {A∈Aut(V ) |A(U)⊆U} and h1 = {A∈End(V ) |A(U) ⊆ U}.
Obviously, h1 is a subspace of End(U), and H1 is an open subset of h1. Hence h1

is the tangent space of H1, and we can apply Theorem 2.21 to f and H1.
2. Let H2 = {A∈Aut(V ) | (A − E)(U) = 0} and h2 = {A∈End(V ) |A(U) = 0}.

Obviously, h2 is a subspace of End(U), and H2−E is an open subset of h2. Hence,
h2 is the tangent space of H2, and we can apply Theorem 2.21 to f and H2.

2.4. Lie algebras of definable groups. The following fact follows from Lemma
3.2 in [7].

Fact 2.25. Let f1 and f2 be definable endomorphisms of a definable group G. Then
f1 � G0 = f2 � G0 if and only if d e(f1) = d e(f2).

Let G be a definable group.
For g ∈ G, by a(g) we will denote the inner automorphism

a(g) : x 7→ g−1xg.

Let Ad g = d e(a(g)). By Corollary 2.22, Ad g ∈ (Aut(Te(G))) and hence

Ad : G→ Aut(Te(G))

is a definable homomorphism.

Claim 2.26. ker(Ad) = C(G0).
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Proof. Follows from Fact 2.25.

Let ad = d e(Ad ). We have

ad : Te(G)→ End(Te(G)).

On the tangent space Te(G) we define a binary operation [ , ] as [ξ, ζ] = ad(ξ)(ζ).

Claim 2.27. 〈Te(G), [ , ]〉 is a Lie algebra.

Proof. Let c = 〈U,ϕ, n〉 be a definable C3-chart on G at e with ϕ(e) = 0. Using
Taylor series we obtain

ϕ(g1 · g2) = ϕ(g1) + ϕ(g2) + α(ϕ(g1), ϕ(g2)) + . . .

where α is a bilinear form and . . . stands for elements of order greater than 2. Using
elementary calculus (see [6] for details), it can be shown that [x, y] = α(x, y) −
α(y, x).

Definition 2.28. For a definable group G the Lie algebra 〈Te(G), [ , ]〉 is called
the Lie algebra of G.

Claim 2.29. Let G be a definable group and g its Lie algebra.

1. If f is a definable automorphism of G, then d e(f) is a definable automorphism
of g.

2. Ad (g) is an automorphism of g for every g ∈ G.

Proof. 1 can be shown using basic calculus; see [6] for details.
2 follows from 1.

Claim 2.30. If H is a definable subgroup of a definable group G, then the Lie
algebra of H is a Lie subalgebra of the Lie algebra of G.

Proof. Obvious.

Applying Theorem 2.24 to the adjoint representation we obtain

Claim 2.31. Let g be the Lie algebra of a definable group G and h be a subspace
of g. Then

1. the subalgebra {ξ ∈ g | [ξ, h] = 0} is the Lie algebra of the subgroup
{g ∈ G |Ad g � h = id}.

2. the subalgebra {ξ ∈ g | [ξ, h] ⊆ h} is the Lie algebra of the subgroup
{g ∈ G |Ad g(h) ⊆ h}.

Claim 2.32. Let G be a definably connected definable group with Lie algebra g.

1. G is abelian if and only if g is an abelian Lie algebra.
2. If H is a definably connected definable subgroup of G, then H is a normal

subgroup of G if and only if its Lie algebra h is an ideal of g.

Proof. 1. Easy.
2. By Claim 2.20, H is normal if and only if Ad (g)(h) ⊆ h for any g ∈ G. Now

apply Claim 2.31.
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2.5. Definable semisimple groups. Recall that if G is a connected Lie group
over R, then G is called semisimple if all its abelian normal subgroups are discrete.
By Corollary 1.17, if a group G is definable in an o-minimal expansion of R and
is definably connected, then G is semisimple if and only if it does not have an
infinite abelian normal subgroup. Thus the following definition is a generalization
of semisimplicity to groups definable in o-minimal structures.

Definition 2.33. A definably connected group G definable in an o-minimal struc-
ture is called semisimple if it has no infinite abelian normal subgroup.

Theorem 2.34. Let G be a definably connected definable group. G is semisimple
if and only if its Lie algebra g is semisimple.

Proof. If g is semisimple, then, by Claim 2.32, G is semisimple.
Now we assume that g is not semisimple and will show that G is not semisimple.

