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ABSTRACT

Let .4 =(M,<,...) be a linearly ordered structure. We define .# to be o-minimal if every definable
subset of M is a finite union of intervals. Classical examples are ordered divisible abelian groups and real
closed fields. We prove a trichotomy theorem for the structure that an arbitrary o-minimal .# can induce on
a neighbourhood of any a in M. Roughly said, one of the following holds:

(i) a is trivial (technical term), or
(ii) @ has a convex neighbourhood on which .# induces the structure of an ordered vector space, or

(iii) a is contained in an open interval on which .# induces the structure of an expansion of a real closed
field.

The proof uses ‘geometric calculus’ which allows one to recover a differentiable structure by purely
geometric methods.

1. Introduction

Let R be a real closed field. Then R can be linearly ordered as a field; the semi-
algebraic sets are the subsets of R", with n =1, which can be written as finite
boolean combinations of solution sets to polynomial inequalities over R. Tarski
showed that the only definable sets in # = (R,<,+,-,0,1) are the semi-algebraic
sets, which amounts to showing that the collection of semi-algebraic sets is closed
under projections. It follows that in the structure # the only definable subsets of
R are finite unions of intervals whose endpoints lie in R U {*oo}. A linearly
ordered structure for which the latter property holds is called order-minimal, or
o-minimal.

Our basic object of investigation here is an arbitrary linearly ordered o-minimal
structure .# = (M,<,...). Three basic examples are:

(i) (D, <), where < is either a discrete or a dense linear ordering;

(ii) (V,<,+,d);cp, an ordered vector space over an ordered division ring (the
scalars of the division ring D are considered as functions in one variable,
by, say, left multiplication);

(iii) (R,<,+,-), with R a real closed field, and more generally, expansions of
R to richer structures which are still o-minimal, such as (R, <, +,-,¢")

(see [22]).
As we show here, the above three types exhaust in some sense all examples of
o-minimal structures. Because of the special nature of ordered structures, we can
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analyse the structures only locally. Given a point ¢ in an o-minimal structure ./,
we characterize the structure that .# induces on some neighbourhood of a as one
of the above three types. (We always refer to the order topology on M and the
product topology on M".)

For the next three theorems we take .# to be an o-minimal structure. A point
a € M is non-trivial if there are an infinite open interval / containing a and a
definable continuous function F: IXI — M such that F is strictly monotone in
each variable. A point which is not non-trivial is called trivial. As is shown in
[10], if every point in M is trivial then the definable sets in .# are just boolean
combinations of binary relations. If (G,<,*) is an ordered group definable on
some (infinite) interval in M then every point in G is non-trivial, as is witnessed
by the group operation. Our first theorem states roughly that every non-trivial
point arises in this fashion.

A set G M is convex if for every a < b € G, the interval (a,b) is contained in
G. A group (G, ) is called a convex A-definable group if G M is convex and
the graph of * is obtained by the intersection of a definable set with G.

THEOREM 1.1. Let M be wi-saturated. If a is non-trivial in M then there is a
convex A-definable infinite group G M such that a€ G and G is a divisible
ordered abelian group.

It follows from the theorem above that given a non-trivial a € M, there is a
closed interval I containing a on which a group-interval is definable (see § 2 for a
definition). This latter property holds without any saturation assumption on .Z. In
order to analyse the structure around non-trivial points it is thus left to investigate
the possible expansions of group-intervals.

Given an A-definable set D cM", we let .#|D denote the first order structure
whose universe is D and whose 0-definable sets are those of the form D N U for
UcM "k A_definable in .. (As Lemma 2.3 shows, if I is a closed interval then
every M-definable subset of I* is definable in .#|I.)

THEOREM 1.2. Assume that {I,<,+,0) is a O0-definable group-interval in an
wy-saturated M. Then one and only one of the following holds:

(1) there are an ordered vector space V" =(V,<,+,c,d(x))ycp.ccc With C a
set of constants) over an ordered division ring D, an interval [—p,p] in V,
and an order-preserving isomorphism of group-intervals o: I — [—p,p],
such that o(S) is O-definable in V" for every O-definable S 1" (abusing
language we say that M1 is a reduct of ¥"|[—p,p]);

(2) a real closed field R is definable in #|I, with the underlying set a
sub-interval of I and the ordering compatible with <.

As is shown in [9], the reduct of #”|[—p,p] which is mentioned in Case (1) of
the theorem arises as follows. If F < [—p,p|x[—p,p] is the intersection of the
graph of d(x) with [—p, p]* then F might not have a definable counterpart in .Z|1.
Instead, there could be a subinterval J C [—p,p] such that the graph of d(x)|J
has such a definable counterpart in .#|I. However, there are no other
restrictions for the identification of #|[—p,p| and .#|I. Moreover, the division
ring D is determined in .# and does not change when we move to an
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elementarily equivalent structure. Hence, by taking a sufficiently small convex
neighbourhood J c I of a non-trivial point, the structure that .# induces on J is
that of an ordered vector space over D (identified with an ‘infinitesimal’
neighbourhood of 0 in ¥").

Theorem 1.2 can also be formulated without the saturation assumption but the
statement (1) becomes more complicated and we omit it here. The two theorems
together give a local trichotomy for the possible structure of definable sets around
any point in M.

TricHOTOMY THEOREM. Let .# be an w;-saturated structure. Given a € M,
one and only one of the following holds:

(T1) a is trivial;

(T2) the structure that M induces on some convex neighbourhood of a is an
ordered vector space over an ordered division ring;

(T3) the structure that ./ induces on some open interval around a is an o-
minimal expansion of a real closed field.

We should note that there is more than one possibility for the local structure
around trivial points, where the term trivial could be misleading. For example, if /
is a group-interval in a structure .# then its endpoints might be trivial although at
least on one side of each point there is a ‘non-trivial’ structure. However, if a is
generic in M (see below), then the term trivial seems appropriate, since there is
then an open interval / around a where all points are trivial and the result from
[10] mentioned earlier can be applied to the structure induced on I.

1.1. The Zil’ber Principle for geometric structures

We assume here that .# is an w;-saturated structure which is not necessarily o-
minimal. Given A € M, we note that a € M is in the (model-theoretic) algebraic
closure of A, or a€acl(A), if a lies in a finite A-definable set. The following
definition is taken from [6].

DerINITION 1.3. The structure .# is a geometric structure if

(i) acl(—) satisfies the Exchange Principle: if a,beM, AcM and
b € acl(A,a) then either b € acl(A) or a € acl(A, b);

(i) for any formula ¢(x,) there exists n € N such that for any b in M", either
@(x,b) has fewer than n solutions in .# or it has infinitely many.

ExampLE 1.4. If .4 is an algebraically closed field, or a real closed field, or a
pseudo-finite field, or the field of p-adics, then the model-theoretic algebraic
closure is the same as the field-theoretic one, and hence it satisfies the Exchange
Principle. All those fields satisfy the second condition as well; hence they are
geometric structures. Real closed rings are geometric structures as well.

