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Abstract

Let M � kM; <; . . . l be a linearly ordered structure. We de®ne M to be o-minimal if every de®nable
subset of M is a ®nite union of intervals. Classical examples are ordered divisible abelian groups and real
closed ®elds. We prove a trichotomy theorem for the structure that an arbitrary o-minimal M can induce on
a neighbourhood of any a in M. Roughly said, one of the following holds:

(i) a is trivial (technical term), or

(ii) a has a convex neighbourhood on which M induces the structure of an ordered vector space, or

(iii) a is contained in an open interval on which M induces the structure of an expansion of a real closed
®eld.

The proof uses `geometric calculus' which allows one to recover a differentiable structure by purely
geometric methods.

1. Introduction

Let R be a real closed ®eld. Then R can be linearly ordered as a ®eld; the semi-
algebraic sets are the subsets of Rn, with n > 1, which can be written as ®nite
boolean combinations of solution sets to polynomial inequalities over R. Tarski
showed that the only de®nable sets in R � kR; <;�; ´ ; 0; 1l are the semi-algebraic
sets, which amounts to showing that the collection of semi-algebraic sets is closed
under projections. It follows that in the structure R the only de®nable subsets of
R are ®nite unions of intervals whose endpoints lie in R È f61g. A linearly
ordered structure for which the latter property holds is called order-minimal, or
o-minimal.

Our basic object of investigation here is an arbitrary linearly ordered o-minimal
structure M � kM; <; . . . l. Three basic examples are:

(i) kD; <l, where < is either a discrete or a dense linear ordering;

(ii) kV ; <;�; d ld2D, an ordered vector space over an ordered division ring (the
scalars of the division ring D are considered as functions in one variable,
by, say, left multiplication);

(iii) kR; <;�; ´l, with R a real closed ®eld, and more generally, expansions of
R to richer structures which are still o-minimal, such as kR; <;�; ´ ; ex l
(see [22]).

As we show here, the above three types exhaust in some sense all examples of
o-minimal structures. Because of the special nature of ordered structures, we can
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analyse the structures only locally. Given a point a in an o-minimal structure M,
we characterize the structure that M induces on some neighbourhood of a as one
of the above three types. (We always refer to the order topology on M and the
product topology on M n.)

For the next three theorems we take M to be an o-minimal structure. A point
a 2M is non-trivial if there are an in®nite open interval I containing a and a
de®nable continuous function F: I ´ I ! M such that F is strictly monotone in
each variable. A point which is not non-trivial is called trivial. As is shown in
[10], if every point in M is trivial then the de®nable sets in M are just boolean
combinations of binary relations. If kG; <;,l is an ordered group de®nable on
some (in®nite) interval in M then every point in G is non-trivial, as is witnessed
by the group operation. Our ®rst theorem states roughly that every non-trivial
point arises in this fashion.

A set G Í M is convex if for every a < b 2 G, the interval �a; b� is contained in
G. A group kG; �l is called a convex ^-de®nable group if G Í M is convex and
the graph of � is obtained by the intersection of a de®nable set with G3.

Theorem 1.1. Let M be q1-saturated. If a is non-trivial in M then there is a
convex ^-de®nable in®nite group G Í M such that a 2 G and G is a divisible
ordered abelian group.

It follows from the theorem above that given a non-trivial a 2M, there is a
closed interval I containing a on which a group-interval is de®nable (see § 2 for a
de®nition). This latter property holds without any saturation assumption on M. In
order to analyse the structure around non-trivial points it is thus left to investigate
the possible expansions of group-intervals.

Given an A-de®nable set D Í M n, we let MjD denote the ®rst order structure
whose universe is D and whose 0-de®nable sets are those of the form Dk Ç U for
U Í M nk A-de®nable in M. (As Lemma 2.3 shows, if I is a closed interval then
every M-de®nable subset of I k is de®nable in MjI.)

Theorem 1.2. Assume that kI; <;�; 0l is a 0-de®nable group-interval in an
q1-saturated M. Then one and only one of the following holds:

(1) there are an ordered vector space V � kV ; <;�; c; d�x�ld2D; c2C (with C a
set of constants) over an ordered division ring D, an interval �ÿp; p� in V,
and an order-preserving isomorphism of group-intervals j: I ! �ÿp; p�,
such that j�S� is 0-de®nable in V for every 0-de®nable S Í I n (abusing
language we say that MjI is a reduct of Vj�ÿp; p�);

(2) a real closed ®eld R is de®nable in MjI, with the underlying set a
sub-interval of I and the ordering compatible with <.

As is shown in [9], the reduct of Vj�ÿp; p� which is mentioned in Case (1) of
the theorem arises as follows. If F Í �ÿp; p� ´ �ÿp; p� is the intersection of the
graph of d�x� with �ÿp; p�2 then F might not have a de®nable counterpart in MjI.
Instead, there could be a subinterval J Í �ÿp; p� such that the graph of d�x�jJ
has such a de®nable counterpart in MjI. However, there are no other
restrictions for the identi®cation of Vj�ÿp; p� and MjI. Moreover, the division
ring D is determined in M and does not change when we move to an
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elementarily equivalent structure. Hence, by taking a suf®ciently small convex
neighbourhood J Í I of a non-trivial point, the structure that M induces on J is
that of an ordered vector space over D (identi®ed with an `in®nitesimal'
neighbourhood of 0 in V).

Theorem 1.2 can also be formulated without the saturation assumption but the
statement (1) becomes more complicated and we omit it here. The two theorems
together give a local trichotomy for the possible structure of de®nable sets around
any point in M.

Trichotomy Theorem. Let M be an q1-saturated structure. Given a 2M,
one and only one of the following holds:

(T1) a is trivial;

(T2) the structure that M induces on some convex neighbourhood of a is an
ordered vector space over an ordered division ring;

(T3) the structure that M induces on some open interval around a is an o-
minimal expansion of a real closed ®eld.

We should note that there is more than one possibility for the local structure
around trivial points, where the term trivial could be misleading. For example, if I
is a group-interval in a structure M then its endpoints might be trivial although at
least on one side of each point there is a `non-trivial' structure. However, if a is
generic in M (see below), then the term trivial seems appropriate, since there is
then an open interval I around a where all points are trivial and the result from
[10] mentioned earlier can be applied to the structure induced on I.

1.1. The Zil'ber Principle for geometric structures
We assume here that M is an q1-saturated structure which is not necessarily o-

minimal. Given A Í M, we note that a 2M is in the (model-theoretic) algebraic
closure of A, or a 2 acl�A� , if a lies in a ®nite A-de®nable set. The following
de®nition is taken from [6].

De®nition 1.3. The structure M is a geometric structure if

(i) acl�ÿ� satis®es the Exchange Principle: if a; b 2M, A Í M and
b 2 acl�A; a� then either b 2 acl�A� or a 2 acl�A; b�;

(ii) for any formula J�x; Åy� there exists n 2N such that for any Åb in M r, either
J�x; Åb� has fewer than n solutions in M or it has in®nitely many.

Example 1.4. If M is an algebraically closed ®eld, or a real closed ®eld, or a
pseudo-®nite ®eld, or the ®eld of p-adics, then the model-theoretic algebraic
closure is the same as the ®eld-theoretic one, and hence it satis®es the Exchange
Principle. All those ®elds satisfy the second condition as well; hence they are
geometric structures. Real closed rings are geometric structures as well.

If M is strongly minimal (every de®nable subset of M is ®nite or co-®nite) or
o-minimal then M is a geometric structure (see [19] for the latter). Every reduct
of a geometric structure is itself a geometric structure.

We assume now that M is a geometric structure. For Åa 2M n , A Í M,
dim�Åa=A� is the minimal cardinality of Åa 0 Í Åa such that acl�Åa 0 È A� � acl�Åa È A�
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(in the ®eld examples this is just the transcendence degree of Åa over the ®eld
generated by A). The dimension of an A-de®nable set U Í M n is de®ned to be
maxfdim�Åa=A�: Åa 2 Ug (in the ®eld examples this is the same as the algebro-
geometric dimension of the Zariski closure of U ); Åa 2 U is generic in U over A if
dim�Åa=A� � dim�U �.

For our purposes, a curve is any de®nable 1-dimensional subset of M 2. A
family of curves F is said to be de®nable if there are de®nable U Í M k and
F Í U ´ M 2 such that F � ffkx; yl: k Åu; x; yl 2 Fg: Åu 2 Ug. For Åu 2 U let
CÅu � fkx; yl: k Åu; x; yl 2 Fg. We say that CÅu is generic in F if Åu is generic in U
over the parameters de®ning F. The family F is said to be interpretable if U is
replaced by U =E, where E is a de®nable equivalence relation on U.

De®nition 1.5. A de®nable (or interpretable) family of curves F �
fCÅu: Åu 2 Ug is normal of dimension n if dim�U � � n (or dim�U =E � � n) and
for Åu 6� Åv from U (or U =E ), CÅu and CÅv intersect in at most ®nitely many points.

Given a geometric structureM, one and only one of the following properties holds:

(Z1) for every interpretable in®nite normal family of curves F, if C is a
generic curve in F and ka; bl is generic in C, then either
dim�CÇ �fag ´ M �� � 1 or dim�CÇ �M ´ fbg�� � 1 (in particular, every
normal F is of dimension at most 1);

(Z2) every interpretable normal family of curves is of dimension at most 1, but
(Z1) does not hold;

(Z3) there is an interpretable normal family of curves of dimension greater
than 1.

B. Zil'ber (see [23]) suggested a correspondence between the above trichotomy
and the interpretability of certain algebraic structures in M. We formulate this
correspondence as follows.

De®nition 1.6. A class K of geometric structures is said to satisfy the
Zil'ber Principle, (ZP), if the structures in K which satisfy (Z1) are those with
no interpretable groups, the structures in K which satisfy (Z2) are those whose
de®nable sets arise from an interpretable vector space (or more generally a
module), and the structures in K which satisfy (Z3) are those in which a ®eld
can be interpreted.

Some of these connections are easy to establish. If (Z1) holds then no group is
interpretable in M, for otherwise, after ®xing some parameters, we can obtain
elements a, b, c in M which are pairwise independent but such that a 2 aclfb; cg. We
can now ®nd a de®nable family of curves F with a generic curve C in F de®ned
over c and ka; bl generic in C over c. Then F illustrates the failure of (Z1).

If a ®eld F is interpretable in M then the family fy � ax� b: a; b 2 Fg helps
illustrate (Z3). By quanti®er elimination, if M is a module, then (Z2) holds in M.
Various formulations of the converse were established for certain classes of
structures (see [5] for stable structures, and [9] for o-minimal structures).

Using this terminology, we note that Zil'ber's original conjecture was that (ZP)
holds for the class S of strongly minimal structures. Hrushovski (see [4]) disproved
the conjecture by constructing a structure in S satisfying (Z3), without a ®eld or

484 ya'acov peterzil and sergei starchenko



even a group interpretable in it. A subclass of S, called the class of Zariski
structures, was later shown by Hrushovski and Zil'ber to satisfy (ZP) (see [7]).

Let M be an o-minimal structure, and a 2M be non-trivial. We say that a is of
type (Z2) if there is an open interval I containing a such that MjI satis®es (Z2);
otherwise a is of type (Z3). We state the following without proof:

(1) M satis®es (Z1) if and only if every point in M is trivial;

(2) M satis®es (Z2) if and only if the set of non-trivial points is non-empty, all
of type (Z2);

(3) M satis®es (Z3) if and only if there is a point in M of type (Z3).

The Trichotomy Theorem together with the last comments are easily seen to
establish the Zil'ber Principle for the class of o-minimal structures, with one
restriction. In the case that M satis®es (Z2) we can only say that locally, around
each non-trivial point, the de®nable sets arise from an ordered vector space
structure. No such global result can be obtained unless there is a de®nable
interaction between different parts of M.

However, as a result of the proof we obtain a sharper, local result.

Theorem 1.7. Let M be an o-minimal structure, and let a 2M be non-trivial.
Then

(1) a is of type (Z2) if and only if it satis®es (T2) from the Trichotomy
Theorem;

(2) a is of type (Z3) if and only if it satis®es (T3).

Remarks. (1) Zil'ber also conjectured that a ®eld F, interpretable in a
strongly minimal structure M, must be pure, namely that every de®nable set in
MjF is already de®nable in the ®eld structure alone. This was disproved by
Hrushovski in [3] but later was shown to be true for Zariski geometries (see [7]).
Since we now know of proper o-minimal expansions of real closed ®elds, clearly
de®nable ®elds in o-minimal structures need not be pure.

Question. Is there a class of o-minimal structures, characterized `geometrically',
in which every de®nable real closed ®eld is pure?

(2) In [16] and [9] the main dividing line was the CF property. We chose to
replace it here with the more general characterizations of (Z1), (Z2), (Z3). It may
be shown that an o-minimal structure has the CF property if and only if it is of
type (Z1) or (Z2). Hence, Theorem 1.7 implies Zil'ber's conjecture for o-minimal
structures as formulated in [15].

The structure of the paper
Section 2 provides some basic preliminaries for model theory and o-minimal

structures. It also includes basic notation for the possible ways curves may
intersect each other. In § 3 we introduce some general machinery, called q-
relations, for constructing groups in o-minimal structures. In § 4 we discuss some
good properties of de®nable families of functions and how to modify a given
family of functions to a well behaved one. In § 5 we show how to use germs of
functions and their composition to obtain q-relations and hence to prove Theorem
1.1. In § 6 we repeat a similar argument for addition of germs of functions. In § 7
we use the two constructions to de®ne a ®eld and prove Theorem 1.2. Section 8
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gives some examples regarding the possible global structure, while in § 9 we give
some applications of the main theorems, including an example of an o-minimal
structure without proper o-minimal expansions.

The proofs of Theorems 1.1 and 1.2 use a ®ne analysis of how curves may
intersect in o-minimal structures. The ideas are inspired by the differentiable
structure of an ordered ®eld and some basic calculus theorems. In the
Appendix, `Geometric Calculus', we demonstrate the strength of this approach
and show how one can formulate and prove basic calculus theorems on purely
geometric grounds.

For a preliminary announcement describing the main ideas of this paper,
see [17].

The ®rst author began the joint work on this paper during his visit to the
Mathematical Institute in Oxford, under an SERC grant. He thanks A. Macintyre
and A. Wilkie for their invitation. The second author did the work during his visit
to the Department of Mathematics in the University of Illinois at Chicago. He
thanks J. Baldwin and D. Marker for their support.

The authors thank A. Pillay for very useful discussions at various stages of
work on the paper.

2. Preliminaries

Notation. We use M, N to denote structures and M, N for their underlying
sets. We use a; b; c; . . . to denote elements of the underlying set of a structure, say
M, and Åa; Åb; Åc; . . . to denote elements in some cartesian product, say M r. We
mostly use F, G to denote families of functions and take f ; g to denote functions
in these families.

2.1. Model-theoretic preliminaries

De®nition 2.1. A structure M � kM; fS 2Dgl is a set M together with a
family D of subsets of M, M 2; . . . ; closed under intersections, complements,
cartesian products and projections and containing the diagonals. The sets in D are
called the 0-de®nable sets in M. For Åa 2 Ar , A Í M, and S a 0-de®nable subset of
M r�s, the set

S�Åa; M s� � fÅb 2M s: k Åa; Åbl 2 Sg
is called A-de®nable. A subset of M s is de®nable in M if it is A-de®nable for
some A Í M. A ( partial) function from M n into M said to be A-de®nable if
its graph is. A family F of subsets of M n is de®nable if there is a de®nable
subset D of M n�k such that the sets in F are exactly the ®bres of D over
parameters in M k.