Let j ⊆ g be a nontrivial abelian ideal. Let H = {g ∈ G | Ad (g) � j = id}. By
Claim 2.31, the tangent algebra of H is h = {ξ ∈ g | [ξ, j] = 0}. Since j is an
abelian ideal, using the Jacobi identity, it is not hard to see that h is an ideal of
g containing j. By Claim 2.32, the definable connected component H0 of H is a
definable normal subgroup of G. Let C = {h ∈ H0 | Ad(h) � h = id}. It is easy to
check that its Lie algebra c = {ξ ∈ h | [ξ, h] = 0} is an abelian ideal of g. Hence the
definably connected component C0 of C is a normal abelian subgroup of G. Since
the Lie algebra of C0 contains j, C0 is nontrivial.

Claim 2.35. Let G be a definably connected definable semisimple group with Lie
algebra g. If h is an ideal of g, then there is a definably connected definable normal
subgroup H of G whose Lie algebra is h.

Proof. Since G is semisimple its Lie algebra is semisimple, and, by Fact 2.4, there
is an ideal i of g such that g is the direct sum of h and i. Using semisimplicity of g,
it is easy to see that h = {h ∈ g | [h, i] = 0}. By Claim 2.31, h is the Lie algebra of
the definable subgroup H1 = {h ∈ G | Ad h � h = id}. By Claim 2.32, the definably
connected component H of H1 is a normal subgroup of G.

Theorem 2.36. Let G be a definably connected centerless definable group. G is
definably simple if and only if its Lie algebra g is simple.

Proof. If G is definably simple, then it is semisimple, and, by Claim 2.35, its Lie
algebra is simple.

Assume g is simple and let us show that G is definably simple. Suppose H is a
proper normal definable subgroup of G. Since G is definably connected, H has an
infinite index in G, and Lie algebra h of H is a proper ideal of g. Since g is simple
h = 0, hence H is finite. For any h ∈ H the function f : g 7→ g−1hg is a definable
continuous function from G into H . As G is definably connected and H is finite, f
must be constant, and therefore G commutes with every element in H . Since G is
centerless H must be trivial.

Theorem 2.37. Let G be a centerless definable group such that G0 has no non-
trivial abelian normal subgroup. Then there is a linear semialgebraic group H over
R definably isomorphic to G.

Proof. Let g = 〈Te(G), [ , ]〉 be the Lie algebra of G. Fixing a basis of Te(G),
we may assume that Te(G) = Rn and Ad is a definable homomorphism from G
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into GL(n,R). Let H = Ad (G). Since G is centerless, By Claim 2.26, Ad is an
isomorphism from G onto H , and it is sufficient to show that H is a semialgebraic
subset of GL(n,R).

Let A = Aut(g) < GL(n,R). By Claim 2.29, H is a subgroup of A. Since G0 is
semisimple, by Theorem 2.34 and Claim 2.8,

dim(Aut(g)) = dim(g) = dim(G) = dim(H),

hence H has a finite index in A. Let A0 be the definably connected component of
A. By Claim 1.3, A0 is semialgebraic. Since A0 < H and dim(A0) = dim(H), H
consists of finitely many classes of A0, and therefore it is semialgebraic.

Theorem 2.38. If G is a definably connected centerless and semisimple definable
group, then G is the direct product of definably simple definable subgroups.

Proof. Let g be the Lie algebra of G. By Fact 2.5, g is the direct sum of ideals
h1, . . . , hk such that each hi is a simple Lie algebra.

By Claim 2.35, there are normal definably connected definable subgroups
H1, . . . , Hk such that hi is the Lie algebra of Hi for every i ∈ {1, . . . , k}. Hence, by
Theorem 2.36, each Hi is definably simple. We want to show that G is the direct
product of H1, . . . , Hk.

Let i 6= j ∈ {1, . . . , k}. Since [hi, hj ] = 0, by Claim 2.31,

Hi ⊆ {g ∈ G | Ad (g) � hj = id}

and hence, by Fact 2.25, every h ∈ Hi commutes with Hj .
Since each Hi is definably simple Hi∩Hj = {e} for i 6= j. Thus H = H1 ·H2 ·. . .·

Hk is the direct product of H1, . . . , Hk and dim(H) = dim(H1)+. . .+dim(Hk). On
the other hand, dim(G) = dim(g) = dim(h1) + . . .+ dim(hk). Therefore dim(H) =
dim(G) and, since G is definably connected, G = H .