If .4 is strongly minimal (every definable subset of M is finite or co-finite) or
o-minimal then .# is a geometric structure (see [19] for the latter). Every reduct
of a geometric structure is itself a geometric structure.

We assume now that .# is a geometric structure. For ae M", AcM,
dim(a/A) is the minimal cardinality of @’ ca such that acl(@’ UA) = acl(@ U A)
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(in the field examples this is just the transcendence degree of a over the field
generated by A). The dimension of an A-definable set U c M" is defined to be
max{dim(a/A): a€ U} (in the field examples this is the same as the algebro-
geometric dimension of the Zariski closure of U); a € U is generic in U over A if
dim(a/A) = dim(U).

For our purposes, a curve is any definable 1-dimensional subset of M A
family of curves % is said to be definable if there are definable U c M k and
FCcUxM? such that 7 = {{{x,y): (x,y)€F}: ncU}. For aelU let
Ci = {{x,y): (i,x,y) € F}. We say that C; is generic in Z if & is generic in U
over the parameters defining F. The family % is said to be interpretable if U is
replaced by U/E, where E is a definable equivalence relation on U.

DerFINITION 1.5. A definable (or interpretable) family of curves & =
{Cy: ue U} is normal of dimension n if dim(U)=n (or dim(U/E) = n) and
for 2 # v from U (or U/E), C; and Cj intersect in at most finitely many points.

Given a geometric structure .#, one and only one of the following properties holds:

(Z1) for every interpretable infinite normal family of curves &, if € is a
generic curve in % and (a,b) is generic in &, then either
dim(¢ N ({a} xM)) =1 or dim(%¢ N (M x{b})) =1 (in particular, every
normal % is of dimension at most 1);

(Z2) every interpretable normal family of curves is of dimension at most 1, but
(Z1) does not hold;

(Z3) there is an interpretable normal family of curves of dimension greater
than 1.

B. Zil’ber (see [23]) suggested a correspondence between the above trichotomy
and the interpretability of certain algebraic structures in .#. We formulate this
correspondence as follows.

DErFINITION 1.6. A class #° of geometric structures is said to satisfy the
Zil’ber Principle, (ZP), if the structures in %~ which satisfy (Z1) are those with
no interpretable groups, the structures in ¥ which satisfy (Z2) are those whose
definable sets arise from an interpretable vector space (or more generally a
module), and the structures in %~ which satisfy (Z3) are those in which a field
can be interpreted.

Some of these connections are easy to establish. If (Z1) holds then no group is
interpretable in .#, for otherwise, after fixing some parameters, we can obtain
elements a, b, ¢ in M which are pairwise independent but such that a € acl{b, c}. We
can now find a definable family of curves # with a generic curve 4 in % defined
over ¢ and {a,b) generic in 4 over c¢. Then # illustrates the failure of (Z1).

If a field F is interpretable in .# then the family {y = ax + b: a,b € F} helps
illustrate (Z3). By quantifier elimination, if .# is a module, then (Z2) holds in .Z.
Various formulations of the converse were established for certain classes of
structures (see [5] for stable structures, and [9] for o-minimal structures).

Using this terminology, we note that Zil’ber’s original conjecture was that (ZP)
holds for the class . of strongly minimal structures. Hrushovski (see [4]) disproved
the conjecture by constructing a structure in & satisfying (Z3), without a field or
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even a group interpretable in it. A subclass of &, called the class of Zariski
structures, was later shown by Hrushovski and Zil’ber to satisfy (ZP) (see [7]).

Let .# be an o-minimal structure, and a € M be non-trivial. We say that a is of
type (Z2) if there is an open interval I containing a such that .Z|I satisfies (Z2);
otherwise a is of type (Z3). We state the following without proof:

(1) A satisfies (Z1) if and only if every point in M is trivial;

(2) A satisfies (Z2) if and only if the set of non-trivial points is non-empty, all
of type (Z2);

(3) A satisfies (Z3) if and only if there is a point in .# of type (Z3).

The Trichotomy Theorem together with the last comments are easily seen to
establish the Zil’ber Principle for the class of o-minimal structures, with one
restriction. In the case that .# satisfies (Z2) we can only say that locally, around
each non-trivial point, the definable sets arise from an ordered vector space
structure. No such global result can be obtained unless there is a definable
interaction between different parts of ./Z.

However, as a result of the proof we obtain a sharper, local result.

THEOREM 1.7. Let # be an o-minimal structure, and let a € M be non-trivial.
Then
(1) a is of type (Z2) if and only if it satisfies (T2) from the Trichotomy
Theorem;

(2) a is of type (Z3) if and only if it satisfies (T3).

REMARKS. (1) Zil’ber also conjectured that a field F, interpretable in a
strongly minimal structure .#, must be pure, namely that every definable set in
A|F is already definable in the field structure alone. This was disproved by
Hrushovski in [3] but later was shown to be true for Zariski geometries (see [7]).
Since we now know of proper o-minimal expansions of real closed fields, clearly
definable fields in o-minimal structures need not be pure.

Question. Is there a class of o-minimal structures, characterized ‘geometrically’,
in which every definable real closed field is pure?

(2) In [16] and [9] the main dividing line was the CF property. We chose to
replace it here with the more general characterizations of (Z1), (Z2), (Z3). It may
be shown that an o-minimal structure has the CF property if and only if it is of
type (Z1) or (Z2). Hence, Theorem 1.7 implies Zil’ber’s conjecture for o-minimal
structures as formulated in [15].

The structure of the paper

Section 2 provides some basic preliminaries for model theory and o-minimal
structures. It also includes basic notation for the possible ways curves may
intersect each other. In §3 we introduce some general machinery, called g-
relations, for constructing groups in o-minimal structures. In §4 we discuss some
good properties of definable families of functions and how to modify a given
family of functions to a well behaved one. In §5 we show how to use germs of
functions and their composition to obtain g-relations and hence to prove Theorem
1.1. In §6 we repeat a similar argument for addition of germs of functions. In § 7
we use the two constructions to define a field and prove Theorem 1.2. Section 8
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gives some examples regarding the possible global structure, while in §9 we give
some applications of the main theorems, including an example of an o-minimal
structure without proper o-minimal expansions.

The proofs of Theorems 1.1 and 1.2 use a fine analysis of how curves may
intersect in o-minimal structures. The ideas are inspired by the differentiable
structure of an ordered field and some basic calculus theorems. In the
Appendix, ‘Geometric Calculus’, we demonstrate the strength of this approach
and show how one can formulate and prove basic calculus theorems on purely
geometric grounds.

For a preliminary announcement describing the main ideas of this paper,
see [17].
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2. Preliminaries

NOTATION. We use .#, A" to denote structures and M, N for their underlying
sets. We use a, b, c,... to denote elements of the underlying set of a structure, say
M, and a,b,c,... to denote elements in some cartesian product, say M'. We
mostly use #, 4 to denote families of functions and take f, g to denote functions
in these families.