In Model Theory, one associates with every 0-de®nable S Í M n an n-ary
relation symbol ÃS and thinks of S as the set of solutions to ÃS in M. The closure
properties guarantee that to every basic logical operation on ÃS, with S 2D, there
corresponds a 0-de®nable set of solutions in D. That is, we assume that M has a
relational language and quanti®er elimination. Abusing notation, we still use
function symbols such as � instead of a relational symbol for its graph. We say
that a group (a ®eld) is de®nable in M if its universe and operation(s) are
de®nable in M. For other notions from model theory see [1].
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2.2. O-minimality
The main general references for basic o-minimal properties, including the ones

below, are [2, 19, 8]. On the notion of dimension and generic points see [18].
A structure M � kM; <; . . . l is order-minimal (o-minimal for short) if < is a

linear ordering of M and every de®nable subset of M is a ®nite union of intervals
whose endpoints are in M È f61g. Then M; M 2; . . . are equipped with the
product topology induced by < . We use the term `interval' to denote convex sets
in M whose end points lie in M È f61g.

It is easy to see that for M o-minimal, M � C È D È A where C, D, A are
0-de®nable and pairwise disjoint, C and D are open, A is ®nite, C is densely
ordered by < , and D is discretely ordered by < . As is shown in [21], there is no
interaction between the dense and discrete parts. Hence it is suf®cient to analyse
the structures that M induces on C and D separately. In [20], a complete analysis
of the discretely ordered part is given and the authors show that the de®nable sets
all arise just from translates in one variable. It follows that every point in D is
trivial. We are then left with the analysis of the densely ordered part.

For the rest of the paper we assume that M is an o-minimal structure and < is
a dense linear order on M, with or without endpoints.

For a 2M , B Í M, a is in the de®nable closure of B, a 2 dcl�B�, if the set fag
is B-de®nable. Since M is linearly ordered, algebraic closure equals de®nable
closure. We de®ne dimensions of tuples and de®nable sets as in § 1.1.

The dimension formula
We use the following dimension formula:

dim�ÅaÅb=A� � dim�Åa=AÅb� � dim�Åb=A�:

Generic points
If U Í M n is an A-de®nable set, Åu 2 U and dim�Åu=A� � dim�U �, then Åu is

called generic in U over A. If M is q-saturated then every de®nable set contains
a generic point over its de®ning parameters.

Dimension of de®nable sets, as de®ned above, can be evaluated only in
suf®ciently saturated structures. However, given a de®nable set in any o-
minimal structure, we can go to an elementary extension which is suf®ciently
saturated and evaluate the dimension there (this can be seen to be independent of
the particular extension). As (2) of the following theorem shows, the dimension of
de®nable sets also has a topological characterization and therefore can be
evaluated in any model.

Theorem 2.2. (1) Let f : I ! M be a de®nable function on an interval I.
Then I can be partitioned into ®nitely many open intervals and points such that f
is continuous and monotone on each interval.

(2) Let U Í M n be an A-de®nable set, Åu generic in U over A. Then
dim�U � � k if and only if there are an open rectangular neighbourhood V Í M n

of Åu and a projection map p onto k of the coordinates which gives a
homeomorphism between U Ç V and an open subset of M k. In particular, if Åu is
generic in M n over A and Åu 2 U Í M n for some A-de®nable set U, then Åu is in
the interior of U.
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It follows from the theorem that dimension of sets is a de®nable notion.
Namely, for U Í M r� s an A-de®nable set and k 2N, the set

fÅa 2M r: dim�U�Åa; M s�� � kg
is A-de®nable.

The induced structure on a subset
Since the main results of this paper are about the structure that M induces on a

neighbourhood of a point, we want to clarify this notion.
For the purpose of the following theorem only, we assume that the reader is

familiar with the de®nition of a cell and the cell-decomposition theorem.

Lemma 2.3. Let I Í M be a closed interval. Then for every de®nable S Í I n, S
is de®nable over I.

Proof. First note that by going to an elementary extension we may assume
that M is q-saturated. By the cell decomposition theorem we may assume that S
is a cell. Since I is closed, the boundary of S lies in I n. By induction, it is
suf®cient to handle the case where

S � fk Åa; bl 2M k�1: b � f �Åa� & Åa 2 Cg;
where C Í I k is a de®nable cell and f : C ! M is a de®nable continuous function.
By induction, C is de®nable over I .

If f is de®nable over Åw , we let Åw � ÅuÅv, where Åu 2 I r for some r, Åv �
v1; . . . ; vm and vi 62 I for i � 1; . . . ; m. We may assume that f is not de®nable
over any sub-tuple of Åw. We use induction on m.

Consider the type q�Åx; y�, de®ned as fk Åx; yl 2 I k�1g together with the formulas

f f �Åx� � ygÈ fg�Åx� 6� y: g: I k ! M is a partial function

definable over Åuv1 . . . vmÿ1g :
If q is inconsistent then by compactness there are ®nitely many de®nable functions

g1; . . . ; gr, each de®nable over Åuv1 . . . vmÿ1 , such that, for every k Åa; bl 2 I k�1, if
f �Åa� � b then gi�Åa� � b for some i. By the induction assumption on k, we may
assume that the domains of the gi are pairwise disjoint and that the graph of each
gi is de®nable over I; hence so is the graph of f .

We assume now that q is consistent and let k Åa; bl realize it. Then,
b 2 dcl�Åa; Åu; Åv� but b 62 dcl�Åa; Åu; v1; . . . ; vmÿ1�. By the exchange principle, vm 2
dcl�Åa; b; Åu; v1; . . . ; vmÿ1�. Hence f is de®nable over the set fÅa; b; Åu; v1; . . . ; vmÿ1g
and Åa, b, Åu in I. We can now ®nish by induction on m.

It follows from the lemma that for a closed interval I the M-de®nable subsets
of I n are de®nable in MjI. Hence `the structure that M induces on I ' is an
unambiguous notion. (The above lemma also follows from Lemma 1.2 in [13]
and, moreover, it then holds when I is replaced by any 0-de®nable subset of M ).

De®nition 2.4. An element a 2M is non-trivial over A Í M if there exists
an open interval I containing a and an A-de®nable function F: I ´ I ! M such
that F is continuous and strictly monotone in both coordinates. We say that a is
non-trivial if it is non-trivial over some A Í M.
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Lemma 2.5. Let M be q-saturated. If a is non-trivial then for every open
interval J containing a, a is non-trivial over J.

Proof. By assumption, there is a map F: J ´ J ! M which is continuous and
strictly monotone in both variables. We may assume that F�a; a� � a for if not,
we can compose F on the left with the inverse function of F�a; x�. Hence there
are closed intervals J1; J2 Í J such that a 2 Int�J1� and f : J1 ´ J1 ! J2. We can
now apply the last lemma and conclude that f jJ1 ´ J1 is de®nable over J .

Non-orthogonality

De®nition 2.6. We say that a; b 2M are non-orthogonal to each other if
there is an order-preserving or order-reversing de®nable continuous map which
sends an open neighbourhood of a onto an open neighbourhood of b.

The following technical lemma will be used in several places in the paper.

Lemma 2.7. Assume that a is non-trivial. Then there is an open interval I
around a such that every two points in I are non-orthogonal to each other.
Moreover, the map which shows the non-orthogonality can be taken to be either
order-preserving or order-reversing, uniformly for every two points in I.

Proof. Assume that F: I ´ I ! M is a de®nable, continuous map which is
strictly monotone in both variables, a 2 Int�I �. By the continuity of F, F�a0; y� is
either strictly increasing in y for all a 0 2 I, or strictly decreasing in y for all
a 0 2 I. A similar result holds for F�x; a0�.

Given kb; cl 2 I ´ I, let d � F�b; c�. The curve fkx; yl 2 I ´ I: F�x; y� � dg is
the graph of a continuous map gb; c from a neighbourhood of b onto a
neighbourhood of c. Then gb; c is either order-preserving or order-reversing.

If it is order-reversing, then F is either strictly increasing in both variables or strictly
decreasing. In both cases the map gc; c gives an order-reversing continuous bijection
between two neighbourhoods of c. The map gc; c±gb; c gives an order-preserving
map between neighbourhoods of b and c.

We deal similarly with the case that gb; c is order-preserving.

^-de®nable groups and rings. Group-intervals
If I Í M is not a de®nable set (for example, if it is a convex ^-de®nable

ordered group) then we will not consider the structure which M induces on I as a
standard ®rst ordered structure. However, there is still a natural notion of a
de®nable subset of I n.

De®nition 2.8. Assume that I is a subset of M. We say that S Í I n is
de®nable in MjI if S � I n Ç D for D an M-de®nable set. A map h: I n ! I k is
de®nable in MjI if the graph of h is de®nable in MjI.

As mentioned in [16, p. 99] we have the following lemma.

Lemma 2.9. If G is a convex ^-de®nable ordered group then the only subgroups
of G de®nable in MjG are G and f0g. Furthermore, G is divisible and abelian.

For p > 0 in a convex ^-de®nable ordered group G, the structure k �ÿp; p�; <;�; 0l
(where � here denotes the partial function on �ÿp; p� ´ �ÿp; p�) is called a group-
interval. As was shown in [9, 6.3], group-intervals in o-minimal structures
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eliminate quanti®ers in the proper language and all are elementarily equivalent to
each other. Clearly, every convex ^-de®nable group contains a group-interval.

A convex ^-de®nable ordered ring is a convex ^-de®nable ordered group
kR; <;�l together with a map ·: R2 ! R which is de®nable in MjR and makes R
into an ordered ring. Note that by [19] every o-minimal ordered ring is a real
closed ®eld, but since a ^-de®nable ordered ring is not necessarily o-minimal as
an independent structure, it might not even contain an identity.

Lemma 2.10. (1) If G is a convex ^-de®nable ordered group then the group
operation is continuous on G.

(2) If R is a convex ^-de®nable ordered ring then the ring operations are
continuous on R.

Proof. (1) It is easy to verify that if P�x; y� is a function which is strictly
monotone and continuous in each variable then P is continuous. Clearly, � is
monotone in each variable. It is continuous in each variable because it is
surjective and monotone in each variable and hence takes intervals to intervals.

(2) By (1), we only need to check that the functions la�x� � ax and ra�x� � xa
are continuous for each a 2 R. But by Theorem 2.2, there is a point x0 2 R at
which la is continuous. It follows that la�x� � la�x� x0� ÿ ax0 is continuous at
x � 0, and similarly la is continuous at any point in R. Similarly, ra is continuous.

Preorders
For a point p 2M we will say that a property P holds for x 2 � p�, or for

x 2 � p��, or for x 2 � p�ÿ , if there exist a < p < b so that P holds for all x 2 �a; b�,
or for all x 2 � p; b�, or for all x 2 �a; p�, respectively.

De®nition 2.11. A binary relation R on a set S is called a preorder relation
(or just a preorder) on S if R is transitive, re¯exive and total on I.

Let R be a preorder on an open convex set I. We say that R is positive, or
negative, on I, if for all v; u 2 I, v < u implies R�v; u�, or R�u; v� , respectively.
The following lemma is used extensively throughout this work.

Lemma 2.12. Let R�x; y� be an A-de®nable preorder on an open convex set
I Í M, and a 2 I be generic in M over A. Then there is an open interval I0 Í I
containing a such that R is positive or negative on I0.

Proof. Since R is a preorder, by o-minimality, R�a; b� holds for b 2 �a�� , or
R�b; a� holds for b 2 �a�� . We assume that R�a; b� holds for b 2 �a�� and show
that there is an interval I0 Í I containing a such that R�x; y� is positive on I0.

Since R�a; b� holds for b 2 �a�� , we can ®nd a1 > a in I such that R�a; b�
holds for all b 2 �a; a1�. Decreasing a1, if needed, we can assume that a1 is
generic over aA and therefore a is generic over a1A. Thus there is an open
interval I 0 Í I, containing a, such that R�c; b� holds for all c 2 I 0 and all
b 2 �c; a1�. It is easy to see that R is positive on the interval I0 � fx 2 I 0: x < a1g.
Intersection of curves

De®nition 2.13. Let f �x�, g�x� be de®nable functions, and let p 2 dom� f �Ç
dom�g�. We will use the following notation:
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f 4�p g if f � p� � g� p� and f �x�< g�x� for x 2 � p��;

f 4ÿp g if f � p� � g� p� and f �x�< g�x� for x 2 � p�ÿ;

f <�p g if g4�p f ;

f <ÿp g if g4ÿp f ;

f <p g if f <�p g and f 4ÿp g;

f 4p g if g<p f .

We also use:

f a�p g if f 4�p g and f �x� 6� g�x� for x 2 � p��;

f aÿp g if f 4ÿp g and f �x� 6� g�x� for x 2 � p�ÿ;

We de®ne f s�p g, f sÿp g, f sp g and f ap g similarly.

Notice that by o-minimality, if f � p� � g� p� then f a�p g or f s�p g or
f �x� � g�x� for x 2 � p�� . Similarly, f aÿp g or f sÿp g or f �x� � g�x� for x 2 � p�ÿ .

We say that a function f �x� touches from above, or touches from below, a
function g�x� at a point p 2 dom� f �Ç dom�g� if f � p� � g� p� and f �x�> g�x�, or
f �x�< g�x�, respectively, for x 2 � p�.

We say that f touches g at p if it touches from above or below (see Fig. 1).

Notice that if f is strictly increasing, or strictly decreasing, on a neighbourhood
of q and h� p� � g� p� � q then g ap h if and only if fg�x�ap f h�x�, or
fg�x�sp fh�x�, respectively.

3. Q-relations and groups

The main objective of this paper is, given a non-trivial point a in M, to de®ne a
one-dimensional group (or a ®eld) containing a. In the context of stable structures
this problem is often reduced to a certain combinatorial con®guration of geometric
dependencies which is called the group (or ®eld) con®guration. Our goal in this
section is to reduce the problem of de®ning one-dimensional ordered groups in
o-minimal structures to that of de®ning 4-ary relations with certain properties,
which we call quotient relations, or q-relations. Roughly said, if R is a q-relation
and a; b; c; d 2M then in the ordered group which we are going to de®ne, written
multiplicatively, we have ka; blRkc; d l whenever abÿ1 < cdÿ1 (but not necessarily
the converse).

De®nition 3.1. Let R be a 4-ary de®nable relation, and A be a non-empty
open convex subset of M. We say that R is a quotient-relation, or a q-relation, on
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A if the following properties hold (we will write ka; blRkc; d l instead of
R�a; b; c; d �):

(q1) R is a preorder on A2, that is,

(a) ka1; b1lRka2; b2l and ka2; b2lRka3; b3l implies ka1; b1lRka3; b3l,
(b) ka; blRka; bl for all a; b 2A,

(c) for all a; b; c; d 2A, ka; blRkc; d l or kc; d lRka; bl;
(q2) for all b; a; a1 2A, ka; blRka1; bl if and only if a < a1;

(q3) ka1; b1lRka2; b2l if and only if kb2; a2lRkb1; a1l;
(q4) if ka; blRkc; d l and kb; a1lRkd; c1l then ka; a1lRkc; c1l;
(q5) for all a; a1; a2; b 2A with a1 < a2 there are b1; b2 2A so that

ka1; alRkb; b1lRka2; al and ka1; alRkb2; blRka2; al:

Axiom (q5) is different from the others in its logical form. It is usually the hardest
to verify and guarantees that R is `non-degenerate', as the next example shows.