3. A decomposition of centerless groups

In this section we will prove the following two theorems.

Theorem 3.1. If G is a definable G-definably connected centerless group, then G
is the direct product of G-definable unidimensional subgroups.

Theorem 3.2. If G is a definable G-definably connected unidimensional centerless
group, then there is a definable real closed field R and a definable linear group
H < GL(n,R) definably isomorphic to G.

Before proving the above theorems we establish some conventions.
In this section G will be a fixed G-definably connected centerless group definable

inM, and n will be the dimension ofG. We use ? to denote the group multiplication
of G, and e will be the identity element of G.

By Lemma 1.28, there is a definable chart 〈B,ϕ, n〉 on G at e such that ϕ(B) is a
transitive rectangular box. We fix one such chart, and, for simplicity, we will assume
that B is an open subset of Mn and ϕ is the identity mapping. Let I1, . . . , In be
open transitive intervals such that B = I1 × . . . In.

We also fix an open rectangular box U ⊆ B containing e such that a?b?c−1 ∈ B
and a−1 ? b ∈ B for all a, b, c ∈ U .

We will assume that G and the sets B, U are definable over the empty set.
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3.1. Proof of Theorem 3.1. By an easy induction on n, Theorem 3.1 follows
from the next lemma.

Lemma 3.3. Let {1, . . . , n}=s1∪s2 be a partition of {1, . . . , n} into two nonempty
disjoint subsets. If D1 = Πi∈s1Ii is orthogonal to D2 = Πi∈s2Ii, then there are G-
definable subgroups H1, H2 < G such that G is the direct product of H1 and H2,
dim(H1) = |s1| and dim(H2) = |s2|.

Proof. Let ei ∈ Ii, i = 1, . . . , n be such that e = 〈e1, . . . , en〉. For k ∈ {1, 2}
we define a function ρk : B → B in the following way: if a = 〈a1, . . . , an〉, b =
〈b1, . . . , bn〉 ∈ B, then

ρk(a) = b iff bi =
{
ai if i ∈ sk,
ei otherwise.

Obviously, ρk ◦ ρk = ρk and ρ1(B) ∩ ρ2(B) = {e}.
Let Bk = ρk(B) and Uk = ρk(U). We have Uk ⊆ Bk, ρk � Bk = idBk and

B1 ∩B2 = {e}.

Claim 3.4. Let k ∈ {1, 2} and b ∈ B.
1. b ∈ Bk if and only if ρk(b) = b.
2. ρ1(b) = e if and only if b ∈ B2; and ρ2(b) = e if and only if b ∈ B1.
3. The projection of B onto sk-coordinates maps Bk homeomorphicly onto Dk

and Uk onto an open rectangular box.
4. If f is a definable continuous function from U1 into B2, then f is a constant

function; and the same holds for definable continuous functions from U2 into
B1.

Proof. 1–3 are easy. 4 follows from 3, Claim 1.19 and Claim 1.20.

Claim 3.5. Let k ∈ {1, 2} and let f : Uk → B be a definable continuous function.
If f(a) ∈ Bk for some a ∈ Uk, then f(Uk) ⊆ Bk.

Proof. Assume k = 1. Since f is continuous, by Claim 3.4(4), the function ρ2 ◦ f
must be constant on U1, and, since ρ2(f(a)) = e, it must be equal to e on U1. By
Claim 3.4(2), f(b) ∈ B1 for all b ∈ U1.

Claim 3.6. Let k ∈ {1, 2}. If a, b ∈ Uk, then a ? b−1 ∈ Bk and a−1 ? b ∈ Bk.

Proof. We assume k = 1 and will only show that a ? b−1 ∈ Bk.
Consider the function f : x 7→ a ? x−1. Since e ∈ U1 and f(e) = a ∈ B1, by

Claim 3.5, f(U1) ⊆ B1.

Claim 3.7. If a ∈ U1 and b ∈ U2, then a ? b = b ? a.

Proof. Let d ∈ U2. Consider the function f : x 7→ d ? x ? d−1. Since f(e) = e ∈ B1,
by Claim 3.5, d ? c ? d−1 ∈ B1 for all c ∈ U1. As d was arbitrary, we have

|= ∀x ∈ U2∀y ∈ U1 x ? y ? x
−1 ∈ B1.