2.1. Model-theoretic preliminaries

DEFINITION 2.1. A structure .# ={(M,{S€ Z}) is a set M together with a
family & of subsets of M, M 2, ..., closed under intersections, complements,
cartesian products and projections and containing the diagonals. The sets in & are
called the O-definable sets in M. For ac A", Ac M, and S a 0-definable subset of
M, the set

S(@a,M*)={beM’: {a,b)ycS}
is called A-definable. A subset of M® is definable in ./ if it is A-definable for
some AcC M. A (partial) function from M" into M said to be A-definable if
its graph is. A family # of subsets of M" is definable if there is a definable

subset D of M"™* such that the sets in Z are exactly the fibres of D over
parameters in M k,

In Model Theory, one associates with every O-definable ScM”" an n-ary
relation symbol S and thinks of S as the set of solutions to S in .. The closure
properties guarantee that to every basic logical operation on S, with S € 2, there
corresponds a (-definable set of solutions in &. That is, we assume that .# has a
relational language and quantifier elimination. Abusing notation, we still use
function symbols such as + instead of a relational symbol for its graph. We say
that a group (a field) is definable in .# if its universe and operation(s) are
definable in .#. For other notions from model theory see [1].
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2.2. O-minimality

The main general references for basic o-minimal properties, including the ones
below, are [2, 19, 8]. On the notion of dimension and generic points see [18].

A structure A ={(M,<,...) is order-minimal (o-minimal for short) if < is a
linear ordering of M and every definable subset of M is a finite union of intervals
whose endpoints are in MU {*oo}. Then M,M 2., are equipped with the
product topology induced by <. We use the term ‘interval’ to denote convex sets
in M whose end points lie in M U {*oo}.

It is easy to see that for .# o-minimal, M = CUDUA where C, D, A are
0-definable and pairwise disjoint, C and D are open, A is finite, C is densely
ordered by <, and D is discretely ordered by <. As is shown in [21], there is no
interaction between the dense and discrete parts. Hence it is sufficient to analyse
the structures that .# induces on C and D separately. In [20], a complete analysis
of the discretely ordered part is given and the authors show that the definable sets
all arise just from translates in one variable. It follows that every point in D is
trivial. We are then left with the analysis of the densely ordered part.

For the rest of the paper we assume that 4/ is an o-minimal structure and < is
a dense linear order on M, with or without endpoints.

For ae M, BC M, a is in the definable closure of B, a € dcl(B), if the set {a}
is B-definable. Since .# is linearly ordered, algebraic closure equals definable
closure. We define dimensions of tuples and definable sets as in §1.1.

The dimension formula
We use the following dimension formula:

dim(ab/A) = dim(a/Ab) + dim(b/A).

Generic points

If UcM" is an A-definable set, # € U and dim(#/A) = dim(U), then & is
called generic in U over A. If ./ is w-saturated then every definable set contains
a generic point over its defining parameters.

Dimension of definable sets, as defined above, can be evaluated only in
sufficiently saturated structures. However, given a definable set in any o-
minimal structure, we can go to an elementary extension which is sufficiently
saturated and evaluate the dimension there (this can be seen to be independent of
the particular extension). As (2) of the following theorem shows, the dimension of
definable sets also has a topological characterization and therefore can be
evaluated in any model.

THEOREM 2.2. (1) Let f: I — M be a definable function on an interval I.
Then I can be partitioned into finitely many open intervals and points such that f
is continuous and monotone on each interval.

(2) Let UcM" be an A-definable set, u generic in U over A. Then
dim(U) = k if and only if there are an open rectangular neighbourhood V. M"
of u and a projection map w onto k of the coordinates which gives a
homeomorphism between U NV and an open subset of M K In particular, if u is
generic in M" over A and w € U CM" for some A-definable set U, then u is in
the interior of U.
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It follows from the theorem that dimension of sets is a definable notion.
Namely, for U c M”""* an A-definable set and k € N, the set

{aeM": dim(U(a,M")) = k}
is A-definable.

The induced structure on a subset

Since the main results of this paper are about the structure that .# induces on a
neighbourhood of a point, we want to clarify this notion.

For the purpose of the following theorem only, we assume that the reader is
familiar with the definition of a cell and the cell-decomposition theorem.

LEMMA 2.3. Let I M be a closed interval. Then for every definable Sc1", S
is definable over I.

Proof. First note that by going to an elementary extension we may assume
that .# is w-saturated. By the cell decomposition theorem we may assume that §
is a cell. Since I is closed, the boundary of S lies in I". By induction, it is
sufficient to handle the case where

S={{a,b)yeM"": b=f(a) & acC},

where C cI* is a definable cell and f: C — M is a definable continuous function.
By induction, C is definable over /.

If f is definable over w, we let w =2, where a€l” for some r, o=
V..., and v; €1 for i=1,...,m. We may assume that f is not definable
over any sub-tuple of w. We use induction on m.

Consider the type ¢(%,y), defined as {(X,y) € I*™'} together with the formulas

{f®@ =y} u{g®) #y: g I"* — M is a partial function
definable over iv; ...v,_;}.

If ¢ is inconsistent then by compactness there are finitely many definable functions
gi»-..,&r €ach definable over iiv,...v,_;, such that, for every (a,b) e I* if
f(@) = b then g;(a) = b for some i. By the induction assumption on k, we may
assume that the domains of the g; are pairwise disjoint and that the graph of each
g; 1s definable over I; hence so is the graph of f.

We assume now that g is consistent and let (a,b) realize it. Then,
b edcl(a,u,?) but b¢dcl(a, i, v,...,v,_1). By the exchange principle, v,, €
dcl(a, b, i, vy,...,v,_1). Hence f is definable over the set {a,b,u1,vy,...,v,_;}
and a, b, i in I. We can now finish by induction on m.

It follows from the lemma that for a closed interval / the M-definable subsets
of I" are definable in .#|I. Hence ‘the structure that .# induces on I’ is an
unambiguous notion. (The above lemma also follows from Lemma 1.2 in [13]
and, moreover, it then holds when I is replaced by any 0-definable subset of M).

DEFINITION 2.4. An element a € M is non-trivial over A Cc M if there exists
an open interval I containing a and an A-definable function F: IXI — M such
that F is continuous and strictly monotone in both coordinates. We say that a is
non-trivial if it is non-trivial over some A c M.
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LeEmMMA 2.5. Let M be w-saturated. If a is non-trivial then for every open
interval J containing a, a is non-trivial over J.

Proof. By assumption, there is a map F: JXJ — M which is continuous and
strictly monotone in both variables. We may assume that F(a,a) = a for if not,
we can compose F on the left with the inverse function of F(a,x). Hence there
are closed intervals J;,J, J such that a € Int(J;) and f: J, xJ; — J,. We can
now apply the last lemma and conclude that f|J; xJ; is definable over J.