Example 3.2. Let kA; <l be a dense linear ordering. We let R be the 4-ary
transitive relation de®ned by the following conditions:

(i) if a < b, c1 � d1, c2 � d2 and e > f then ka; blRkc1; d1lRkc2; d2lRke; f l;
(ii) if ai < bi for i � 1; 2 or if ai > bi for i � 1; 2 then ka1; b1lRka2; b2l if and

only if we have a1 < a2 or we have a1 � a2 and b1 > b2.

The relation R is just a modi®ed version of the lexicographic ordering on A2. It
is easily seen to satisfy (q1)±(q4) but not (q5). Since R is de®nable in kA; <l and
this structure is trivial, no group can be de®nably recovered in kA; <; Rl.

We now consider two examples of q-relations and discuss the associated
1-dimensional order groups.

Example 3.3. Let G be an ordered group. The quotient relation R, de®ned as
ka; blRkc; d l if and only if abÿ1 < cdÿ1, is a q-relation on G. In order to recover
a group in the structure kG; <; Rl we need to consider ®rst the equivalence relation

ka; bl , kc; d l , ka; blRkc; d l and kc; d lRka; bl:

We can then easily de®ne a group on G2 =,.
In practice, such an R could arise, for example, as follows. We are given the

family of real-valued functions fa�x� � ax, for a 2 R� . We then de®ne R by the
condition ka; blRkc; d l if and only if fa f ÿ1

b 4�0 fc f ÿ1
d . It is easy to see that we

obtain precisely R as above with G being the multiplicative group of the positive
real numbers.

Example 3.4. Consider the real functions fa�x� � x2 � ax, for a 2 R� . It is
easy to check that the relation R de®ned as ka; blRkc; d l if and only if
fa f ÿ1

b 4�0 fc f ÿ1
d is a q-relation on the set of the positive elements of R. Thus R

has the property that if a=b < c=d then ka; blRkc; d l, but the converse does not
hold.

Consider the structure kR�; <; Rl. The difference from the previous example is
that in this case, if we de®ne , as above, then ka; bl , kc; d l if and only if a � b
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and c � d, or a � c and b � d. Thus , is de®nable in the structure kR�; <l, and
therefore no group can be de®ned from ,. To get a group, one needs to de®ne
®rst an equivalence relation E such that ka; blEkc; d l if and only if fa f ÿ1

b �x� and
fc f ÿ1

d �x� have the same derivatives at 0; and then, using properties of derivatives,
one has no dif®culty de®ning a group on �R��2=E. Now E is clearly de®nable
if the ®eld structure is present (since derivatives are de®nable) but it is also
de®nable in kR�; <; Rl alone, by

ka; blEkc; d l , kc1; d lRka; blRkc1; d l for all c1 < c < c1:

As we show in this section, every q-relation on a convex set A has an
associated equivalence relation E de®ned as above and a natural group structure
on A2=E. In the subsequent sections, the q-relations will arise in a fashion
similar to Example 3.4 and E will mimic the de®nition of tangency between two
functions at a point.

We ®x an open convex set A Í M and a 0-de®nable relation R Í M 4 such that
R is a q-relation on A.

Lemma 3.5. For a; b; b1 2A,

(1) ka; alRkb; bl,
(2) ka; blRka; b1l if and only if b1 < b.

Proof. Part (1) follows from (q1)(c) and (q3). Part (2) follows from (q2) and (q3).

De®nition 3.6. For a; b; c; d 2A, let

ka; blEkc; d l , kc1; d lRka; blRkc1; d l for all c1 < c < c1:

Now E is de®nable in MjA, for if we let

ka; blE 0kc; d l , kc1; d lRka; blRkc1; d l for c1 2 �c�ÿ and c1 2 �c��;
then E 0 is de®nable and by properties (q1), (q2), E � E 0 ÇA4.

Lemma 3.7. Let a; b; c; d 2A be such that ka; blEkc; d l.
(1) If c 0 2A and kc 0; d lRka; bl then c 0 < c.

(2) If c 0 2A and ka; blRkc 0; d l then c < c 0.

Proof. (1) Suppose that this is not true, and c 0 > c. Take c < c 00 < c 0. Since
ka; blEkc; d l, we have ka; blRkc 00; d l; by (q1)(a), kc 0; d lRkc 00; d l, and, by (q2),
c 0 < c 00. We have a contradiction.

(2) This proof follows the same idea as in (1).

Lemma 3.8. Let a; b; c; d 2A. The following hold:

(1) ka; blEkc; d l if and only if c � inffc0 2A: ka; blRkc0; d lg;
(2) ka; blEkc; d l if and only if c � supfc0 2A: kc0; d lRka; blg.

Proof. This is easy.
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Lemma 3.9. The relation E is an equivalence relation on A2.

Proof. Re¯exivity. This follows from (q1)(b).
Symmetry. Assume that ka; blEkc; d l, for a; b; c; d 2A. Let a1 < a < a1 2A.

We need to show that

ka1; blRkc; d lRka1; bl:
By (q5), there are c1; c1 2A such that

ka1; blRkc1; d lRka; blRkc1; d lRka1; bl:
By Lemma 3.7, c1 < c < c1 and thus ka1; blRkc; d lRka1; bl, by (q2).

Transitivity. Let a; b; c; d; e; f 2A be such that ka; blEkc; d lEke; f l. We will
prove that ka; blEke; f l.

Let e0 < e < e00 2A. We need to show that ke0; f lRka; blRke00; f l. Choose
e1; e1 2A such that

e0 < e1 < e < e1 < e00:

Since kc; d lEke; f l, we have ke1; f lRkc; d lRke1; f l. By (q5), there are a1; a1 2A,
such that

ke0; f lRka1; blRke1; f l and ke1; f lRka1; blRke00; f l:
Thus we have

ke0; f lRka1; blRkc; d lRka1; blRke00; f l:
Since we have proved already that E is symmetric, kc; d lEka; bl; hence, by
Lemma 3.7, a1 < a < a1; and thus ke0; f lRka; blRke00; f l.

Notation. For a; b 2A, we let a=b denote the E-class of ka; bl.

Lemma 3.10. (1) We have a=a � b=b for all a; b 2A.

(2) Let a; b; c; d 2A. Then a=b � c=d if and only if b=a � d=c.

(3) For all a; b; c 2A there are unique d; e 2A such that a=b � d=c and
a=b � c=e.

Proof. (1) This follows from Lemma 3.5 and (q2).
(2) Obviously it suf®ces to prove the `only if' part. Suppose that a=b � c=d

and d1 < d < d 1. We will show that kd1; c lRkb; alRkd 1; cl. By (q3), it is equivalent to

kc; d 1lRka; blRkc; d1 l:

Choose d2; d 2 2A such that

d1 < d2 < d < d 2 < d 1:

By (q5), there are c1; c2 so that

kd1; clRkd; c1 lRkd2; cl and kd 2; clRkd; c1 lRkd 1; cl: �1�
Since d2 < d < d 2, by (q2), (q3) and Lemma 3.5, c1 < c < c1; so kc1; d lRka; blRkc1; d l,
and, by equation (1) and (q3),

kc; d 1 lRka; blRkc; d1 l:
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(3) Uniqueness follows from Lemma 3.8. By (2), we need to show only the
existence of d.

Since A is open, we can choose a1; a1 2A such that a1 < a < a1. By (q5),
there are d1; d 1 2A such that

ka1; blRkd1; c lRka; blRkd 1; c lRka1; bl:

Since R is de®nable and M is o-minimal, there exists d � inffd 0 2 �d1; d 1�:
ka; blRkd 0clg. It is easy to see that d 2A and ka; blEkd; c l.

Lemma 3.11. Let a; b; c; d; e; f be in A.

(1) If a=b � c=d and b=e � d= f then a=e � c= f .

(2) If a=b � c=d, a=b 6� e= f and ka; blRke; f l then kc; d lRke; f l.
(3) If kc; d lRka; bl and ka; blRkc; d l then a=b � c=d.

Proof. (1) Let c1 < c < c1 2A. We need to show that kc1; f lRka; elRkc1; f l.
Choose c2; c3; c2; c3 2A so that

c1 < c2 < c3 < c < c3 < c2 < c1:

By (q5), there are d1; d 1 2A such that

kc2; d lRkc1; d1 lRkc3; d l and kc3; d lRkc1; d 1 lRkc2; d l:

By Lemma 3.5, d1 < d < d 1. Since ka; blEkc; d l,

kc3; d lRka; blRkc3; d l
and therefore

kc1; d1 lRka; blRkc1; d 1 l: �2�
Since kb; elEkd; f l and d1 < d < d 1,

kd1; f lRkb; elRkd 1; f l: �3�
By equations (2) and (3) and (q4),

kc1; f lRka; elRkc1; f l:
(2) Since a=b 6� e= f , by Lemma 3.8 there is a1 > a such that ka1; blRke; f l.

But kc; d lEka; bl and hence kc; d lRka1; blRke; f l.
(3) For c1 < c < c1 ,

kc1; d lRkc; d lRka; blRkc; d lRkc1; d l:
Hence ka; blEkc; d l.

For a; b; c 2A we de®ne a=b , b=c � a=c. By Lemma 3.11(1), , is well
de®ned and, by Lemma 3.10(3), it is a binary operation on A2=E. For a=b 6� e= f
we de®ne a=b < e= f if and only if ka; blRke; f l. By Lemma 3.11 and (q1), this
is a well de®ned linear ordering on A2=E.

Lemma 3.12. The structure kA2=E; <;,l is an ordered group, with the class
a=a as the identity element.

Proof. Obviously , is associative; by Lemma 3.10(1), the diagonal
fka; al: a 2Ag is an E-class and acts as an identity element; b=a is the inverse
of a=b. By (q4), the group is ordered by <.
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Since E is de®nable in MjA, < and , are both the traces of M-de®nable sets
on A2=E. If we now pick e 2A then, by Lemma 3.10(3), the map f �x� � x=e
gives an order-preserving bijection between kA; <l and kA2=E; <l and f �x� is
de®nable in MjA. Using this map, we see that , induces a convex ^-de®nable
ordered group structure on A, with e as the unit element. Namely,

a , b � c , a=e , b=e � c=e:

By Lemma 2.9, the group must be divisible and abelian. Thus we have proved the
following theorem.

Theorem 3.13. Let R Í M 4 be B-de®nable, and A Í M be a convex open set
such that R is a q-relation on A. Then, for every e 2A, there is a Be-de®nable
function ,e such that kA; <; ,e l is a convex ^-de®nable ordered group whose
identity element is e. The group is divisible and abelian.

As we remarked earlier, in our setting, for a convex set A and a relation
R ÍA4, properties (q1)±(q4) are going to be fairly easy to verify. Most work will
go towards proving (q5). As we are going to show below, in order to deduce (q5)
for such a relation R it is suf®cient to verify the following properties: for all
a; b; c; d 2A,

(R1) if c > d then kb; alRkc; d l for b 2 �a�� ,

(R2) if c < d then kc; d lRkb; al for b 2 �a�ÿ ,

(R3) if c < d then kc; d lRkd; al for b 2 �a�ÿ ,

(R4) if c > d then kd; alRkc; bl for b 2 �a�� .

De®nition 3.14. If a 2M and B Í M then the M-cut of a over B is the set

fm 2M: b1 < m < b2 for all b1; b2 2 B with b1 < a < b2g:

De®nition 3.15. An element a is said to be dcl-internal in a set C if for any
®nite C0 Í C there exist c1; c2 2 C such that c1 < a < c2, dim�c1c2 =C0a� � 2 and
�c1; c2�Ç dcl�C0a� � fag.

De®nition 3.16. Given a ®nite set B Í M, we call an open convex set
A Í M good over B if there exist a� 2A and an in®nite set C Í M containing B
such that

(i) dim�a�=B� � 1,

(ii) a� is dcl-internal in C,

(iii) A is the M-cut of a� over C .

Example 3.17. Let NaM, a� 2 N, and A be the M-cut of a� over N . If
N is q-saturated then a� is dcl-internal in N, and if, in addition, M is jNj�-
saturated then A is good over any ®nite set B Í N such that dim�a�=B� � 1.
However, if M is not jNj�-saturated then A might not be open.

Lemma 3.18. For M an q1-saturated structure, B Í M ®nite and a� generic
over B in some open interval I Í M, there exists A Í I containing a� which is
good over B.
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Proof. We obtain C by applying successively the saturation of M, at each step
getting cn < a� < cn such that, for all c; c0 2 dcl�c1; . . . ; cnÿ1; c1; . . . ; cnÿ1; B; a�� for
which c < a� < c0, we have c < cn < a� < cn < c0. Now A is the M-cut of a� over C .

Theorem 3.19. Let A Í M be an open interval and B Í M be ®nite. Assume
that R Í A4 is a B-de®nable relation satisfying, on A, (q1)±(q4) and (R1)±(R4). If
A Í A is a good convex set over B then R is a q-relation on A.

Proof. The proof is accomplished in a series of lemmas. We assume that C
and a� are as in the de®nition of a good convex set.

Lemma 3.20. Given J�x; y� a formula over B, if J�a1; a2� holds for some
a1 < a2, with a1; a2 2A, then J�a; b� holds for all a < b with a; b 2A.

Proof. Assume ®rst that J�a; a�� holds for some a < a�, with a 2A. Then,
since J�x; a�� is a formula over C and a� is dcl-internal, there exists c1 < a�, with
c1 2 C, such that J�a; a�� holds for all a 2 �c1; a��. By the assumption on C we
may choose c1 generic over Ba� , and hence a� generic over Bc1 . It follows (again,
by the assumption on C ) that for all b 2A, if a 2 �c1; b� then J�a; b� holds.
Hence for all a < b, with a; b 2A, J�a; b� holds.

Now, if :J�a; a�� holds for all a < a� in A, we can apply the above argument
to :J, and hence, for all a < b with a; b 2A, :J�a; b� holds, which contradicts
our assumption that J�a1; a2� holds for some a1 < a2 from A.

Lemma 3.21. For all a; a1; b 2A there are b1; b1 2A such that

kb1; blRka; a1 lRkb1; bl:

Proof. Since A is an open M-cut over C , it suf®ces to show that

kc1; blRka; a1lRkc1; bl

for all c1; c1 2 C Ç A with c1 < a� < c1.
Suppose that this is not so, and, for instance, ka; a1lRkc1; bl for some

c1 2 C Ç A with c1 < a�. Since a� is dcl-internal, we may increase c1, if needed,
and assume that a� is generic over Bc1 . Let c2 be any element in C Ç �c1; a��
such that a� is generic over Bc1c2 . Since c2 < a� and c2 2 C, we have c2 < b, and
therefore ka; a1lRkc1; c2l. Notice that A is still a good convex set over Bc1c2 and
a1 is generic over C .

Since c2 > c1, it follows from the above equation and (R2) that a < a1, and thus,
by Lemma 3.20,

ka2; a1lRkc1; c2l for a2 2 �a1�ÿ:
But, by (R2), kc1; c2lRka0; a1l for a0 2 �a1�ÿ and, by (q1)(c),

ka2; a1lRka0; a1l for a2; a0 2 �a1�ÿ;
which contradicts (q2).