Hence g : x 7→ x ? a ? x−1 is a continuous function from U2 into B1 that must be
constant. So g(b) = g(e) = a and a ? b = b ? a.

Claim 3.8. Let a, c ∈ U1 and b, d ∈ U2. If a ? b = c ? d, then a = c and b = d.

Proof. We have c−1 ? a = d ? b−1. By Claim 3.6, c−1 ? a ∈ B1 and d ? b−1 ∈ B2.
Since B1 ∩B2 = {e}, we have c−1 ? a = d ? b−1 = e.
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Claim 3.9. dim(U1 ? U2) = n.

Proof. Since n is the maximal possible dimension for definable subsets of G, we
only need to show that dim(U1 ? U2) ≥ n.

Since dim(U1) = |s1| and dim(U2) = |s2| = n− |s1|, dimension of the Cartesian
product of U1 and U2 is n. By the previous claim, 〈x, y〉 7→ x ? y is a definable
injective map from U1 × U2 into U1 ? U2. Therefore dim(U1 ? U2) ≥ n.

Now we are ready to finish the proof of Lemma 3.3.
Let H1 = CG(U2) and H2 = CG(H1). By Corollary 1.16, H1 and H2 are G-

definable subgroups. Obviously, H1 and H2 commute, U2 ⊆ H2, and, by Claim 3.7,
U1 ⊆ H1. Thus dim(H1) ≥ dim(U1) = |s1| and dim(H2) ≥ dim(U2) = |s2|.

If a ∈ H1 ∩H2, then a ∈ CG(U2) ∩CG(U1). Hence U1 ? U2 ⊆ CG(a) and, since
G is G-definably connected, by Claim 3.9 and Fact 1.14, CG(a) = G. As G is
centerless, a = e. Thus H1 ∩H2 = {e}, H1 ? H2 is the direct product of H1 and
H2, and dim(H1 ? H2) = dim(H1) + dim(H2).

Since dim(H1 ?H2) ≤ n, dim(H1) ≥ |s1|, dim(H2) ≥ |s2|, and |s1|+ |s2| = n, we
obtain dim(H1) = |s1|, dim(H2) = |s2| and dim(H1 ? H2) = n. Hence H1 ? H2 has
finite index in G, and therefore G = H1 ? H2.

3.2. Proof of Theorem 3.2. Assume G is G-definably connected, centerless and
unidimensional.

Since it is sufficient to prove the theorem for an ω1-saturated elementary exten-
sion of M, we will assume M is ω1-saturated.

By Claim 1.26(2), we can assume B = In, where I is an open transitive interval,
and e = 〈d, . . . , d〉 for some d ∈ I.

We will prove Theorem 3.2 by first showing that there is a real closed field R
definable on a subinterval of I, and then, using the adjoint mapping, we will embed
G into GL(n,R).

3.2.1. Finding a field. Since d is a nontrivial element, by the Trichotomy Theorem
[10], exactly one of the following two cases holds:

Case 1: There is a definable real closed field on a subinterval of I containing d.
Case 2: The structure that M induces on some open convex neighborhood of
d is an ordered vector space over an ordered division ring.

Let V be an ordered vector space over an ordered division ring D. By Proposi-
tions 3.9, 3.10 in [5], if f : V → V is a function definable in V with f(0) = 0, then
there is λ ∈ D such that f(x) = λ(x) for all x > 0 close enough to 0.

Thus, in case 2, if f is a definable continuous function from I into Mn with
f(d) = 〈d, . . . , d〉, then there is a function α definable over {d} such that f(x) =
α(x) for all x > d close enough to d.

Hence, by the Compactness Theorem, to rule out Case 2 it is sufficient to find
a definable function F (x, y) and an infinite set C (not necessarily definable), such
that the following three conditions hold:

(a) F (x, c) is a continuous function from I into Mn for every c ∈ C;
(b) F (d, c) = 〈d, . . . , d〉 for every c ∈ C;
(c) If c1 6= c2 ∈ C, then F (x, c1) 6= F (x, c2) for all x > d close enough to d.

Let I+ = {b ∈ I|b > d} and for b ∈ I+ we will denote the interval (d, b) by Ib.
Notice that, by o-minimality, the condition (c) above is equivalent to
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(c’) If c1 6= c2 ∈ C, then for any b ∈ I+ there is x ∈ Ib such that F (x, c1) 6=
F (x, c2).