Non-orthogonality

DEFINITION 2.6. We say that a,b € M are non-orthogonal to each other if
there is an order-preserving or order-reversing definable continuous map which
sends an open neighbourhood of a onto an open neighbourhood of b.

The following technical lemma will be used in several places in the paper.

LEMMA 2.7. Assume that a is non-trivial. Then there is an open interval |
around a such that every two points in I are non-orthogonal to each other.
Moreover, the map which shows the non-orthogonality can be taken to be either
order-preserving or order-reversing, uniformly for every two points in I.

Proof. Assume that F: IXI — M is a definable, continuous map which is
strictly monotone in both variables, a € Int(7). By the continuity of F, F(d’,y) is
either strictly increasing in y for all a’ €1, or strictly decreasing in y for all
a' €1. A similar result holds for F(x,a’).

Given (b,c)eIxI, let d =F(b,c). The curve {{x,y)€IXI: F(x,y) =d} is
the graph of a continuous map g, . from a neighbourhood of b onto a
neighbourhood of c. Then g, . is either order-preserving or order-reversing.

If it is order-reversing, then F is either strictly increasing in both variables or strictly
decreasing. In both cases the map g. . gives an order-reversing continuous bijection
between two neighbourhoods of c¢. The map g..og, . gives an order-preserving
map between neighbourhoods of » and c.

We deal similarly with the case that g, . is order-preserving.

A-definable groups and rings. Group-intervals

If Ic M is not a definable set (for example, if it is a convex A-definable
ordered group) then we will not consider the structure which .# induces on [ as a
standard first ordered structure. However, there is still a natural notion of a
definable subset of I".

DEFINITION 2.8. Assume that / is a subset of M. We say that ScI” is
definable in |1 if S=1"ND for D an ./-definable set. A map h: I" — I* is
definable in |1 if the graph of h is definable in .#|I.

As mentioned in [16, p.99] we have the following lemma.

LEMMA 2.9. If G is a convex A-definable ordered group then the only subgroups
of G definable in M \|G are G and {0}. Furthermore, G is divisible and abelian.

For p > 0 in a convex A-definable ordered group G, the structure {[—p, p], <, +,0)
(where + here denotes the partial function on [—p,p| x [—p,p]) is called a group-
interval. As was shown in [9, 6.3], group-intervals in o-minimal structures
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eliminate quantifiers in the proper language and all are elementarily equivalent to
each other. Clearly, every convex A-definable group contains a group-interval.

A convex A-definable ordered ring is a convex A-definable ordered group
(R, <,+) together with a map e: R?> — R which is definable in ./ |R and makes R
into an ordered ring. Note that by [19] every o-minimal ordered ring is a real
closed field, but since a A-definable ordered ring is not necessarily o-minimal as
an independent structure, it might not even contain an identity.

LEMMA 2.10. (1) If G is a convex A-definable ordered group then the group
operation is continuous on G.

) If R is a convex A-definable ordered ring then the ring operations are
continuous on R.

Proof. (1) Tt is easy to verify that if P(x,y) is a function which is strictly
monotone and continuous in each variable then P is continuous. Clearly, + is
monotone in each variable. It is continuous in each variable because it is
surjective and monotone in each variable and hence takes intervals to intervals.

(2) By (1), we only need to check that the functions /,(x) = ax and r,(x) = xa
are continuous for each a € R. But by Theorem 2.2, there is a point xy € R at
which [, is continuous. It follows that I,(x) = I,(x + xq) — ax, is continuous at
x =0, and similarly /, is continuous at any point in R. Similarly, r, is continuous.

Preorders

For a point p e M we will say that a property P holds for x € (p), or for
x € (p)*, or for x € (p)~, if there exist a < p < b so that P holds for all x € (a, b),
or for all x € (p,b), or for all x € (a,p), respectively.

DErFINITION 2.11. A binary relation R on a set S is called a preorder relation
(or just a preorder) on S if R is transitive, reflexive and total on 1.

Let R be a preorder on an open convex set I. We say that R is positive, or
negative, on I, if for all v,u €I, v<u implies R(v,u), or R(u,v), respectively.
The following lemma is used extensively throughout this work.

LEMMA 2.12. Let R(x,y) be an A-definable preorder on an open convex set
IcM, and a €1 be generic in M over A. Then there is an open interval Iy C 1
containing a such that R is positive or negative on I

Proof. Since R is a preorder, by o-minimality, R(a,b) holds for b € (a)", or
R(b,a) holds for b € (a)™. We assume that R(a,b) holds for b € (a)* and show
that there is an interval I, I containing a such that R(x,y) is positive on .

Since R(a,b) holds for b€ (a)*, we can find a' >a in I such that R(a,b)
holds for all b€ (a,a'). Decreasing a], if needed, we can assume that a' is
generic over aA and therefore a is generic over a'A. Thus there is an open
interval I' 1, containing a, such that R(c,b) holds for all cel " and all
b€ (c,a'). It is easy to see that R is positive on the interval Iy = {x € I": x <a'}.

Intersection of curves

DEFINITION 2.13. Let f(x), g(x) be definable functions, and let p € dom(f) N
dom(g). We will use the following notation:
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[ =y g if f(p) =g(p) and f(x) < g(x) for x€ (p);
f <, gif f(p) =g(p) and f(x) <
= gif g<, f;
frp 8itg=, [
f=,gif f=) gand f <, g
f=<,8if g=,f.

We also use:
f=<p gif f<, g and f(x) # g(x) for x € (p)*;
f=<, 8if f<, g and f(x) # g(x) for x € (p)~;

We define f > g, f >, g, f >, ¢ and f <, g similarly.

Notice that by o-minimality, if f(p)=g(p) then f<J g or f> g or
f(x) = g(x) for x€ (p)*. Similarly, f <, g or f >, g or f(x) = g(x) for x € (p)~.

We say that a function f(x) rouches from above, or touches from below, a
function g(x) at a point p € dom(f) ndom(g) if f(p) = g(p) and f(x) = g(x), or
f(x) < g(x), respectively, for x € (p).

We say that f touches g at p if it touches from above or below (see Fig. 1).

70 8(x)

&0 flo)

/= ; 8 frp8./<p8 S touches g from below

FiG. 1.

Notice that if f is strictly increasing, or strictly decreasing, on a neighbourhood
of ¢ and h(p)=g(p)=gq then g<,h if and only if fg(x)<, fh(x), or
fg(x) >, fh(x), respectively.

3. Q-relations and groups

The main objective of this paper is, given a non-trivial point a in M, to define a
one-dimensional group (or a field) containing a. In the context of stable structures
this problem is often reduced to a certain combinatorial configuration of geometric
dependencies which is called the group (or field) configuration. Our goal in this
section is to reduce the problem of defining one-dimensional ordered groups in
o-minimal structures to that of defining 4-ary relations with certain properties,
which we call quotient relations, or g-relations. Roughly said, if R is a g-relation
and a,b,c,d € M then in the ordered group which we are going to define, written
multiplicatively, we have (a,b)R{c,d) whenever ab~' <cd ' (but not necessarily
the converse).