Lemma 3.22. For all b; a; a1; a2 2A with a1 < a2 there exists d 2A such that

ka1; alRkd; blRka2; al:
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Proof. By Lemma 3.21, there exist d1; d2 2A such that kd1; blRka1; alRkd2; bl.
Let

d 0 � supfd 2 �d1; d2�: kd; blRka1; alg:
Since R is a de®nable relation, such a d 0 exists.

Case 1: kd 0; blRka1; al. Since d 0 2A and d 0 is generic over B, we can apply
(R1) and obtain d > d 0 2A such that kd; d 0 lRka2; a1l. By (q4),

kd; blRka2; al
and, since d > d 0, by the choice of d 0,

ka1; alRkd; bl:
Case 2: ka1; alRkd 0; bl. We want to show that kd 0; blRka2; al. If not, then

ka2; alRkd 0; bl: �4�
By (R2), we can ®nd d < d 0 2A such that

ka1; a2lRkd; d 0 l:
Combining the above equation with (4), we obtain

ka1; alRkd; bl;

which contradicts the choice of d 0.

Lemma 3.23. For all b; a; a1; a2 2A with a1 < a2 there exists d 2A such that

ka1; alRkb; d lRka2; al:

Proof. By (R3), there is an a0 < a in A such that

ka1; a 0lRka2; al:

Since a 0 < a, we have

ka1; alRka1; a 0 lRka2; al:

By Lemma 3.22, we can ®nd d 2A, such that

ka0; a1 lRkd; blRka; a1l:

Therefore, ka1; alRkb; d lRka1; a0 l, and hence

ka1; alRkb; d lRka2; al:

By Lemma 3.22 and 3.23, R satis®es (q5) and hence it is a q-relation on A.
This completes the proof of Theorem 3.19.

4. Nice families of functions

Unless otherwise stated we assume for the rest of this paper that M is an q1-
saturated structure (in practice, most arguments will use only the existence of
generic points).

De®nition 4.1. If F � f fÅu�x�: Åu 2 Ug is a de®nable family of (partial)
functions from M into M, we say that F is normal of dimension n if the family
of graphs of the functions is normal of dimension n.
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For kx; y l 2M 2 , we let

Uxy � fÅu 2 U: fÅu�x� � yg:

Our goal in this section is to replace a given normal family of functions of
dimension greater than 1 with a well-behaved one, in order eventually to use it to
de®ne a q-relation.

Lemma 4.2. Let G � fG�Åu; x�: Åu 2 Ug, be an A-de®nable normal family of
functions on I of dimension n.

(i) Assume n > 0. For Åu 2 U and a 2 I, if dim�Åu=A� > 0, dim�a=AÅu� � 1 and
G�Åu; a� � b, then dim�ab=A� � 2.

(ii) Assume n > 1. For k Åu; a1; a2l generic in U ´ I 2 over A, if bi � G�Åu; ai�, for
i � 1; 2; then dim�b1b2 =Aa1a2� � 2.

Proof. (i) If b 2 dcl�aA� then there exist a neighbourhood I1 of a and an A-
de®nable function i�x� which equals G�Åu; x� for all x 2 I1. Since dim�Åu=A� > 0,
there are in®nitely many functions from G which agree with i�x� on I1,
contradicting the normality of G.

(ii) By the dimension formula and the fact that dim�Åua1 =A�> 3, we may
conclude that dim�Åu=Aa1b1� > 0. We also have

dim�a2 =Aa1b1 Åu� � dim�a2 =Aa1 Åu� � 1;

and so, applying (i) with Aa1b1 playing the role of A, we have dim�a2b2 =Aa1b1� � 2.

Theorem 4.3. For U Í M n a de®nable set and I an interval, let
G � fgÅu�x�: Åu 2 Ug be a de®nable normal family of functions on I of dimension
n > 1. Then there exist an open interval J Í I and an open set V Í I 2, together
with a de®nable continuous family of functions on J, F � f fÅu: Åu 2 V g, such that

(i) every function fÅu 2F is strictly increasing;

(ii) for every kx; yl 2M 2, either Vxy is empty or the projection map
p1: V ! M is a homeomorphism between Vxy and an open interval in M;

(iii) for every Åu1 6� Åu2 , both in V, there is at most one x in J such that
fÅu1
�x� � fÅu2

�x�, in which case p1�Åu1� < p1�Åu2� if and only if fÅu1
ax fÅu2

.

De®nition 4.4. A de®nable continuous family of functions which satis®es (i),
(ii) and (iii) of the theorem is called a p-nice family on J. A family F is called
n-nice if it satis®es (i), (ii) and

(iii)0 for every Åu1 6� Åu2, both in V , there is at most one x in J such that
fÅu1
�x� � fÅu2

�x�, in which case p1�Åu1� < p1�Åu2� if and only if fÅu1
sx fÅu2

.

A family F is called nice if it is either p-nice or n-nice.

Proof. By taking a de®nable subset of U ´ I and projecting onto M 2 ´ I, if
needed, we may assume that U is an open subset of M 2 and that G�y1; y2; x� �
gy1; y2

�x� is continuous and strictly monotone in all three variables. Using the same
type of manipulations as in the proof of Lemma 2.7, we may assume that
G�y1; y2; x� is strictly increasing in all its variables on an open set V ´ J Í U ´ I.
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Moreover, for every ky1; y2; al 2 V ´ J there are de®nable bijections between
neighbourhoods of y1, y2 and a; therefore we may assume that V Í J 2.

We use Åu for ky1; y2l. Take k Åu0; el generic in V ´ J and let b � G�Åu0; e�.
It is easy to see that dim�Veb� � 1. Since G is strictly increasing in all its

arguments, both projections p1;p2: Veb ! M are one-to-one, and therefore there
is an open subset V1 Í V containing Åu0 so that p1 and p2 are homeomorphisms
from V1 Ç Veb onto open subintervals of M. We may assume that V � V1. Using
genericity of Åu0 and e we can cut down V and J so that for all Åu 2 V and x 2 J, if
y � G�Åu; x�, then dim�Vxy� � 1. Moreover, by Theorem 2.2, we may assume that
both projections are homeomorphisms between Vxy and open subintervals of M.
Notice that since G is strictly increasing in all arguments, the composition p2p

ÿ1
1

is an order-reversing homeomorphism.
Consider now the relation a�e on Veb. By o-minimality, there is an open V 0

containing Åu0, de®nable over generic parameters, such that either

�"Åu 2 V 0 Ç Veb��p1�Åu� < p1�Åu0� ! G�Åu; x�a�e G�Åu0; x��
or

�"Åu 2 V 0 Ç Veb��p1�Åu� < p1�Åu0� ! G�Åu; x�s�e G�Åu0; x��:
Interchanging y1, y2 in G�y1; y2; x� and replacing V by V ÿ1, if needed, we can
assume that the ®rst holds. Since k Åu0; el is generic in V 0 ´ J, it has a
neighbourhood V1 ´ J1 Í V ´ J such that for every �Åv; e0� 2 V1 ´ J1 we have

�"Åu 2 V1��G�Åu; e0� � G�Åv; e0� & p1�Åu� < p1�Åv� ! G�Åu; x�a�e 0 G�Åv; x��: �5�
We may replace V by V1 and use V again to denote the set. By repeating the
above argument we may also assume that for every k Åu; e 0 l 2 V ´ J, we have either

�"Åv 2 V ��G�Åv; x� � G�Åu; x� & p1�Åv� < p1�Åu� ! G�Åv; x�aÿe 0 G�Åv; x�� �6�
or

�"Åv 2 V ��G�Åv; x� � G�Åu; x� & p1�Åv� < p1�Åu� ! G�Åv; x�sÿe 0 G�Åv; x��: �7�
We choose a1 < a2 in J, dim�a1a2 = Åu0� � 2 and let bi � G�Åu0; ai� for i � 1; 2.

By Lemma 4.2, dim�b1b2 =a1a2� � 2 and therefore there are open intervals J1, J2,
containing b1 and b2 respectively, so that for all c1 2 J1 and c2 2 J2 there exists a
Åv 2 V such that G�Åv; a1� � c1 and G�Åv; a2� � c2. Thus there are c1 < b1, c2 > b2

and Åv 2 V such that G�Åv; ai� � ci. Since G�Åv; a1� < G�Åu0; a1�, G�Åv; a2� > G�Åu0; a2�
and a1 < a2, there is e0 2 �a1; a2� such that

G�Åv; x�se 0 G�Åu0; x�:
By (5), p1�Åv� > p1�Åu0�, and since G�Åv; x�aÿe 0 G�Åu0; x�, (6) does not hold.

It is not hard to see that the family fG�Åv; x�: v 2 V g is a p-nice family on J.

5. Getting a q-relation: the compositional case

The goal of this section is to show how a nice family of functions can be used
to de®ne a q-relation on a convex subset of M. First we prove a general lemma
regarding composition of functions, a lemma that will be used later as well.
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5.1. The main lemma
We ®x some notation:

(a) F � f fÅu: Åu 2 Ug and G � fgÅv: Åv 2 V g are nice families of functions on
open intervals I and J, respectively, all de®nable over the empty set;

(b) k i�; j�; k� l is generic in I ´ J ´ M and Ui �j � , Vj �k� are in®nite (and hence 1-cells);

(c) A � p�U � and C � p�V �, where p is the projection map on the ®rst coordinate.

By genericity, changing I and J if needed, we may assume that there is an open
interval K containing k� such that for every k i; j; k l 2 I ´ J ´ K and ka; c l 2 A ´ C
there are (unique) Åu 2 U, Åv 2 V such that fÅu�i� � j, gÅv� j� � k and p�Åu� � a,
p�Åv� � c. Shrinking I, J, A, C, if needed, we can assume that I, J, K, A and C
are de®nable over a ®nite set S such that dim�i�j�k�=S� � 3; for simplicity we
assume that S � 0= .

For k i; j; al 2 I ´ J ´ A, we denote by f �i; j; a��x� the (unique) function fÅu 2F
such that j � fÅu�i� and p�u� � a.

For k j; k; cl 2 J ´ K ´ C , we denote by g� j; k; c��x� the (unique) function gÅv 2 G
such that k � gÅv� j� and p�Åv� � c.

Remark 5.1. It follows immediately from the properties of a nice family that
if f �i1; j1; a1��i� � f �i2; j2; a2��i� � j for some i 2 I then

(1) f �i1; j1; a1� � f �i2; j2; a2� (as functions) if and only if a1 � a2, which is true
if and only if f �i1; j1; a1� � f �i; j; a1� � f �i2; j2; a2� (as functions),

(2) if F is p-nice then f �i1; j1; a1�ai f �i2; j2; a2� if and only if a1 < a2. If F is
n-nice then f �i1; j1; a1�si f �i2; j2; a2� if and only if a1 < a2.

A similar result holds for G.
Because of the p-nice case in (2) we sometimes think of f �i; j; a��x� as the F-

curve through k i; jl with slope a. This intuitive concept is made clearer in § 10.

To save notation we use fa�x� to denote f �i�; j�; a��x� and gc�x� to denote
g� j�; k�; c��x�.

Our eventual plan is to de®ne a q-relation R by:

ka; blRkc; d l , fa f ÿ1
b 4�j � fc f ÿ1

d :

The following lemma is the main technical tool towards establishing the (crucial)
property (q5). For later purposes we prove it in the more general context of
arbitrary F and G.

Lemma 5.2. For every c; d 2 C and a 2 A,

(1) if gc aj � gd and k i�; j�; k�l is generic over a, then there exists b 2 A, with
fb si � fa, such that gc fb ai � gd fa,

(2) if gc aj � gd and k i�; j�; k� l is generic over a, then there exists b 2 A, with
fb ai � fa, such that gc fa ai � gd fb.

Proof. To simplify notation we assume that both F and G are p-nice (the
other cases can be reduced to this case by re-parametrizing F and G). Hence
a < b if and only if fa ai � fb, and d < c if and only if gd aj � gc. Since the proofs
of (1) and (2) are the same, we prove (1) only.
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Suppose that (1) fails. Hence, for some c < d in C and a 2 A,

gc fb <�i � gd fa for all b > a: �8�
By monotonicity, if we replace d in (8) by any d 0 < d, then (8) still holds. Hence,
we may assume that dim�i�j�k�=ad � � 3 and the functional inequality is strict.

Since d > c and (8) holds if we replace c by any c 0 > c, there is an open
interval C 0, with d 2 C 0 Í C, such that

�"kc0; b0 l 2 C 0 ´ A��b0 > a! g� j�; k�; c0� f �i�; j�; b0�s�i � g� j�; k�; d � f �i�; j�; a��:
�9�

We will assume from now on that a; d 2 acl�0=�.
The statement in (9) can be written as a ®rst-order statement J�i�; j�; k��, where

J�x; y; z� is over the parameters used to de®ne C 0. We may choose C 0 to be de®nable
over parameters which are generic over Åw � k i�; j�; k� l; hence Åw is a generic tuple
over those parameters. Therefore, there is an open set W containing Åw such that for
every Åw1 2W, J� Åw1� holds. Without loss of generality, we may assume that
W � I 0 ´ J 0 ´ K 0, an open rectangular box containing k i�; j�; k� l. Hence

for every kc0; b0 l in C 0 ´ A and every k i 0; j 0; k0 l 2 I 0 ´ J 0 ´ K 0,

if b0 > a then g� j 0; k0; c0� f �i 0; j 0; b0�s�i 0 g� j 0; k0; d � f �i 0; j 0; a�. �10�
In the remainder of this section we show that (10) yields a contradiction.

For every k i; k l 2 I 0 ´ K 0 we de®ne a binary relation Rik�x; y� on J 0 as follows:

Rik� j1; j2� , g� j1; k; d � f �i; j1; a��x�4�i g� j2; k; d � f �i; j2; a��x�:
Clearly, for each k i; k l, Rik is a preorder on J 0 de®nable by a ®rst-order formula

using i, k as parameters. Since j� is generic over fi�; k�g, by Lemma 2.12, there
is an open interval J 00 containing j� such that Ri �k � is positive or negative on J 00.
The two cases can be handled in a similar way, so we may assume that Ri �k � is
positive on J 00, and hence, without loss of generality, on J 0.

Since J 0 is de®nable with parameters generic over fi�; k�g, k i�; k� l is generic
over those parameters, and therefore there is an open rectangular box I 00 ´ K 00

such that Rik is positive on J 0 for all k i; k l 2 I 00 ´ K 00.
Without loss of generality, assume that I 00 � I 0 and K 00 � K 0. Thus

g� j1; k; d � f �i; j1; a��x�<�i g� j2; k; d � f �i; j2; a��x�
for all j1 > j2 in J 0 and k i; k l 2 I 0 ´ K 0. �11�

To simplify notation we denote by H�x� the function g� j�; k�; d � f �i�; j�; a��x�.
Using the continuity of F and G, we can ®nd open intervals I0 Í I 0 and A0 Í A

containing i� and a, respectively, so that H�I0� Í K 0 and f �i�; j�; a0��I0� Í J 0 for
all a0 2 A0.