Let ρ : I → B be the continuous injection defined as ρ(x) = 〈x, d, . . . , d〉. For
b ∈ I+ let Îb denote the set ρ(Ib), and let Hb be the centralizer of Îb in G. It is
easy to see that if b1 < b2, then Hb2 ⊆ Hb1 .

Let H =
⋃
b∈I+ Hb.

Claim 3.10. There is p ∈ I+ such that H = Hp.

Proof. Since Hb ⊆ H for every b ∈ I+, it is sufficient to find p ∈ I+ such that
H ⊆ Hp.

Obviously, CG(H) =
⋂
b∈I+ CG(Hb). Hence, by Fact 1.13, there is p ∈ I+

such that CG(H) = CG(Hp). Since Îp ⊆ CG(Hp), we have Îp ⊆ CG(H) and
H ⊆ CG(Îp) = Hp.

Remark 3.11. The above proof actually shows that if a group G satisfies the DCC
condition on G-definable subgroups, then G satisfies the ACC condition on central-
izers.

By Claim 3.10, H is G-definable.
Since G is centerless and definably connected, dim(H) < dim(G). (Otherwise

H would be equal to G, and Îp would be in the center of G.) Hence In cannot be
covered by finitely many left cosets of H , and we can find infinite set C ⊆ In such
that c1 ? H 6= c2 ? H for c1 6= c2 ∈ C.

It is easy to check that C and the function F (x, y) = y ? ρ(x) ? y−1 satisfy the
conditions (a), (b), (c’) above.

Thus case 2 is impossible, and there must be a real closed field R definable on a
subinterval of I containing d.

3.2.2. Embedding G into GL(n,R). Decreasing the interval I, if needed, we assume
that a real closed field R is definable on I.

If c = 〈V, ϕ, n〉 is a definable chart on G with ϕ(V ) ⊆ In, and f(x1, . . . , xk) is a
function from an open D ⊆ V k into V , then we say that f is a C1-function relative
to c if ϕ(f(ϕ−1(x1), . . . , ϕ−1(xk))) is a C1-function (in the sense of R) from ϕ(D)
into ϕ(V ).

Claim 3.12. There is a definable chart c = 〈V, ϕ, n〉 on G at e and an open set
V0 ⊆ V containing e such that ϕ(V ) ⊆ In and, relative to c, group multiplication
and inversion are C1-functions from V 0 × V 0 and V 0, respectively, into V .

Proof. By the implicit function theorem, it is sufficient to prove only that there is
a chart c, as in the statement of the claim, such that the group multiplication is
C1.

For a ∈ In let ϕa(x) = a ? x. Since the group operations are continuous, for
every a ∈ In, there is an open set Da ⊆ In containing e such that ϕa(Da) ⊆ In,
and therefore 〈Da, ϕa, n〉 is a definable chart on G at e with ϕa(Da) ⊆ In.

Thus it suffices to show that there is a ∈ In and an open set U ⊆ In containing
a such that the function (x, y) 7→ x ? a−1 ? y is C1 on U × U .

Let b, c be independent generic elements in In such that c ? b ∈ In. Let a = c ? b,
h(x, y) = x ? a−1 ? y, f1(x) = x ? b−1, f2(x) = c−1 ? x, and F (x, y) = x ? y. Then
h(x, y) = F (f1(x), f2(y)) and, by the Chain Rule, it is sufficient to show that there
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is an open set U1 containing c, an open set U2 containing b, and an open set U
containing a, such that F is C1 on U1 × U2, and f1, f2 are C1 on U .

Since c, b are independent generic elements in In, (c, b) is a generic element in
In × In, and, by Fact 1.1, we can find such U1, U2.

Since f1 is definable over b and a is generic over b, there is open U1 containing a
such that f1 is C1 on U1. By the same reason, there is open U2 containing a such
that f2 is C1 on U2. We can take U = U1 ∩ U2.

Let V and ϕ be as in Claim 3.12. Identifying V with ϕ(V ) we can assume ϕ = id.

Claim 3.13. If h is a definable endomorphism of G, then there is open D ⊆ V
containing e such that h(D) ⊆ V and h is C1 on D.

Proof. By Lemma 1.11, there is open U containing e such that h(U) ⊆ V .
By Fact 1.1, h is C1 on some open U0 ⊆ U . Take any a ∈ U0, and let D =

a−1 ? U0. Since the group operations are C1 on V , using the Chain Rule, it is easy
to show that h is C1 on D.