DEerINITION 3.1. Let R be a 4-ary definable relation, and ./ be a non-empty
open convex subset of M. We say that R is a quotient-relation, or a g-relation, on
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of if the following properties hold (we will write (a,b)R{c,d) instead of
R(a,b,c,d)):
(ql) R is a preorder on .7, that is,
(a) (ay,b1)R{ay,b,) and {a,,b,)R(as, bs) implies {a,, b,)R(as, bs),
(b) {a,b)R{a,b) for all a,b € .o/,
(c) for all a,b,c,d € o/, {a,b)R{c,d) or {c,d)R{a,b);
(q2) for all b,a,a' € <7, {a,b)R(a",b) if and only if a <a';
(q3) (ay,b)R(ay,b,) if and only if (b,,a,)R{b;,a,);
(q4) if {a,b)R{c,d) and {b,a,)R{d,c,) then {a,a,)R{c,c;);
(q5) for all a,a;,a,,b € o/ with a; < a, there are by, b, € o/ so that

(a;,a)R{b,b)R{ay,a) and {a,,a)R{(b,,b)R{a,,a).

Axiom (qg5) is different from the others in its logical form. It is usually the hardest
to verify and guarantees that R is ‘non-degenerate’, as the next example shows.

ExampLE 3.2. Let (A,<) be a dense linear ordering. We let R be the 4-ary
transitive relation defined by the following conditions:

(1) ifa<b, ¢, =d,, c; =d, and e > f then (a,b)R{c|,d\)R{c,,d>)Re, f);

(ii) if a; < b; for i = 1,2 or if a; > b; for i = 1,2 then {a,,b;)R{a,, b,) if and
only if we have a; < a, or we have a; = a, and b; > b,.

The relation R is just a modified version of the lexicographic ordering on A% Tt

is easily seen to satisfy (q1)—(g4) but not (g5). Since R is definable in (A,<) and
this structure is trivial, no group can be definably recovered in (A, <, R).

We now consider two examples of q-relations and discuss the associated
I-dimensional order groups.

ExampLE 3.3. Let 4 be an ordered group. The quotient relation R, defined as
{a,b)R{c,d) if and only if ab~' <cd ™', is a g-relation on G. In order to recover
a group in the structure (G, <, R) we need to consider first the equivalence relation

{(a,b) ~{(c,d) & {a,b)R{c,d) and {c,d)R{a,Db).

We can then easily define a group on G2/ ~.

In practice, such an R could arise, for example, as follows. We are given the
family of real-valued functions f,(x) = ax, for a € R". We then define R by the
condition {(a,b)R{(c,d) if and only if f,f, ' < f.fi '. It is easy to see that we
obtain precisely R as above with G being the multiplicative group of the positive
real numbers.

ExAMPLE 3.4. Consider the real functions f,(x) = x* + ax, for a€ R*. It is
easy to check that the relation R defined as {(a,b)R{(c,d) if and only if
fa fbfl <if fdfl is a g-relation on the set of the positive elements of R. Thus R
has the property that if a/b < c/d then {a,b)R{c,d), but the converse does not
hold.

Consider the structure (R*,<,R). The difference from the previous example is
that in this case, if we define ~ as above, then (a,b) ~ (c,d) if and only if a = b
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and ¢ =d, or a =c and b =d. Thus ~ is definable in the structure {(R",<), and
therefore no group can be defined from ~. To get a group, one needs to define
first an equivalence relation E such that (a,b)E(c,d) if and only if f,f, ' (x) and
fe fdfl(x) have the same derivatives at 0; and then, using properties of derivatives,
one has no difficulty defining a group on (R*)z/ E. Now E is clearly definable
if the field structure is present (since derivatives are definable) but it is also
definable in (R, <, R) alone, by

(a,b)E(c,d) < {c;,d)R(a,b)R(c',d) for all ¢, <c<c.

As we show in this section, every q-relation on a convex set ./ has an
associated equivalence relation E defined as above and a natural group structure
on .«/>/E. In the subsequent sections, the g-relations will arise in a fashion
similar to Example 3.4 and E will mimic the definition of tangency between two
functions at a point.

We fix an open convex set .o/ c M and a 0-definable relation R c M 4 Such that
R is a g-relation on .o7.

LEMMA 3.5. For a,b,b; € </,
(1) {a,a)R{b,b),
(2) (a,b)R{a,b,) if and only if b; <b.

Proof. Part (1) follows from (q1)(c) and (q3). Part (2) follows from (q2) and (q3).

DEFINITION 3.6. For a,b,c,d € o/, let
(a,b)E(c,d) < {c;,d)R(a,b)R{c',d) forall ¢; <c<c'.
Now E is definable in .#|.«Z, for if we let
(a,b)E'{c,d) & {(c|,d)R{a,b)R(c',d) for c; € (¢)” and c' € (c)",
then E’ is definable and by properties (ql), (q2), E = E' N .o/ 4

LEMMA 3.7. Let a,b,c,d € o/ be such that {a,b)E{c,d).
() If ¢' € o and {c',d)R{a,b) then ¢’ <c.
(2) If ¢' € o and {a,b)R(c’,d) then c <c'.

Proof. (1) Suppose that this is not true, and ¢’ >c. Take ¢ <c” <c¢’. Since
{a,b)E{c,d), we have {(a,b)R(c",d); by (ql)(a), {c’,d)R(c",d), and, by (q2),
¢ <c"”. We have a contradiction.

(2) This proof follows the same idea as in (1).

LemMmA 3.8. Let a,b,c,d € /. The following hold:
(1) {a,b)E{c,d) if and only if ¢ = inf{c’ € o/: {a,b)R(c’,d)};
(2) {a,b)E{c,d) if and only if ¢ = sup{c’ € .o/: {c',d)R{a,b)}.

Proof. This is easy.
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LeEmMmA 3.9. The relation E is an equivalence relation on <A

Proof.  Reflexivity. This follows from (ql)(b).
Symmetry. Assume that {(a,b)E{c,d), for a,b,c,d € o/. Let a;<a< a' € .o
We need to show that

(ay,b)R(c,d)R(a', b).
By (q5), there are cl,c1 € .o/ such that
(ay,b)R(cy,d)R{a,b)R(c",d)R(a", b).

By Lemma 3.7, ¢; <c <c' and thus {a;,b)R{c,d)R{a",b), by (q2).

Transitivity. Let a,b,c,d,e,f € o/ be such that {a,b)E{c,d)E{e, f). We will
prove that (a,b)E{e, ).