Lemma 5.3. There exist j0 2 J 0, k0 2 K 0, i1 2 I0, a1 2 A0, and d1 2 C 0 such that
k0 > k�, a1 > a,

g� j0; k0; d1� f �i�; j�; a1��i1� � H�i1�
and

g� j0; k0; d1� f �i�; j�; a1��x�a�i1 H�x�:
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Proof. Fix i0 > i� in I0. Let j0 � f �i�; j�; a��i0� and k0 � H�i0�. By Remark
5.1, g� j�; k�; d ��x� � g� j0; k0; d ��x�; hence H�x� � g� j0; k0; d � f �i�; j�; a��x�. Take

d1 2 C 0 with d1 < d. By the properties of F,

g� j0; k0; d1� f �i�; j�; a��i0� � k0 � H�i0�
and

g� j0; k0; d1� f �i�; j�; a��x�ai0
H�x�:

We can therefore ®nd x1, x2 in I0, with i� < x1 < i0 < x2, such that

g� j0; k0; d1� f �i�; j�; a��x1� > H�x1�
and

g� j0; k0; d1� f �i�; j�; a��x2� < H�x2�:
By the continuity of F and G there is an a1 > a in A0 such that

g� j0; k0; d1� f �i�; j�; a1��x1� > H�x1�
and

g� j0; k0; d1� f �i�; j�; a1��x2� < H�x2�:
Again, by the continuity of F and G (and by o-minimality), we can ®nd i1,

with x1 < i1 < x2 (hence i1 2 I0 and i1 > i�), such that

g� j0; k0; d1� f �i�; j�; a1��i1� � H�i1�;
and moreover, if we take the maximum of all such i1 then we also have

g� j0; k0; d1� f �i�; j�; a1��x�a�i1 H�x�;
which completes the proof of Lemma 5.3.

Let k i1; d1; a1; j0; k0 l be as in Lemma 5.3 and de®ne

j1 � f �i�; j�; a1��i1�; j2 � f �i�; j�; a��i1�; k1 � g� j�; k�; d �� j2�:
Since i1 > i� and a1 > a, we must have j1 > j2. Also, since

H�i1� � k1 � g� j0; k0; d1� f �i�; j�; a1��i1�;
we have k1 � g� j0; k0; d1�� j1�.

By Remark 5.1,

f �i�; j�; a1��x� � f �i1; j1; a1��x�; g� j0; k0; d1��x� � g� j1; k1; d1��x�
and

H�x� � g� j2; k1; d � f �i1; j2; a�:
Therefore

g� j1; k1; d1� f �i1; j1; a1�a�i1 g� j2; k1; d � f �i1; j2; a�: �12�
Since a1 2 A0 and i1 2 I0, we have j1; j2 2 J 0 and k1 2 K 0. By (10), as a1 > a,

g� j1; k1; d � f �i1; j1; a�a�i1 g� j1; k1; d1� f �i1; j1; a1�:
Therefore, by (12) and the above equation,

g� j1; k1; d � f �i1; j1; a�a�i1
g� j2; k1; d � f �i1; j2; a�;

which contradicts (11), since j1 > j2. This completes the proof of Lemma 5.2.
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5.2. Getting a q-relation
We now assume that:

(a) F � f fÅu: Åu 2 Ug is a p-nice family of functions on an open interval I 0

and both F and I 0 are de®nable over the empty set;

(b) i� 2 I 0 is a generic point;

(c) Åu� 2 U is generic over i�;
(d) j� � fÅu � �i��;
(e) a� � p�Åu��, the projection of a on the ®rst coordinate.

Lemma 5.4. We have dim�i�j�a�� � 3.

Proof. By the dimension formula, dim�Åu�= i�j�� � 1. Since p: Ui �j � ! M is
one-to-one, dim�a�= i�j�� � 1, and hence dim�i�j�a�� � 3.

As in § 5.1, there are open intervals I, J and A containing i�, j� and a�,
respectively, such that for all i 2 I, j 2 J and a 2 A there is a unique Åu 2 U such
that j � fÅu�i� and a � p�Åu�. We may assume that I, J and A are de®nable over the
empty set and that dom� fÅu� � I for all Åu 2 U.

For k i; j; al 2 I ´ J ´ A, we still use f �i; j; a��x� for the unique function fÅu 2F
such that j � fÅu�i� and p�Åu� � a. We use fa�x� for f �i�; j�; a��x�.

Lemma 5.5. For every a; c; d 2 A with a generic over fi�; j�g,
(1) if c > d then there exists b > a in A such that fb f ÿ1

a 4�j � fc f ÿ1
d ,

(2) if c < d then there exists b < a in A such that fb f ÿ1
a <�j � fc f ÿ1

d ,

(3) if c < d then there exists b < a in A such that f ÿ1
b fa 4�i � f ÿ1

c fd,

(4) if c > d then there exists b > a in A such that f ÿ1
b fa <�i � f ÿ1

c fd.

Proof. Since the proofs of all cases are almost identical, we will discuss only
(1). All we do is change the setting slightly so we can use Lemma 5.2.

Suppose that (1) fails, and hence there are c > d and a generic over fi�; j�g
such that

fb f ÿ1
a s�j � fc f ÿ1

d for all b > a: �13�
Decreasing c and increasing d if needed, we may assume that dim�i�j�acd � � 5;

hence dim�i�j�=acd � � 2. Let R�x; y� be the following de®nable relation on I:

R�k; i� , f �k; j�; b� f �k; j�; a�ÿ1�x�<�j � f �i; j�; b� f �i; j�; a�ÿ1�x� for b 2 �a��:
Then R is de®nable over j� , a and it is easy to verify that R is a preorder on I.
Since i� is generic over j� , by Lemma 2.12, there is an open interval containing
i� such that R is positive or negative on it. In either case we can ®nd k� 2 I
generic over fi�; j�g such that R�k�; i�� holds, that is,

f �k�; j�; b� f �k�; j�; a�ÿ1 <�j � f �i�; j�; b� f �i�; j�; a�ÿ1 for b 2 �a��:
Combining the above equation with (13) we obtain

f �k�; j�; b� f �k�; j�; a�ÿ1�x�s�j � fc f ÿ1
d �x� for b 2 �a��: �14�
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After rearranging terms in (14), we have

f �i�; j�; c�ÿ1f �k�; j�; b��x�s�k� f �i�; j�; d �ÿ1f �k�; j�; a��x� for b 2 �a��: �15�
Consider now the family G �Fÿ1 � f f ÿ1: f 2Fg. Then G is a nice family

of functions and, without loss of generality, we may assume that the domain of all
functions in G is J. Notice that f �i�; j�; c�ÿ1�x�aj � f �i�; j�; d �ÿ1�x�; hence we can
apply Lemma 5.2 to G, F and the triple kk�; j�; i� l. Therefore, there exists b > a
such that

f �i�; j�; c�ÿ1f �k�; j�; b��x�a�k� f �i�; j�; d �ÿ1f �k�; j�; a��x�:
But then the last equation holds for b 2 �a�� , which contradicts (15).

We de®ne the binary relation R± on A4 as

ka; blR±kc; d l , fa f ÿ1
b 4�j � fc f ÿ1

d :

It is easy to check that R± satis®es (q1)±(q4) from the de®nition of a q-relation.
By Lemma 5.5, R± satis®es properties (R1)±(R4) for a; b; c; d 2 A with a generic
over fi�; j�g. Therefore, by cutting down A, if needed, we may assume that these
hold for all a; b; c; d 2 A. Putting together Lemma 3.18 and Theorem 3.19, we see
that R± is a q-relation on some convex set.

We can thus formulate a general theorem.

Theorem 5.6. Let F � f fÅu: Åu 2 Ug be a de®nable nice family of functions on
an interval I, and let a� be generic in p1�U �. Then the binary relation R±,
de®ned above, is a de®nable q-relation on an in®nite convex set A containing a�.

5.3. Proof of Theorem 1.1
We are now ready to prove Theorem 1.1. For the ®rst part of the proof we will

assume that the reader is familiar with the paper [16]; namely we will need the
de®nition and properties of de®nable quotients.

Let a 2M be a non-trivial point, that is, there exist an open interval I
containing a and a de®nable function F: I ´ I which is continuous and strictly
monotone in both variables. By Lemma 2.7, we can assume that every two points
in I are non-orthogonal. As in the beginning of the proof of Theorem 5.1 in [16],
we may assume that F is strictly increasing in both variables.

The goal is to show that there is a convex ^-de®nable group in I containing a.
However, since any two points a2, a2 in I are non-orthogonal to each other, it
suf®ces to ®nd such a group anywhere in I.

Following the proof of Theorem 5.1 in [16] up to the point where Lemma 4.4
is applied, we obtain an open subset U1 Í I ´ I (and without loss of generality we
can assume that U1 is 0-de®nable), a generic point e 2 I and a de®nable family of
functions fy such that e 2 dom� fy1

fy2
� for all k y1; y2l 2 U1. The function

G�y1; y2; x� � fy1
fy2
�x� is continuous and strictly increasing in all its arguments.

Since e is a generic point, there is an open interval I 0 Í I such that
I 0 Í dom� fy1

fy2
� for all ky1; y2l 2 U1. We will assume that U1 � U and I 0 � I.

For Åu � ky1; y2l, we use both G�Åu; x� and G�y1; y2; x�, depending on context.
For a 2 I , we denote by ,�a the equivalence relation on U de®ned by Åu1 ,�a Åu2 if and

only if G�Åu1; x� � G�Åu2; x� for x 2 �a�� . We use �Åu�,�a to denote the ,�a -class of Åu 2 U.
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If J Í I is an open interval, then we de®ne Åu1 ,J Åu2 if and only if G�Åu1; x� � G�Åu2; x�
for all x 2 J.

Notice that since G�y1; y2; x� is strictly increasing in all arguments, if we
take k y; y1l; ky; y2l 2 U with y1 6� y2 then ky; y1l 6,�a k y; y2l and therefore
dim��k y1; y2l�,�a � < 2. Let Åu0 be generic in U over e.

Lemma 5.7. If dim��Åu0�,�e � � 1 then there are an open subset V Í U and an
open interval J Í I containing a such that dim�V =,J�< 1.

Proof. Let Åu1 be generic in �Åu0�,�e over fÅu0; eg. Then dim�Åu1 =eÅu0� � 1 and
there is an e1 > e such that G�Åu0; x� � G�Åu1; x� for e < x < e1 . Decreasing e1, if
needed, we can assume that dim�e1 =e Åu0 Åu1� � 1 and therefore dim�Åu1 =ee1 Åu0� � 1
and dim�Åu0 =ee1� � 2. Let J be the interval �e; e1�. Since Åu0 ,J Åu1 and
dim�Åu1 =ee1 Åu0� � 1, one of the projections, say p1, of �Åu1�,J

contains an open
interval around p1�Åu1�. As Åu1 is generic in U over e, e1, the dimension of the set

fÅu 2 U: p1��Åu�,J
� contains an open interval around p1�Åu�g

is 2 and we can take any open subset of the set above as V .

Thus, if dim��Åu0�,�a � � 1, then instead of applying Lemma 4.4 in the proof of
Theorem 5.1 in [16], we use Lemma 5.7, replacing e by any generic point in J
and leaving the rest of the proof unchanged. We obtain the existence of a convex
^-de®nable ordered group.

Therefore the only case we need to consider is the case when dim��Åu0�,�e � � 0.
Since �Åu0�,�e is a ®nite set, cutting down U, we can assume that it contains only
Åu0, and thus

�"v 2 U ��G�Åv; x�,�e G�Åu0; x� ! Åv � Åu0�
holds. By genericity of Åu0 and e, there exist an open rectangular box V Í U and
an open interval J Í I, such that

�"Åv 2 V "b 2 J "Åu 2 U ��G�Åv; x�,�b G�Åu; x� ! Åv � Åu�:
By o-minimality, it follows that for Åu 6� Åv from V ,

fkx; yl 2 J ´ M: G�Åu; x� � ygÇ fkx; y l 2 J ´ M: G�Åv; x� � yg is finite.

If we restrict G to V ´ J, then G de®nes a de®nable normal family of functions of
dimension 2.

By Theorem 4.3, we can replace G by a nice family of functions F on a
subinterval of J, parametrized over a subset of J 2. By Theorem 5.6 and Theorem
3.13, given a� generic in J, there is in M a convex ^-de®nable ordered divisible
and abelian group containing a�.

This completes the proof of Theorem 1.1.

6. Getting a q-relation: the additive case

We assume now that kI;�; <; . . . l is an o-minimal expansion of a group-
interval, F, i�, j�, a� as at the beginning of § 5.2. We still use fa�x� to denote the
function f �i�; j�; a��x�. De®ne the relation

ka; blR�kc; d l , fa ÿ fb ai � fc ÿ fd:

506 ya'acov peterzil and sergei starchenko



It is easily veri®ed that R� satis®es (q1)±(q4) of the q-relation properties. To
show that R� is a q-relation on some convex set, it remains to prove properties
(R1)±(R4). The proof is very similar to that of Lemma 5.5, with the main
difference that composition of functions is everywhere replaced by addition, and
the compositional inverse, f ÿ1, replaced by the additive inverse ÿf . We therefore
omit some details in the proof of this case.

Lemma 6.1. For every c; d 2 A and a generic over fi�; j�g,
(1) if c > d then there exists b > a in A such that fb ÿ fa 4�i � fc ÿ fd,

(2) if c < d then there exists b < a in A such that fb ÿ fa <�i � fc ÿ fd.

Proof. We prove (1) only. Suppose that (1) fails and there are c > d such that

fb ÿ fa <�i � fc ÿ fd for b 2 �a��: �16�
Decreasing c, if needed, we can assume that c is generic over i� , j�, a, d, and thus
k i�; j� l is generic over a, c, d. We will assume from now on that a; d 2 acl�0=�.

Rewriting (16) we obtain

f �i�; j�; b� ÿ f �i�; j�; a�<�i � f �i�; j�; c� ÿ f �i�; j�; d � for b 2 �a��:
We consider the function on the left-hand side. Since j� is generic over
fi�; a; bg, we may replace j� on the left, using a suitable preorder, with k� generic
over all other parameters. We obtain

f �i�; k�; b� ÿ f �i�; k�; a�<�i � fc ÿ fd�x� for b 2 �a��:
We ®x k�, and after rearranging terms in the above equation we obtain

f �i�; k�; b� ÿ f �i�; j�; c�<�i � f �i�; k�; a� ÿ f �i�; j�; d � for b 2 �a��:
Instead of using here an additive analogue of Lemma 5.2, as we did in the

proof of Lemma 5.5, we proceed directly to derive a contradiction. As before, we
may use the properties of F and genericity arguments, to ®nd open intervals D0,
A0, I 0, J 0, K 0 containing d, a, i�, j�, k�, respectively, such that

for every kc0; b0 l in D0 ´ A0 and every k i 0; j 0; k 0 l 2 I 0 ´ J 0 ´ K 0,

if b0 > a then f �i 0; k0; b0� ÿ f �i 0; j 0; c0�<�i 0 f �i 0; k0; a� ÿ f �i 0; j 0; d �. �17�
For every k i; ll we de®ne a binary relation Ril�x; y� on J 0 as follows:

Ril� j1; j2� , f �i; j1 � l; a� ÿ f �i; j1; d ��x�4�i f �i; j2 � l; a� ÿ f �i; j2; d ��x�:
Notice that the functions on both sides of the inequality take the value l at i. If
we let l� � k� ÿ j� then, as before, we may assume that for some open interval L
containing l�, for all k i; ll 2 I 0 ´ L, the relation Ril is uniformly either positive or
negative on J 0. Let us assume now, in contrast to the proof of Lemma 5.2, that Ril

is negative on J 0. We have then for all k i; ll 2 I 0 ´ L,

f �i; j1 � l; a� ÿ f �i; j1; d ��x�4�i f �i; j2 � l; a� ÿ f �i; j2; d ��x�
for all j1 > j2 in J 0 and k i; ll 2 I 0 ´ L. �18�

We denote by H�x� the function f �i�; k�; a� ÿ f �i�; j�; d �. Using the continuity of
F, we can ®nd open intervals I0 Í I 0 and A0 Í A0 containing i� and a�,
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respectively, so that H�I0� Í L and f �i�; k�; a0��I0� Í K 0 for all a0 2 A0. Moreover,
we may assume that K 0 ÿ J 0 Í L.