By the previous claim, if h is a definable automorphism of G, then the differential
of h at e (in the sense of R) exists.

Claim 3.14. Let f1, f2 be two definable automorphisms of G such that the differ-
ential of f1 at e is equal to the differential f2 at e. Then the definable subgroup
H = {g ∈ G | f1(g) = f2(g)} has finite index in G.

Proof. By the same arguments as in the proof of Lemma 3.2 (ii) in [7], H contains
an open neighborhood of e, so it has finite index in G.

Now we can finish the proof of Theorem 3.2.
For each g ∈ G consider the inner automorphism

Intg : x 7→ g ? x ? g−1.

Let Ad (g) be the differential of Intg at e. Then Ad is a definable homomorphism
from G into GL(n,R), and, since G is G-definably connected and centerless, by
Claim 3.14, it is one-to-one.

4. The main result

Let G be an infinite group definable in an o-minimal structure M. The main
result of this paper is:

Theorem 4.1. Assume G is G-definably connected and has no nontrivial abelian
normal subgroup. G is the direct product of G-definable subgroups H1, . . . , Hk such
that for every i ∈ {1, . . . , k} there is a definable real closed field Ri and a definable
isomorphism between Hi and a semialgebraic subgroup of GL(ni,Ri). Every Hi

is Hi-definably simple and its M-definably connected component H0
i is definably

simple.

Remark 4.2. Although it is true that every Hi above is M-definably connected,
the only way to show it, that we know, is through careful analysis of such groups
that will appear in [9]. It will require, in particular, the next corollary that follows
from Theorems 4.1 and 2.36.

Corollary 4.3. Let G be a G-definably simple group definable in an o-minimal
expansion of a real closed field. Then the Lie algebra of G is simple.
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The following corollary can be viewed as an o-minimal analogue of Cherlin’s
conjecture.

Corollary 4.4. Let G be a G-definably simple group definable in o-minimal struc-
tureM. Then there is a real closed field R definable in M such that G is definably
isomorphic to a semialgebraic linear group over R.

Proof of Theorem 4.1. By Theorems 3.1 and 3.2, G is the direct product of G-
definable subgroups G1, . . . , Gm such that for every i ∈ {1, . . . ,m} there is a
definable real closed field Ri and a definable isomorphism fi between Gi and a
subgroup of GL(ni,Ri). Since every Gi is G-definable, it is easy to see that every
Gi is Gi-definably connected and has no nontrivial abelian normal subgroup.

Let G′i = fi(Gi). Then G′i is definable in an o-minimal expansion of a real closed
field Ri, and, since G′i is isomorphic to Gi, G′i is G′i-definably simple and has no
abelian nontrivial normal subgroup. Obviously, it is sufficient to prove the theorem
for each G′i. Thus we will assume thatM is an o-minimal expansion of a real closed
field R.

Let G0 be the definably connected component of G.

Claim 4.5. G0 has no nontrivial abelian normal subgroup and therefore is semisim-
ple.

Proof. Suppose A is an abelian normal subgroup of G0. Let K = CG(A) and let H
be the center of K. Obviously, A < H and, by Corollary 1.16, both K and H are
G-definable. Consider NG(H) = {g ∈ G | Hg = H}. Since A is a normal subgroup
of G0, NG(H) contains G0 and, as G is G-definably connected, NG(H) = G. Hence
H is a normal abelian subgroup of G, so H = {e} and A = {e}.

By the previous claim and Theorem 2.37, G is definably isomorphic to a linear
semialgebraic group over R. Thus, without loss of generality, we can assume that
G is linear and semialgebraic.

The following claim and an easy induction on dim(G) finish the proof of the
theorem.

Claim 4.6. If G0 is not definably simple, then G is the direct product of nontrivial
G-definable subgroups.

Proof. Assume G0 is not definably simple. By Theorem 2.38, G0 is the direct
product of definable nontrivial subgroups K1 and K2. Let G1 = CG(K2) and
G2 = CG(K1). It is easy to see that bothG1 andG2 areG-definable, they commute,
K1 < G1 and K2 < G2.

The subgroup G1 ?G2 is G-definable and contains G0, so it is equal to G. Since
G is centerless, G1 ∩G2 = {e} and G is the direct product of G1 and G2.
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