Let ¢ <e<e”€.o/. We need to show that (¢, f)R(a,b)R(¢", f). Choose
e,,e1 € .o/ such that

d<e<e<e <é

Since {c,d)E{e, f), we have <el,f>R<c,d>R<el,f>. By (q5), there are al,al €.,
such that

(¢, f)R(ay,b)R(e,, f) and (e',f)R(a',b)R(e", f).
Thus we have
(¢, f)R(ay,b)R{c,d)R(a' ,b)R(", f).
Since we have proved already that E is symmetric, {c,d)E{a,b); hence, by
Lemma 3.7, a; <a <a'; and thus (¢, f YR(a, b)R(", f ).
NoTtATION. For a,b € </, we let a/b denote the E-class of {a,b).

LEmMa 3.10. (1) We have a/a =b/b for all a,b € of.
(2) Let a,b,c,d € /. Then a/b=c/d if and only if b/a=d/c.

(3) For all a,b,c € o/ there are unique d,e € o/ such that a/b=d/c and
a/b=c/e.

Proof. (1) This follows from Lemma 3.5 and (q2).
(2) Obviously it suffices to prove the ‘only if’ part. Suppose that a/b=c/d
and d; <d < d". We will show that (d,, ¢)R(b,a)R{d", c). By (g3), it is equivalent to

(¢,d"YR{a,b)R{c,d,).
Choose d,,d 2 € o/ such that
dy<dy<d<d*<d'.
By (g95), there are ¢, c, so that
(dy,c)R(d,c" YR(dy,c) and (d* c)R(d,c,)R(d",c). (1)

Since d, < d < d*, by (q2), (g3) and Lemma 3.5, ¢; < ¢ < ¢';s0(c;,d YR(a, b)R{c",d),
and, by equation (1) and (q3),

{¢,d"YR(a,b)R{c,d,).
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(3) Uniqueness follows from Lemma 3.8. By (2), we need to show only the
existence of d.

Since ./ is open, we can choose a,,a' € .o/ such that a; <a<a'. By (q9),
there are a’l,a’1 € o/ such that

(ar, b)R(d,, c)R(a,b)R(d", c)R(a', b).

Since R is definable and .# is o-minimal, there exists d = inf{d’ € [d,,d"]:
(a,b)R{d'c)}. It is easy to see that d € .o/ and {a,b)E{d,c).

LEmMMA 3.11. Let a,b,c,d,e,f be in .

(D) Ifa/b=c/d and b/e =d/f then a/e = c/f.

() Ifa/b=c/d a/b#e/f and {a,b)Re, f ) then {c,d )R{e, f ).

(3) If {c,d)R{a,b) and {a,b)R{c,d) then a/b=c/d.

Proof. (1) Let ¢; <c <c' € .o/. We need to show that {c;, f)R(a, e)R(c", f).

Choose cz,c3,c2,c € .o/ so that

Cq <C2<C3<C<C3<C2<Cl.
By (q5), there are dy,d' € .o/ such that
(c2,d)R(e1,d))R(c3,d) and (c*,d)R(c',d")R(c*,d).

By Lemma 3.5, d; <d <d". Since {(a,b)E{c,d),

(3, d)R(a,D)R(c’,d)
and therefore

<Clad1 >R<a’b>R<C]’d1>~ (2)
Since (b, e)E(d, f) and d, <d <d",
<d1,f>R<b,€>R<d1,f> (3)

By equations (2) and (3) and (q4),

(1 [IR(a, e)R(c", f).
(2) Since a/b+#e/f, by Lemma 3.8 there is a' >a such that (a',b)R(e, f).
But {c,d)E(a,b) and hence {c,d)R{(a',b)R{e, f).
(3) For ¢y <c<c,
(ci,d)R{c,d)R{a,b)R{c,d)R(c",d).
Hence {a,b)E{c,d).

For a,b,c € o/ we define a/b*b/c=a/c. By Lemma 3.11(1), * is well
defined and, by Lemma 3.10(3), it is a binary operation on ./>/E. For a/b#e/f
we define a/b <e/f if and only if {a,b)R{e, f). By Lemma 3.11 and (ql), this
is a well defined linear ordering on ﬂz/ E.

LEMMA 3.12. The structure {./*/E,<,*) is an ordered group, with the class
a/a as the identity element.

Proof. Obviously * 1is associative; by Lemma 3.10(1), the diagonal
{(a,a): a€ o/} is an E-class and acts as an identity element; b/a is the inverse
of a/b. By (q4), the group is ordered by <.
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Since E is definable in .#|.</, < and * are both the traces of .#-definable sets
on .«/>/E. If we now pick e € .o/ then, by Lemma 3.10(3), the map f(x) = x/e
gives an order-preserving bijection between (.o/,<) and {./>/E,<) and f(x) is
definable in .#|.</. Using this map, we see that * induces a convex A-definable
ordered group structure on .o/, with e as the unit element. Namely,

a*b=c & a/exb/e=c/e.

By Lemma 2.9, the group must be divisible and abelian. Thus we have proved the
following theorem.

THEOREM 3.13. Let Rc M 4 be B-definable, and o/ M be a convex open set
such that R is a q-relation on o/. Then, for every e € .o/, there is a Be-definable
function *, such that {.</,<,*,) is a convex A-definable ordered group whose
identity element is e. The group is divisible and abelian.

As we remarked earlier, in our setting, for a convex set .o/ and a relation
Rc .</*, properties (ql)—(gq4) are going to be fairly easy to verify. Most work will
go towards proving (q5). As we are going to show below, in order to deduce (q5)
for such a relation R it is sufficient to verify the following properties: for all
a,b,c,d € o/,

(R1) if ¢ > d then (b,a)R{c,d) for b (a)",
(R2) if ¢ < d then {c,d)R(b,a) for b € (a)
(R3) if ¢ < d then {c,d)R(d,a) for b € (a)
(R4) if ¢ > d then (d,a)R{c,b) for b€ (a)".

s

’

DEFINITION 3.14. If a€ M and B c M then the .#-cut of a over B is the set
{mGM bl <m<b2 for all b19b2 € B with bl <a <b2}.

DEFINITION 3.15.  An element a is said to be dcl-internal in a set C if for any
finite Cy < C there exist ¢y, ¢, € C such that ¢; <a < ¢,, dim(c;c,/Cya) =2 and
(c1,¢2) Ndel(Coa) = {a}.

DerFiNiTION 3.16. Given a finite set BC M, we call an open convex set
o/ €M good over B if there exist a* € o/ and an infinite set C € M containing B
such that

(i) dim(a"/B) =1,
(ii) a* is dcl-internal in C,
(iii) .7 is the .#-cut of a* over C.

ExampLE 3.17. Let &/ <.#, a* €N, and &/ be the .#-cut of a* over N. If
AN is w-saturated then a* is dcl-internal in N, and if, in addition, .# is |.4"|"-
saturated then ./ is good over any finite set B N such that dim(a"/B) = 1.
However, if ./ is not |./"|"-saturated then .o/ might not be open.