Lemma 6.2. There are k i1; a1; d1l 2 I0 ´ A0 ´ D 0 and j0; i0 such that i1 > i�,
a1 < a and

f �i�; k�; a1� ÿ f �i0; j0; d1��i1� � H�i1�
and

f �i�; k�; a1� ÿ f �i0; j0; d1��x�s�i1
H�x�:

Proof. This is similar to the proof of Lemma 5.3 and we omit it.

Let k i1; d1; a1; i0; j0 l be as in Lemma 6.2 and de®ne

l � H�i1� � f �i�; k�; a1� ÿ f �i0; j0; d1��i1�;
and

j1 � f �i�; k�; a1��i1� ÿ l; j2 � f �i�; k�; a��i1� ÿ l:

Since i1 > i� and a1 < a, we must have j1 > j2, and clearly f �i0; j0; d1��i1� � j1 and
f �i�; j�; d ��i1� � j2.

By Remark 5.1,

f �i�; k�; a1��x� � f �i1; j1 � l; a1��x�; f �i0; j0; d1��x� � f �i1; j1; d1��x�
and

H�x� � f �i1; j2 � l; a��x� ÿ f �i1; j2; d ��x�:
Therefore

f �i1; j1 � l; a1� ÿ f �i1; j1; d1�s�i1
f �i1; j2 � l; a� ÿ f �i1; j2; d �: �19�

Since a1 2 A0 and i1 2 I0, we have l 2 L and j1 � l; j2 � l 2 K 0; hence j1; j2 2 J 0.
By (17), as a1 < a,

f �i1; j1 � l; a� ÿ f �i1; j1; d �s�i1
f �i1; j1 � l; a1� ÿ f �i1; j1; d1�;

and together with (19), we have

f �i1; j1 � l; a� ÿ f �i1; j1; d �s�i1 f �i1; j2 � l; a� ÿ f �i1; j2; d �;
which contradicts (18) (since j1 > j2).

Notice that by Lemma 6.1, R� satis®es (R1)±(R4) on A. (For (R1) and (R2)
this is immediate; (R3) and (R4) follow by rearranging terms.) Let A Í A be a
convex set containing a�, good over the parameters de®ning R�. By Theorem
3.19, we may conclude that the following theorem holds.

Theorem 6.3. The relation R� is a q-relation on A.

Remarks. 1. Assume that M is an o-minimal expansion of a real closed ®eld
R. Then the differentiable structure of R can be used to give a fast proof of
Lemma 5.5 and Lemma 6.1. The proof involves a uniqueness theorem for some
differential equations, and basic calculus properties (see [15] for related work).
The argument above might suggest an alternative, purely geometric approach, to
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some of these calculus questions. In the Appendix we show how to prove some
basic calculus results in this manner.

2. The standing assumption in Lemma 5.5 and Lemma 6.1 is that k i�; j� l is a
generic point. As the next example shows, at least in the additive case the lemma
would have failed if we omitted the genericity assumption.

Example 6.4. We work in kR; <;�; ´ ; ex l. For 0 < a < 1, 0 < b < 1, 0 < x < 1,
de®ne

fa;b�x� � x1= a � b:

For any r < 1 we get a nice family of functions on the interval �0; r�. Take i� � 0,
j� � 0 and for a 2 �0; 1� denote by fa�x� the function x1=a (in our previous
notation this is f �i�; j�; a��x�).

If we now de®ne R by ka; blRkc; d l if and only fa ÿ fb 4�0 fc ÿ fd , then we obtain
precisely the relation which was de®ned in Example 3.2. It satis®es (q1)±(q4) but
not (q5).

In particular, if we take any d < c < a then for every b > a,

fb ÿ fa s�0 fc ÿ fd:

Question. Find a similar example that shows that Lemma 5.5 would have
failed without the assumption that k i�; j� l is generic.

7. Getting a ®eld

We are now ready to prove Theorem 1.2.
We assume that a is non-trivial in M. By Theorem 1.1, there is a de®nable

group-interval kI; < ;�; al, with a as the identity element. For simplicity we use 0
instead of a and assume that I and � are 0-de®nable.

De®nition 7.1. (i) For two groups H, G, a presentation of H on G is a
homomorphism j: H ! Aut�G�. We say that j is faithful if Ker�j� � f1g. For
h 2 H we use jh to denote the corresponding automorphism of G.

(ii) For H , G two convex ^-de®nable groups, we say that a presentation j of H
on G is de®nable if there is a de®nable set D Í M 3 such that

D Ç H ´ G2 � fkh; g1; g2l 2 H ´ G2: jh�g1� � g2g:
We say that j is continuous if the map kh; g1l 7! jh�g1� is continuous from H ´ G
into G.

For the proof of the proposition below we need the notion of a partial
endomorphism which is taken from [9].

De®nition 7.2. (i) A partial de®nable function l: M ! M is called a partial
endomorphism, or p.e., if its domain, dom�l�, is an interval �ÿa; a� around 0 and
it is linear where de®ned, that is, l�x� y� � l�x� � l�y�, if x; y; x� y 2 dom�l�.

(ii) For l a p.e., we say that the germ of l at 0 is A-de®nable if there are an
A-de®nable function f �x� and an open neighbourhood J of 0 such that f jJ � ljJ.
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Proposition 7.3. Assume that MjI does not satisfy clause (1) of Theorem 1.2.
Then there are convex ^-de®nable groups H Í I and G Í I and a de®nable,
faithful and continuous presentation j: H ! Aut�G�.

Proof. By Proposition 4.2 in [9], the theory of MjI is not linear. Namely, one
of the following two statements holds (as we show below, (1) implies (2); the
converse fails).

(1) There is a de®nable p.e. h whose germ at 0 is not 0-de®nable.

(2) There is a de®nable function h on an interval J Í I which is not linear on
any subinterval of J. (Recall that f is called linear on an interval J if for
every a; b 2 J, h�a� x� ÿ h�a� � h�b� x� ÿ h�b� for x 2 �0�.)

As we now show, (1) gives the conclusion of the proposition directly.

Lemma 7.4. Assume that there is a de®nable p.e. whose germ at 0 is not
de®nable. Then there exist convex ^-de®nable groups H Í I and G Í I and a
de®nable, faithful and continuous presentation j: H ! Aut�G�. Moreover, G is
de®nably embedded in kI; < ;�l.

Proof. Assume that the graph of h�x� is de®nable via a formula J�x; y; Åa�. We
may assume that for every Åb, the formula J�x; y; Åb� de®nes a p.e., which we
denote by hÅb. Since the germ of h at 0 is not 0-de®nable, as Åb varies we obtain
in®nitely many partial endomorphisms, whose germs at 0 are pairwise distinct.
Without loss of generality, we may assume that there is an open interval I1 Í I
such that I1 Í dom�hÅb� for all Åb. As was pointed out in [9], if two partial
endomorphisms agree on a non-zero point, then they agree on all of their common
domain. Therefore, by ®xing a non-zero generic q 2 I1 we can reparametrize the
family of germs de®ned by J so that we get hc�q� � c for all c in some interval
J. By taking q suf®ciently close to 0 and cutting down J if needed, we may also
assume that J Í I1.

We now ®x p 2 J generic over all mentioned parameters and replace every hc

by hÿ1
p hc (clearly, a p.e. as well). After cutting down J and I1, if needed, we have

q 2 J. If we reparametrize again, as above, we obtain hq�q� � q and hence hq is
the identity map, where de®ned. Since p was generic over q, the map
ka; bl 7! ha�b� is continuous on a neighbourhood of kq; ql. Hence, for every a, b
close to q there is c 2 J such that ha hb�q� � hc�q� and by the above remarks
ha hb�x� � hc�x� for every x in their common domain. We can now de®ne a partial
operation on J:

a , b � c , ha hb�q� � hc�q�:
Let B be the de®nable closure of all parameters mentioned thus far and let H

be the M-cut of q over B (see De®nition 3.14). It is easy to see that , makes H
into a convex ^-de®nable ordered group, with q as its identity element.

Let G be the M-cut of 0 over B. For every a 2 H, ha de®nes an automorphism
of G. By the de®nition of , we have ha , b � ha hb, and clearly ha � id if and only
if a � q. Hence, the map a 7! ha gives a de®nable faithful presentation of H on
G. The continuity of this action is proved similarly to Lemma 2.10(2).

We have therefore reduced Proposition 7.3 to the following. We have a (®xed)
de®nable function h�x� on an interval J which is not linear on any subinterval.
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Lemma 7.5. Let fu;v�x� � h�u� x� � v. Then there are an open set U Í M 2

and an open interval I1 Í J such that:

(i) f fu1;v1
�x�: ku1; v1l 2 Ug is a p-nice family on I1;

(ii) if u1 < u2 then for every v1, v2 the function fu2;v2
�x� ÿ fu1;v1

�x� is strictly
increasing on I1.

Proof. For a 0 generic in J, we may assume that h�x� is strictly increasing on a
neighbourhood of a 0 (if not, replace h with ÿh). By the assumptions on the non-
linearity of h�x�, for b 2 �a0�� , we have either

h�a0 � x� ÿ h�a0� > h�b� x� ÿ h�b� for x 2 �0��
or

h�a0 � x� ÿ h�a0� < h�b� x� ÿ h�b� for x 2 �0��: �20�
We may assume that (20) holds (if not replace h with hÿ1). Take b0 > a0

suf®ciently close and generic over a0 . By (20), there are open intervals I1

containing a0, and I2 containing b0, such that for all a1 < a2 in I1 and b1 < b2 in I2,
if a2 ÿ a1 � b2 ÿ b1 then

h�a2� ÿ h�a1� < h�b2� ÿ h�b1�:
Hence

h�a1� ÿ h�a2� > h�b1� ÿ h�b2�;
and in particular,

h�a0 � x� ÿ h�a0� > h�b0 � x� ÿ h�b0� for x 2 �0�ÿ: �21�
Putting together (20) and (21) we obtain

h�a0 � x� ÿ h�a0�a0 h�b0 � x� ÿ h�b0�:
The above holds for b0 2 �a0�� .

We can now use an appropriate preorder as we have done several times before,
and by the genericity of a0 we will assume that, for every a1 < a2 in J,

h�a1 � x� ÿ h�a1�a0 h�a2 � x� ÿ h�a2�: �22�
Take J1 Í J a proper subinterval and let « > 0 be such that for every a 2 J1, aÿ «

and a� « are still in J. We let I1 � �ÿ«; «�, fu;v�x� � h�u� x� � v, and de®ne

F � f fu;v: u; v 2 J1; x 2 I1g:
We take ku1; v1l 6� ku2; v2l. We may assume that u1 6� u2, for if u1 � u2 then the

two functions agree at a point if and only if v1 � v2. Without loss of generality,
assume that u1 < u2. By o-minimality, it is suf®cient to show that if fu1;v1

�i� �
fu2;v2
�i� for some i 2 I1 then fu1;v1

ai fu2;v2
(for then fu1;v1

and fu2;v2
can agree at most

once on I1). This is immediate, for if fu1;v1
�i� � fu2;v2

�i� then fu1�i;v1
�0� � fu2�i;v2

�0�
and by (22), fu1�i;v1

a0 fu2�i;v2
. It follows that fu1;v1

ai fu2;v2
.

For F to be p-nice it remains only to ®nd U Í J 2
1 such that Ux; y is either

empty or a 1-cell for every kx; yl 2 I1 ´ M. By Theorem 2.2, we can ®nd such a
U, thus proving (i).

Given ku1; v1l; ku2; v2l 2 U and i 2 I1, let j1 � h�u1 � i� � v1 and j2 �
h�u2 � i� � v2. Then

fu2;v2
�x� ÿ fu1;v1

�x� � j2 ÿ j1 � fu2;v2
�x� ÿ fu1;v1� j2ÿj1

�x�:
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But fu1;v1� j2ÿ j1
�i� � fu2;v2

�i�; hence, by part (i), for ku1; v1l; ku2; v2l 2 U and i 2 I1,

if u1 < u2 then fu2;v2
�x� ÿ fu1;v1

�x� is strictly increasing at i. �23�

We use f �i; j; a� as in previous sections. Let k i�; j� l be a ®xed generic point in
I1 ´ M and let fa�x� � f �i�; j�; a��x�.

For J1 as in the last proof, we let R� be the relation on J1 ´ J1 de®ned by

ka; blR�kc; d l , fa ÿ fb a�i � fc ÿ fd;

and let R± be the relation on J1 ´ J1 de®ned by

ka; blR±kc; d l , fa f ÿ1
b a�j � fc f ÿ1

d :

Let I Í J1 be a good convex set over the parameters de®ning R± and R� (i�

and j� are of course among those). By Theorem 5.6 and Theorem 6.3, R± and R�
are q-relations on I. They induce two equivalence relations, E± and E�, on
I ´I. We ®rst show that E± and E� are different.

Lemma 7.6. For c; d in I, let �c; d � and c=d denote the E� and E± classes of
kc; d l, respectively. If dim�c; d= i�; j�� � 2 then �c; d �Ç c=d � fkc; d lg.

Proof. Suppose that ka; blE�kc; d l, ka; blE±kc; d l and ka; bl 6� kc; d l.
Then, by Lemma 3.10(3), a 6� c and b 6� d. Without loss of generality, assume

that b < d < c (all other cases can be handled similarly).
Take c0 > c. By the properties of E±, we can ®nd a0 > a such that

fa 0 f
ÿ1

b aj � fc 0 f
ÿ1

d :

By subtracting the identity function from both sides we see that

� fa 0 ÿ fb� f ÿ1
b aj � � fc 0 ÿ fd� f ÿ1

d :

By the de®nition of E�, we have fc ÿ fd ai � fa 0 ÿ fb. Therefore for all c 0 > c,

� fc ÿ fd� f ÿ1
b aj � � fc 0 ÿ fd� f ÿ1

d : �24�
We will use Lemma 5.2 to derive a contradiction. Rewriting (24) we see that

for every c 0 > c,

� f �i�; j�; c� ÿ f �i�; j�; d �� f ÿ1
b aj � � f �i�; j�; c 0� ÿ f �i�; j�; d �� f ÿ1

d : �25�
By Lemma 7.6, since c > d, we may assume that fc 0 ÿ fd is increasing at i� for

c0 > c. From (25), for all c0 > c,

� f �i�; j�; c 0� ÿ f �i�; j�; d ��ÿ1� f �i�; j�; c� ÿ f �i�; j�; d ��ai � f ÿ1
d fb:

If we consider the function on the left-hand side, we may use a suitable
preorder (as was done in previous sections) to replace j� on the left by k� generic
over all parameters mentioned.