LEMMA 3.18. For ./ an w,-saturated structure, BC M finite and a* generic
over B in some open interval I C M, there exists o/ C 1 containing a* which is
good over B.
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Proof. 'We obtain C by applying successively the saturation of .#, at each step
getting ¢, <a* < c¢" such that, for all ¢,c’ € dcl(cl,...,cn_l,cl,...,c””,B, a*) for
which c <a* < ¢, wehave c < ¢, <a" <" <. Now .o/ is the ./ -cut of a* over C.

THEOREM 3.19. Let ACM be an open interval and BC M be finite. Assume
that Rc A" is a B-definable relation satisfying, on A, (ql1)—(q4) and (R1)—-(R4). If
o/ C A is a good convex set over B then R is a g-relation on /.

Proof. The proof is accomplished in a series of lemmas. We assume that C
and a" are as in the definition of a good convex set.

LEmMMA 3.20. Given ¢(x,y) a formula over B, if ¢(aj,a,) holds for some
ay < ay, with ay,a, € o/, then ¢(a,b) holds for all a < b with a,b € /.

Proof. Assume first that ¢(a,a”) holds for some a<a”, with a € .o/. Then,
since ¢(x,a") is a formula over C and a” is dcl-internal, there exists ¢; < a”, with
¢ € C, such that ¢(a,a”) holds for all a € (¢;,a”). By the assumption on C we
may choose c¢; generic over Ba”", and hence a* generic over Bc;. It follows (again,
by the assumption on C) that for all b€ .7, if a€ (c,b) then ¢(a,b) holds.
Hence for all a < b, with a,b € .7, ¢(a,b) holds.

Now, if —¢(a,a”) holds for all a <a” in .o/, we can apply the above argument
to =, and hence, for all a <b with a,b € </, —¢(a,b) holds, which contradicts
our assumption that ¢(a;,a,) holds for some a; < a, from .«7.

LemMmA 3.21. For all a,a,,b € of there are bl,b1 € o/ such that
(b1, b)R(a,a, )R(b",b).

Proof. Since ./ is an open .#-cut over C, it suffices to show that
(c1,b)R(a,a))R(c', b)

for all ¢;,c' € CNA with ¢, <a® <c'.

Suppose that this is not so, and, for instance, (a,a;)R{c;,b) for some
c; € CNA with ¢; <d". Since a" is dcl-internal, we may increase ¢, if needed,
and assume that a” is generic over Bc;. Let ¢, be any element in C N (cj,a”)
such that a” is generic over Bc,c,. Since ¢, < a” and ¢, € C, we have ¢, < b, and
therefore (a,a;)R{c;,c,). Notice that .o7 is still a good convex set over Bc;c, and
a; is generic over C.

Since ¢, > ¢y, it follows from the above equation and (R2) that a < a;, and thus,
by Lemma 3.20,

(ay,a1)R(cy, ;) fora, € (ay).
But, by (R2), {c,c:)R{(d’,a,) for d’ € (a;)” and, by (ql)(c),
(ay,a,)R(d',a,) for ay,d € (a;),

which contradicts (q2).

LEmMA 3.22. For all b,a,a,,a, € o/ with a| < a, there exists d € o/ such that
(ar, a)R(d,b)R(a,, a).
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Proof. By Lemma 3.21, there exist d;, d, € .o/ such that (d;,b)R{a,,a)R{d,, b).
Let

d' = sup{d € [d,,d>]: {d,b)R(a,,a)}.

Since R is a definable relation, such a d’ exists.
Case 1: (d',b)R{a,,a). Since d' € .o/ and d’ is generic over B, we can apply
(R1) and obtain d > d’ € .o/ such that {d,d")R(a,,a,). By (g4),

(d,b)R{ay, a)
and, since d > d’, by the choice of d !
(aj,a)R{d,Db).
Case 2: {ay,a)R{d’,b). We want to show that {(d’, b)R{a,,a). If not, then
(ay, a)R(d", b). (4)
By (R2), we can find d <d’ € .o/ such that
<al7a2>R<d,d/>-
Combining the above equation with (4), we obtain
(ar, a)R(d,b),

which contradicts the choice of d’.

Lemma 3.23. For all b,a,ay,a, € o/ with a; < a, there exists d € o/ such that
<al9a>R<bad>R<a2’a>'

Proof. By (R3), there is an d' < a in .o/ such that
(al,a/>R<a2,a>-
Since a’ < a, we have
<alsa>R<alsal>R<a2aa>-
By Lemma 3.22, we can find d € ./, such that
(d,a)R{d,b)R{a,a,).
Therefore, {a,,a)R{b,d)R{a,,d"), and hence
(ay,a)R(b,d)R{a,,a).

By Lemma 3.22 and 3.23, R satisfies (q5) and hence it is a g-relation on .o7.
This completes the proof of Theorem 3.19.

4. Nice families of functions

Unless otherwise stated we assume for the rest of this paper that M is an w;-
saturated structure (in practice, most arguments will use only the existence of
generic points).

DErFINITION 4.1. If # = {f;(x): a€ U} is a definable family of (partial)
functions from M into M, we say that % is normal of dimension n if the family
of graphs of the functions is normal of dimension n.
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For (x,y)eM?*, we let
ny = {ﬁ eU: fﬁ(x) :y}

Our goal in this section is to replace a given normal family of functions of
dimension greater than 1 with a well-behaved one, in order eventually to use it to
define a g-relation.

LEMMA 4.2. Let 9 ={G(a,x): uc U}, be an A-definable normal family of
functions on I of dimension n.

(i) Assume n>0. For u € U and a €1, if dim(a/A) >0, dim(a/Aa) =1 and
G(i,a) = b, then dim(ab/A) = 2.

(i) Assume n> 1. For {ii,a,,a) generic in Ux1* over A, if b; = G(ii,a;), for
i =1,2, then dim(b,b,/Aa,a,) = 2.

Proof. (i) If b €dcl(aA) then there exist a neighbourhood /; of a and an A-
definable function i(x) which equals G(&,x) for all x € I;. Since dim(i/A) >0,
there are infinitely many functions from % which agree with i(x) on I,
contradicting the normality of %.

(ii) By the dimension formula and the fact that dim(iia, /A) =3, we may
conclude that dim(iz/Aa;b;) > 0. We also have

dim(a, /Aa;b,i) = dim(a, /Aait) = 1,
and so, applying (i) with Aa,b; playing the role of A, we have dim(a,b, /Aa,b,) = 2.

THEOREM 4.3. For UcM" a definable set and 1 an interval, let
9 ={gu(x): we U} be a definable normal family of functions on I of dimension
n> 1. Then there exist an open interval J 1 and an open set V 1 2, together
with a definable continuous family of functions on J, F = {f;: u €V}, such that

(1) every function f; € & is strictly increasing;
(ii) for every {(x,y)€ M?  either V., is empty or the projection map
. V — M is a homeomorphism between V., and an open interval in M;

(iii) for every uy # i, both in V, there is at most one x in J such that
fa, (%) = fa,(x), in which case m (i) < m(i1y) if and only if fi, <, fz,-

DEFINITION 4.4. A definable continuous family of functions which satisfies (i),
(i1) and (iii) of the theorem is called a p-nice family on J. A family % is called
n-nice if it satisfies (i), (ii) and

(iii) for every ii; #ii,, both in V, there is at most one x in J such that

fa, (x) = fz,(x), in which case 7 (it;) < (i) if and only if f; >, f;,.
A family & is called nice if it is either p-nice or n-nice.