After rearranging terms we ®nd that for c 0 2 �c�� ,

� f �i�; k�; c� ÿ f �i�; k�; d �� f ÿ1
b aj � � f �i�; k�; c 0� ÿ f �i�; k�; d �� f ÿ1

d :

Rearranging terms again, we see that for c 0 2 �c�� ,

f �i�; k�; c� f ÿ1
b ÿ f �i�; k�; c 0 � f ÿ1

d aj � f �i�; k�; d � f ÿ1
b ÿ f �i�; k�; d � f ÿ1

d :
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We consider the function on the left. Since k� is generic over all other parameters
mentioned there, we can replace it on the left, using a suitable preorder, by k��

generic over all previously-mentioned parameters (including k�). Rearranging
terms back we ®nd the following: for c 0 2 �c�� ,

� f �i�; k��; c� ÿ f �i�; k�; d �� f �i�; j�; b�ÿ1 aj � � f �i�; k��; c 0 � ÿ f �i�; k�; d �� f �i�; j�; d �ÿ1:

�26�
Let Åu0; Åu1 2 U be such that fÅu0

�x� � f �i�; k��; c��x� and fÅu1
�x� � f �i�; k�; d ��x�.

Since dim�i�k�k��cd � � 5, we have dim�i� Åu0 Åu1� � 5.
By Lemma 7.5, fÅu0

ÿ fÅu1
�x� is increasing on some neighbourhood of i�. By

genericity, there are an open set V containing Åu0 and an open interval J2 ÍI
containing i� such that � fÅu ÿ fÅu1

��x� is increasing on J2 for every Åu 2 V. We let

G � f fÅu ÿ fÅu1
: Åu 2 V g:

It is easy to verify that G is a p-nice family on J2. Since k i�; j�; k�; k�� l is of
dimension 4, the triple k i�; j�; k�� ÿ k� l is of dimension 3.

We can now apply Lemma 5.2 to G, Fÿ1 and the triple k j�; i�; k�� ÿ k� l. Since
f ÿ1
b sj � f ÿ1

d , there is a c 0 > c such that

� f �i�; k��; c� ÿ f �i�; k�; d �� f �i�; j�; b�ÿ1 sj � � f �i�; k��; c 0� ÿ f �i�; k�; d �� f �i�; j�; d �ÿ1:

This contradicts (26) and thus completes the proof.

By Lemma 3.12, if E is an equivalence relation induced by a q-relation, then the
map k�ka; bl�; �kb; cl�l! �ka; cl� is a de®nable group operation on the E-classes of
I. Furthermore, the group is ordered by the ordering

�ka; el� < �kb; el� , a < b:

We take kH; ,; <l to denote the group induced on I2=E± by E±, and let
kG;�; <; l denote the group induced on I2=E� by E�. We still use a=b and
�a; b� to denote the classes of ka; bl with respect to E± and E�, respectively.

We de®ne k: I3 ! I by

k�a; p; q� � b , ka; plE±kb; ql:
By Lemma 3.10, k is a well-de®ned map and if we ®x any two of the three
variables, the function in the third variable that we obtain is a strictly monotone
permutation of I. It follows that k is strictly monotone and continuous in each
variable; hence k is a continuous map from I3 into I. Notice that k�x; y; z� is
de®nable in MjI.

By the commutativity of H, a=p , p=b � p=b , a=p. Hence

k�a; p; q� � b , a=p � b=q , a=b � p=q: �27�
By Lemma 3.10 and (27), for every a; p; q 2I, k�a; p; q� � k�a; p0; q0� if and

only if p=q � p 0=q 0. Also by (27), k�k�x; p; q�; r; s� � k�x; pr; qs� and therefore we
have the following lemma.

Lemma 7.7. The map p=q 7! h�x; p; q� is a well-de®ned faithful action of the
group H on the set I.

As we show below, this action induces a faithful group presentation
Ãk: H ! Aut�G�.
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Lemma 7.8. For every a1; a2; p; q 2I,

a1 =a2 � k�a1; p; q�=k�a2; p; q�:

Proof. We have

a1 =p � k�a1; p; q�=q; a2 =p � k�a2; p; q�=q:

By the group properties

k p; a2lE±kq; k�a2; p; q�l;
and by Lemma 3.11(1), a1 =a2 � k�a1; p; q�=k�a2; p; q�.

Lemma 7.9. For all a; b; c; d 2I and p; q 2I,

ka; blE�kc; d l ) kk�a; p; q�; k�b; p; q�lE�kk�c; p; q�; k�d; p; q�l:

Proof. To simplify notation we use k�x� instead of k�x; p; q� here. Assume that
ka; blE�kc; d l and that it is not true that kk�a�; k�b�lE�kk�c�; k�d �l. Then, without
loss of generality, we may assume that there exists c 00 > k�c� such that

fc 00 ÿ fk�d � a�i � fk�a� ÿ fk�b�:

We compose both sides of the inequality with f ÿ1
q on the right and obtain

fc 00 f
ÿ1

q ÿ fk�d � f
ÿ1

q a�j � fk�a� f
ÿ1

q ÿ fk�b� f
ÿ1

q :

By property (5) of q-relations, for k�c� < c 0 < c 00 there is a Ãc such that fc 0 f
ÿ1

q aj �

f Ãc f ÿ1
p aj � fc 00 f

ÿ1
q . Since kk�c�; qlE±kc; pl, we have c < Ãc. By the de®nitions of k

and E±, for every d 1 > d, a1 > a, b1 < b,

f Ãc f ÿ1
p ÿ fd 1 f ÿ1

p aj � f Ãc f ÿ1
p ÿ fk�d � f

ÿ1
q a�j � fk�a� f

ÿ1
q ÿ fk�b� f ÿ1

q a�j � fa1 f ÿ1
p ÿ fb1

f ÿ1
p :

Hence, after composing both sides of the above inequality with fp, we ®nd that
k Ãc; d 1 lR�ka1; b1 l. We have thus established that

for all d 1 > d; a1 > a; b1 < b, and all c1 2 �c��; kc1; d 1 lR�ka1; b1 l: �28�
Since ka; blE�kc; d l, it is suf®cient to prove the following in order to get a

contradiction:

there exists c1 > c such that kc1; d lR�ka; bl. �29�
To prove (29), we ®rst show that

for all d 1 > d; b1 < b, and c1 2 �c��; kc1; d 1 lR�ka; b1 l: �30�
For if not, there are d 1 > d and b1 < b such that for c1 2 �c�� , ka; b1 lR�kc1; d 1 l,
and therefore, by (28) for c1 2 �c�� , kc1; d 1lE�ka; b1l. This yields a contradiction
since, by Lemma 3.10, there is a unique c0 such that kc0; d 1 lE�ka; b1l.

Similarly, we can use (30) to show that

for all b1 < b and c1 2 �c��; kc1; d lR�ka; b1l: �31�
And ®nally, using (31), we can prove that

for c1 2 �c��; kc1; d lR�ka; bl:

Hence (29) follows, and hence the lemma is true.
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We showed that for every p, k�x; p; q�: I! I, as a function of x, is an
automorphism of kI; E� l. It follows from the de®nition of � on G that
�x; y� 7! �k�x; p; q�; k�y; p; q�� is a group-endomorphism of kG;�l. Hence,

p=q 7! ��a; b� 7! �k�a; p; q�; k�b; p; q���
is a group presentation; call it Ãk: H ! Aut�G�. We now show that the presentation
is faithful.

Lemma 7.10. If p 6� p0 in I then Ãk� p=q� 6� Ãk� p 0=q�.

Proof. We assume that E± and E� are de®ned over the empty set. Let a1; a2

be in I, and dim�a1; a2 =p; p0; q� � 2. We show that kk�a1; p; q�; k�a2; p; q�l is not
E�-equivalent to kk�a1; p0; q�; k�a2; p0; q�l.

Assume that kk�a1; p; q�; k�a2; p; q�lE�kk�a1; p0; q�; k�a2; p0; q�l. By the group
properties and the de®nition of k we also have

a1 =a2 � a1 =p , p=a2 � k�a1; p; q�=q , q=k�a2; p; q� � k�a1; p; q�=k�a2; p; q�:
Similarly, a1 =a2 � k�a1; p0; q�=k�a2; p0; q�; hence

kk�a1; p; q�; k�a2; p; q�lE±kk�a1; p0; q�; k�a2; p0; q�l:
Since ai and k�ai; p 0; q� are interde®nable over p0 , q, for i � 1; 2, we have

dim�k�a1; p0; q�; k�a2; p0; q�=p0; q� � 2:

We can now apply Lemma 7.6 to kk�a1; p; q�; k�a2; p; q�l and kk�a1; p0; q�,
k�a2; p0; q�l, and conclude that k�a1; p; q� � k�a1; p0; q� and k�a2; p; q� � k�a2; p0; q�. It
follows that p=q � p0=q and therefore p � p0, in contradiction to our assumption.

We now return to the proof of Proposition 7.3. By Lemma 3.10 and property (q2),
the map x 7! kx; el induces an order-preserving bijection (and hence a home-
omorphism) between I and the linearly ordered set I2=E± or I2=E� . Therefore,
we can de®nably equip I with the ordered group structures of H and G and
assume that H and G are convex ^-de®nable groups. Since k was a continuous
map, the map kh; gl 7! Ãk�h��g� is a continuous map from H ´ G into G.

By Lemma 7.10 and the preceding remarks, Ãk: H ! Aut�G� is a de®nable
continuous faithful presentation of H on G. This completes the proof of
Proposition 7.3.

In order to de®ne a real closed ®eld we are going to need the following lemma.

Lemma 7.11. Let R � kI; <;�; ·; 0l be a convex ^-de®nable commutative
ordered ring in M. Then K, the fraction ®eld of R, is a real closed ®eld de®nable
in M, and R is de®nably embedded onto a convex subring of K.

Proof. This argument stems from an earlier observation of A. Wilkie.
We let I2

� � fka; bl 2I: b 6� 0g. For ka; bl; kc; d l 2I2
� , let ka; bl , kc; d l if

and only if a · d � b · c. We take k ÃK;�; ´ l to be the standard ®eld of fractions of
R on I2

� =, and let a=b denote the ,-class of ka; bl. Now K is ordered as a
®eld by making a1 =a2 positive in K if and only if a1 > 0 and a2 > 0 in R.
The graphs of � and ´ in ÃK are the images under the quotient map of de®nable
sets in MjI. We want to show that ÃK is de®nable (not only ^-de®nable) in M.
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By Lemma 2.10, · is continuous on I. Since 0 · 0 � 0, we can show that for
every ka; bl 2I2

� and every neighbourhood U of k0; 0l, there is a kc; d l 2 U such
that a=b � c=d. It follows that for every open interval I around 0, every ,-class
has a representative in I 2. Moreover, there are many de®nable sets of
representatives for I2

� =,. For instance, if b 2I is positive in R then the set

fka;ÿja j � bl: ÿb < a < bg
is a (de®nable) set of representatives for I2

� =,. The map x 7! x= ÿ jx j � b is an
order-preserving bijection between K � �ÿb;b� (with the ordering induced from
M) and the ordered ®eld ÃK. Therefore, we can de®nably equip K with an ordered
®eld structure isomorphic to ÃK, whose ordering is compatible with that of M. By
[18], K is a real closed ®eld.

As usual, if we ®x any b 2I, the map t�x� � x · b=b is an order-preserving
embedding of R in its ®eld of fractions ÃK. Hence we get a de®nable embedding of
R into K. Since t is continuous, the image of R in ÃK is a convex subring.

It remains to prove the following proposition.

Proposition 7.12. Let kH; <; ,; 1l and kG; <;�; 0l be two convex in®nite ^-
de®nable ordered groups in M, and let j: H ! Aut�G� be a de®nable continuous
faithful presentation. Then there is a de®nable real closed ®eld K whose
underlying set is an interval in M and its ordering is compatible with < .
Moreover, there is a convex subgroup of G which is de®nably isomorphic to a
convex subgroup of kK;�l.

Proof. By Lemma 2.9, H and G are both commutative and divisible.
Let L be the collection of all de®nable endomorphisms of G. It is easily

veri®ed that L, with addition and composition of functions, is a ring, with id�x� as
the identity element and the zero map as the zero element. We can make it into
an ordered ring by letting l > 0 if and only if l is an increasing function. Since
no proper subgroup of G is de®nable in MjG, if two de®nable endomorphisms
agree on any non-zero point of G then they agree everywhere on G. Moreover,
for j1; j2 2 L, j1 < j2 if and only if j1� p� < j2� p� for some p > 0 in G. For
h 2 H, we let jh denote the corresponding automorphism of G.

It follows from our hypothesis that ÃH � fjh: h 2 Hg is isomorphic to H and
furthermore it is a subgroup of the multiplicative group of units in L.

Step 1: ÃH is a convex subset of the ordered set kL; <l. For g; h 2 H , assume
that jh < j < jg, where j 2 L. Then for p > 0 in G, jh� p� < j� p� < jg� p�. By the
continuity of the presentation, we can ®nd k 2 H between h and g such that
jk� p� � j� p�, but then, by the above comments, j�x� � jk�x� for all x 2 G; hence

j 2 ÃH.
Step 2: for every g; h; k 2 H, jg � jh ÿ jk 2 ÃH. Assume ®rst that jk < jg and

jk < jh. Without loss of generality, let jg < jh. Then on one hand, since
jkgÿ1 < id,

jg � jh ÿ jk > jg � jh ÿ jg � jh;

while on the other hand,

jg , kÿ1 , h � jg � jg , kÿ1 , h ÿ jg > jg � jk , gÿ1�jg , kÿ1 , h ÿ jg� � jg � jh ÿ jk:

Since ÃH is convex, jg � jh ÿ jk is in ÃH.
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If jg < jk < jh then

jg < jg � jh ÿ jk < jh;

hence jg � jh ÿ jk is in ÃH. The case where jk > jg and jk > jh is handled similarly.
Step 3: the set ÃR � fjh ÿ jg: h; g 2 Hg is a convex commutative subring of L.

We ®rst show closure under addition. Given g; h; k; l 2 H, by Step 2 there exists
l1 2 H such that jk ÿ jl � jh ÿ jl1

; hence jg ÿ jh � jk ÿ jl � jg ÿ jl1
.

The closure under multiplication follows immediately from closure under
addition. The convexity and commutativity follow from that of ÃH.

Notice that if I is the underlying convex set of H then we can equip I with a
de®nable ring structure making it into a convex ^-de®nable ordered ring
isomorphic to ÃR. For p > 0 in G, the additive group of ÃR is de®nably isomorphic
to the convex subgroup of G whose underlying set is fjh� p� ÿ jg� p�: g; h 2 Hg.
By Lemma 7.11, we can complete the proof of Proposition 7.12 and with it the
proof of Theorem 1.2.

8. Some examples on the global picture

The Trichotomy Theorem gives a characterization of the local structure in a
neighbourhood of each non-trivial point in M as either an ordered vector space or
an o-minimal expansion of a real closed ®eld. Since M is an ordered structure,
there are inherent dif®culties in trying to give a global characterization of the
structure of de®nable subsets of M n. Below are some basic examples to
demonstrate the difference between the local and global analysis.

Example 8.1. Let I be a linearly ordered set and assume that for each i 2 I,
Mi is an o-minimal structure in the language Li such that Li and Lj are disjoint
for i 6� j. If we let L � Si2 I Li then there is an o-minimal L-structure which is
made up by `patching' the Mi in the right order, and inserting new points at the
ends of each Mi. Clearly, there is no interaction between the different pieces of
the structure.

We denote by T1, T2, T3 the sets of points satisfying (T1), (T2) and (T3)
from the Trichotomy Theorem, respectively. Every non-orthogonality class is
contained in T1, T2 or T3 and by Lemma 2.7, if a is in either T2 or T3 its
non-orthogonality class is an open set.

Example 8.2. Let P�x; y� be the restriction to �ÿ1; 1�2 of the standard real
multiplication function. Consider the structure M � kR; <;�; P�x; y�l. Then M
consists of a single non-orthogonality class, contained in T3. Hence every point
lies in a de®nable real closed ®eld. However, as implied by [13], no real closed
®eld whose universe is R is de®nable in M.

Example 8.3. Let kK; <;�; ´ l be a non-standard elementary extension of the
structure kR; <;�; ´ l. For a 2 K in®nitesimally close to 0, de®ne P�x; y; z� to be
the partial function x� yÿ z whenever the distance between any two of x, y, z is
no more than a. Consider the structure M � kK; <; Pl. For every a 2 K, P
induces the structure of a group-interval (after ®xing the parameter a) on the
interval �aÿ 1

2
a; a� 1

2
a�. This group-interval can be extended to the interval
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�aÿ na; a� na�, for every n 2N. In M every point is in T2 and a and b are non-
orthogonal to each other if and only if jaÿ bj < na for some n 2N. By Theorem
1.1 every point lies in a de®nable group-interval (or a convex ^-de®nable group)
but there are no de®nable ordered groups in M.

9. Some corollaries

A large body of work has been developed for o-minimal expansions of ordered
groups and real closed ®elds, which can now be applied, at least locally, for o-minimal
structures of types (Z2) and (Z3). We mention here a few such applications.

O-minimal expansions of ordered groups (or ordered group-intervals) are known
to have de®nable Skolem functions (see [2]). The same is true for o-minimal
expansions of group-intervals. We can conclude that the following corollary holds.

Corollary 9.1. If a is a non-trivial point in an o-minimalM then there is a closed
interval I, with a in the interior of I, such that MjI has de®nable Skolem functions.

Question. Does (some version of) elimination of imaginaries hold globally in
an arbitrary o-minimal structure?

Even though the main theorems of this paper are local in nature there are some
cases in which global results can be proved. Consider an o-minimal expansion M
of an ordered group. If the structure is of type (Z2) (or `linear' as it was called in
[9]), it eliminates quanti®ers and can be embedded onto an elementary
substructure of a reduct of a vector space over a division ring (see [9]). When
M is of type (Z3) we can still prove global results in some cases.

For M an o-minimal expansion of an ordered group, we say that f : M ! M is
not eventually linear if there is no c 2M such that f is linear on �c;�1�.

Corollary 9.2. Let M � kM; <;�; . . . l be an o-minimal expansion of an
ordered group. Then the following are equivalent.

(1) There is in M a de®nable function which is not eventually linear.

(2) There is in M a de®nable bijection between bounded and unbounded
intervals (sometimes referred to as `M has poles').

(3) There is an M-de®nable real closed ®eld whose underlying set is M and
whose ordering is compatible with < .

Proof. By Proposition 4.4 in [11], (1) implies (2). With Theorem 1.2, the rest
of the argument is identical to [14].

An important property of o-minimal expansions of real closed ®elds is that de®nable
sets are locally n-differentiable manifolds with respect to the ®eld structure and
topology. In [12], this was used to show that if H is an n-dimensional de®nable
group in an o-minimal expansion of a real closed ®eld R then H =Z�H� can be
de®nably embedded in GLn�R�. Moreover, it was shown there that the group of
de®nable automorphisms of H can be embedded (not de®nably though) in
GLn�R�. We can now conclude that the following corollary is true.
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Corollary 9.3. Let M be an o-minimal expansion of an ordered group of
type (Z3). Let R be the real closed ®eld obtained by Theorem 1.2. If H is an n-
dimensional group de®nable in M then the group of de®nable automorphisms of
H can be embedded in GLn�R�.

Proof. We may assume that H has an element of the form �a; a; . . . ; a� as its
identity. Since all points in M are non-orthogonal to each other, we may assume
that a is the zero element of R. As the proof in [12] only used the structure of the
®eld in a neighbourhood of the group identity, we can repeat the proof there to
get the desired result.

The last corollary provides us with an interesting family of examples of o-minimal
structures which cannot be properly expanded while still preserving o-minimality.
Let kD; <;�; ´ l be an ordered division ring which is not a ®eld and let V be an
ordered vector space over D. By standard quanti®er elimination methods, this
structure can be shown to be o-minimal.

Assume now that ÃV is an o-minimal expansion of V of type (Z3). By Corollary
9.3, the ring of ÃV-de®nable endomorphisms of kV ;�l, call it ÃD, can be embedded
in a real closed ®eld R. But D is a subring of ÃD, which contradicts the
commutativity of R. It follows that every expansion of ÃV is of type (Z2), that is,
there is an ordered division ring ÃD extending D such that ÃV is a reduct of an
ordered vector space over ÃD.

We may consider D above as an ordered vector space over itself by restricting
ourselves to the language containing < , � and a unary function la�x� � ax for
every a 2 D. It is not too dif®cult to show that if D1 is an o-minimal expansion of
D then every linear function de®nable in D1 is already de®nable in D; hence for
D1 to be a proper expansion, it must be of type (Z3). However, by the above this
is impossible. We have thus proved our ®nal corollary.

Corollary 9.4. Let D be an ordered division ring which is not a ®eld. Then D,
considered as an ordered vector space over itself, has no proper o-minimal expansions.

10. Appendix: geometric calculus

Let M be an o-minimal structure with a nice family of functions. By the main
theorem of this paper, a real closed ®eld is de®nable in M. It is known (see [2] for
example), that de®nable functions in such structures possess good differentiability
properties and many theorems from basic calculus, for instance, the uniqueness
theorem for solutions of differential equations (see [12]), hold for them.

In this section we want to show how one can recover a differentiable structure ofM
from its geometry only, without using a ®eld structure at all. We call this approach
`Geometric Calculus'. Although we do not use it directly in proving the main
results of this paper, almost all ideas of the proofs were inspired by this approach.

We assume from now on that M is an o-minimal structure with a p-nice family
of functions F � f f �x; Åu�: Åu 2 Ug on an open interval I. We are going to use this
family to de®ne the notion of tangency in the same way as the family of linear
functions fy � ax� b: a; b 2 Rg is used to de®ne the standard derivative over the
®eld of reals.
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De®nition 10.1. Let h�x� be a de®nable function with I Í dom�h� and p 2 I.
We say that h is F-bounded at p if there are f 1�x�; f 2�x� 2F such that
f 1� p� � f 2� p� � h� p� and f 1�x�4p h�x�4p f 2�x�.

We ®x a point p 2 I and a function h�x� which is F-bounded at p. For
simplicity, we assume that h, I and U are 0-de®nable. Let q � h� p�. As before,
Upq � fÅu 2 U: f � p; Åu� � qg. Let Jpq � p1�Upq� and, for a 2 Jpq , we let fa�x�
denote the unique function f �x; Åv� 2F such that Åv 2 Upq and a � p1�Åv�.

Let

S�< � p� � fa 2 Jpq: fa�x�<�p h�x�g; S�4 � p� � fa 2 Jpq: fa�x�4�p h�x�g;
Sÿ< � p� � fa 2 Jpq: fa�x�<ÿp h�x�g; Sÿ4 � p� � fa 2 Jpq: fa�x�4ÿp h�x�g:

By o-minimality, there are a� and aÿ in M such that

a� � inf�S�< � � sup�S�4 �
and

aÿ � inf�Sÿ4 � � sup�Sÿ< �:
We denote this a� and aÿ by d�Fh� p� and dÿFh� p�, and call them the right F-
derivative of h at p and the left F-derivative of h at p, respectively.

De®nition 10.2. We say that a function h�x� is F-differentiable at p and a is
the F-derivative of h at p if d�Fh� p� � dÿFh� p� � a. The F-derivative of h at p
is denoted by dFh� p�, and the function fa�x� is denoted by tFh� p�.

Lemma 10.3. If p is generic then there is at most one a 2 Jpq such that fa
touches h at p.

Proof. Suppose that the lemma is not true and there are a1 < a2 2 Jpq such that
both fa1

and fa2
touch h at p. By properties of nice families then for every

a 2 �a1; a2�, fa touches h�x� at p. Going to an elementary extension, if needed, we
can assume that M is q-saturated.

Let a 2 �a1; a2� be generic over p. We will assume that fa touches h at p from above,
and therefore there are p1 < p < p2 such that fa�x�> h�x� for all x 2 � p1; p2�. By
o-minimality, since p is generic, h is continuous on an open interval containing p,
and we can choose p1, p2 so that h is continuous on � p1; p2�. Also, since a is
generic over p, fa and h cannot be equal on any open interval containing p and
therefore we can assume that fa�x� > h�x� for all x 6� p in � p1; p2�.

Changing p1 and p2, if needed, we can assume that p1 and p2 are generic over
f p; ag, and thus dim� p; a; p1; p2� � 4. Let q1 � fa� p1�. Since fa is the unique
curve in F passing through k p1; q1l and k p; h� p�l, a 2 dcl� p1; q1; p�; therefore
dim� p1; q1; p; p2� � 4 and p is generic over p1 , q1, p2.

Thus there is an open interval containing p such that for all p0 in this interval
the following holds:

$ Åw 2 U f � p1; Åw� � q1 & f � p0; Åw� � h� p0� & "x 2 � p1; p0� f �x; Åw� > h�x�:
We choose p0 such that p < p0 < p2, p0 is generic over p, p1, q1, a, and the

above statement holds for p0 . Let Åw 2 U be such that f � p1; Åw� � q1, f � p0; Åw� �
h� p0�, and �"x 2 � p1; p0��� f �x; Åw� > h�x��. Since fa� p� � h� p� and f � p; Åw� > h� p�,
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we have fa� p� < f � p; Åw�; and for the same reason fa� p0� > f � p0; Åw�. As both fa�x�
and f �x; Åw� are continuous, there must be a p0 2 � p; p0� such that fa� p0� �
f � p0; Åw�. But fa� p1� � f � p1; Åw�, and thus by the properties of a nice family,
fa�x� � f �x; Åw� for all x 2 I. This is a contradiction, since fa� p� < f � p; Åw�.

Lemma 10.4. If p is generic, then h is F-differentiable at p and, moreover,
for a � dFh� p�, the function fa�x� touches h�x� at p.

Proof. Suppose that h�x� is not differentiable at p, that is, a� � d�Fh� p�6�
dÿFh� p� � aÿ. Assume that, for instance, a� > aÿ. Then for any a in the interval
�aÿ; a�� we have fa�x�4ÿp h�x� since a > aÿ, and fa�x�4�p h�x� since a < a�.
Therefore, for every a 2 �aÿ; a��, the function fa touches h�x� at p, contradicting
Lemma 10.3.

Thus h�x� is differentiable at p. Write a � dFh� p�. We want to show that fa touches
h at p. Suppose that it does not, and, for instance, h�x�ap fa�x�. Let p1 < p < p2

be such that h�x� > fa�x� for all x 2 � p1; p� and fa�x� > h�x� for all x 2 � p; p2�.
Since p is generic, we can choose p1 and p2 so that for any p0 2 � p1; p2� the

function h�x� is F-differentiable at p0 and if f � tF�h� p0�� then f �x� < h�x� for
x 2 � p1; p0� and f �x� > h�x� for x 2 � p0; p2�.

Considering an elementary extension of M, if needed, we can assume that M
is q-saturated, and the interval � p1; p2� does not contain any elements of acl� p; a�
except p itself.

Let a0 < a be an element of Jpq (recall that q � h� p�). Then fa0 a�p h�x� and we

can choose a0 and y 2 � p; p2� so that fa 0 �y� < h�y�. Since fa�y� > h�y�, by

continuity of f �x; Åu�, we can ®nd b < a 2 Jpq such that fb�y� � h�y�. As b < a,

fb�x�a�p h�x� and hence we can ®nd p0 2 � p; y� such that fb� p0� � h� p0� and

fb�x�aÿp0 h�x�. Namely let p0 be the ®rst point to the right side of p where

fb� p0� � h� p0�.
Since p0 2 � p; p2�, h�x� is F-differentiable at p0, and let f � tFh� p0�. As

fb�x�aÿp0 h�x�, we have fb�x�4ÿp0 f �x�. Since p 2 � p1; p0�, f � p� < h� p� � fb� p�, and
therefore, by continuity of functions f and fb, there must be a point in � p; p0� at
which these functions are equal. But f � p0� � fb� p0� and thus, by the properties of
nice families, f �x� and fb�x� must be equal, contradicting the fact that
f � p� < fb� p�.

Summarizing all of the above for an arbitrary function g�x� we obtain the
following theorem.

Theorem 10.5. Let F � f f �x; Åu�: Åu 2 Ug be a nice family on an open
interval I, g�x� a de®nable function with I Í dom�g�, and p a point in I generic
over the parameters needed to de®ne f and g. If g�x� is F-bounded at p then it is
F-differentiable at p, and moreover tFg� p� is the unique function in F which
touches g�x� at p.

Assume that F � f f �x; Åu�: Åu 2 Ug is a nice family on I. Notice that by clause
(ii) of De®nition 4.4, for every ka; b1l; ka; b2l 2 U, fa;b1

�x� � fa;b2
�x� for some x 2 I

if and only if b1 � b2.
The theorem below is a generalization of the calculus theorem which says that

a function with constant derivative must be linear.
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Theorem 10.6. For F as above, let h�x� be a de®nable continuous, F-
differentiable function on I. If dFh�x� is constant on I then h 2F.

Proof. We assume that all functions are de®nable over the empty set.
Let p be generic in I. By Theorem 10.5, tFh� p� touches h�x� at p, say, from

above. By genericity, there are p1 < p < p2 such that for every p0 2 � p1; p2�, if
f � tFh� p0� then f touches h at p0 from above and f �x�> h�x� for all x 2 � p1; p0�
and all x 2 � p0; p2�. Take p0 2 � p1; p�. Then

tFh� p0�� p0� � h� p0�< tFh� p�� p0�
and

tFh� p0�� p�> h� p� � tFh� p�� p�:
By continuity, there is an x0 2 I such that tFh� p0��x0� � tFh� p��x0�. By our

assumptions, dFh� p0� � dFh� p� � a for some a. Hence there are v 0 and v such
that tFh� p0��x� � fa;v 0 �x� and tFh� p��x� � fa;v�x�. It follows that fa;v 0 �x0� �
fa;v�x0�. By the comment preceding the statement of the theorem, v 0 � v; hence
tFh� p0� � tFh� p�. We can similarly show that tFh� p0� � tFh� p� for all
p0 2 � p; p2�. But then h�x� � tFh� p��x� for all x 2 � p; p2�.

Since p was an arbitrary generic point in I, we can partition I into ®nitely many
intervals on each of which h�x� � fa;v�x� for some v. By the continuity of h, the
functions from F must agree on the endpoints of these intervals; hence, as
before, they all are equal to each other. Namely, h�x� � fa;v�x� for all x 2 I.

Theorem 10.6 seems surprising since it depends on a particular parametrization
of F. However, note that if we change the parametrization then we might need
®rst to restrict the domain of F in order to ensure that it is a nice family. After
this has been done, the collection of F-bounded functions could change and the
theorem would not apply to the same functions.

Similarly to Theorem 10.6, one can formulate and prove the F-version of the
Mean Value Theorem and other calculus results. The notion of concavity with
respect to F can also be de®ned by saying that a function h�x� is F-concave up
on I if dFh� p� is increasing in p. Some basic properties which are usually related
to the second derivative can be proved using the above methods.
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