Proof. By taking a definable subset of U x/I and projecting onto M? x I, if
needed, we may assume that U is an open subset of M % and that G(y1,y2,x) =
8y,.y,(x) is continuous and strictly monotone in all three variables. Using the same
type of manipulations as in the proof of Lemma 2.7, we may assume that
G(y1,y,,x) is strictly increasing in all its variables on an open set VxJ c U X 1.
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Moreover, for every (y;,y,,a)€ V XxJ there are definable bijections between
neighbourhoods of y;, y, and a; therefore we may assume that V cJ 2,

We use & for (y;,y,). Take (i, e) generic in V xJ and let b = G(iy, e).

It is easy to see that dim(V,,) = 1. Since G is strictly increasing in all its
arguments, both projections m, m,: V,, — M are one-to-one, and therefore there
is an open subset V; c V containing i, so that w; and 7, are homeomorphisms
from V; nV,, onto open subintervals of M. We may assume that V = V;. Using
genericity of iy, and e we can cut down V and J so that for all # € V and x € J, if
y = G(i,x), then dim(V,,) = 1. Moreover, by Theorem 2.2, we may assume that
both projections are homeomorphisms between V,, and open subintervals of M.
Notice that since G is strictly increasing in all arguments, the composition w7y "
is an order-reversing homeomorphism.

Consider now the relation <) on V,,. By o-minimality, there is an open V'
containing i, definable over generic parameters, such that either

(Ve V' N\ V) (m () < m(itg) — G(it, x) <. G(itg, x))

(Ve V'O Vy)(mi(a) < (i) — G, x) > Glig, x)).

Interchanging y;, ¥, in G(y{,y,,x) and replacing V by V~!, if needed, we can
assume that the first holds. Since (iiy,e) is generic in V'xJ, it has a
neighbourhood V; xJ; €V xJ such that for every (2,¢’) € V; xJ, we have

(Ve V) (G@a,e) = G(d,¢) & m (i) < m(9) — G(it,x) <), G(2,x)).  (5)

We may replace V by V; and use V again to denote the set. By repeating the
above argument we may also assume that for every (it,e’) € V x J, we have either

(Vo e V)(G(2,x) = G(i,x) & 7((?) < m (1) — G(2,x) <, G(D,x)) (6)
or
(Vo e V)(G(2,x) = G(i,x) & m(?) < m (1) — G(2,x) >, G(9,x)). (7)

We choose a; < a, in J, dim(a;a,/iy) =2 and let b; = G(itg, q;) for i =1,2.
By Lemma 4.2, dim(b,b,/a,a,) = 2 and therefore there are open intervals Jy, J,,
containing b, and b, respectively, so that for all ¢; € J; and ¢, € J, there exists a
2 €V such that G(9,a;) = c¢; and G(9,a,) = c,. Thus there are ¢; < by, ¢, > b,
and 2 € V such that G(9,a;) = ¢;. Since G(9,a,) < G(iy,a;), G(v,ay) > G(iy, a,)
and a; < a,, there is ¢’ € (a;,a,) such that

G(2,x) >, G(ng, x).

By (5), m1(?) > m(@y), and since G(2,x) <, G(iy,x), (6) does not hold.
It is not hard to see that the family {G(2,x):v € V} is a p-nice family on J.

5. Getting a g-relation: the compositional case

The goal of this section is to show how a nice family of functions can be used
to define a g-relation on a convex subset of .#. First we prove a general lemma
regarding composition of functions, a lemma that will be used later as well.
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5.1. The main lemma
We fix some notation:
(@) F ={fp:ucU} and ¥ = {g;: D€V} are nice families of functions on
open intervals I and J, respectively, all definable over the empty set;
(b) (i*,j",k")is generic in I X J X M and U+, V;+~ are infinite (and hence 1-cells);
(¢) A=x(U)and C = w(V), where  is the projection map on the first coordinate.

By genericity, changing I and J if needed, we may assume that there is an open
interval K containing k* such that for every (i, j,k) € IXxJ XK and (a,c) € AXC
there are (unique) #z € U, 2 €V such that f;(i) =, g3(j) =k and = (&) = a,
@(?) = c. Shrinking I, J, A, C, if needed, we can assume that I, J, K, A and C
are definable over a finite set S such that dim(i"j"k"/S) = 3; for simplicity we
assume that § = 0.

For (i, j,a) € IxJxA, we denote by f[i, j;a](x) the (unique) function f; € #
such that j = f;(i) and 7(u) = a.

For (j,k,c) € Jx K x C, we denote by g J,k;c](x) the (unique) function g; € ¥
such that k = g;(j) and 7(2) = c.

REMARK 5.1. It follows immediately from the properties of a nice family that
if fliy, jisaq](@) = flia, jos a5](i) =j for some i € I then
(1) flirs jisar) =flias jos as] (as functions) if and only if a; = a,, which is true
if and only if f[iy, ji;ai] = f[i, j; a1] = flis, ja; @»] (as functions),
(2) if # is p-nice then f[i\, ji;a;] <; fliz, jo; a5] if and only if a; < a,. If F is
n-nice then f[iy, ji;a;] >; fliz, j2; a0 if and only if a; < a,.
A similar result holds for 4.
Because of the p-nice case in (2) we sometimes think of f[i, j;a](x) as the 7 -
curve through (i, j) with slope a. This intuitive concept is made clearer in § 10.

To save notation we use f,(x) to denote f[i*,j";a](x) and g.(x) to denote

gli" ks c]().
Our eventual plan is to define a g-relation R by:

(a,b)R(c.dy < ffy "<t Lt

The following lemma is the main technical tool towards establishing the (crucial)
property (q5). For later purposes we prove it in the more general context of
arbitrary & and ¥.

LEMMA 5.2. For every c,d € C and a € A,
(1) if g <j ga and (i*, j*,k") is generic over a, then there exists b € A, with
Jo =i+ far such that g.fy <i- 84fa

() if g <j- ga and (i*, j*, k") is generic over a, then there exists b € A, with
Jo <i+ Ja» such that g.f, <i+ 8afp-

Proof. To simplify notation we assume that both # and % are p-nice (the
other cases can be reduced to this case by re-parametrizing % and %). Hence
a<b if and only if f, <;: f,, and d < c if and only if g; <;- g.. Since the proofs
of (1) and (2) are the same, we prove (1) only.
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Suppose that (1) fails. Hence, for some ¢ <d in C and a € A,
gofy =i gaf forallb>a, (8)

By monotonicity, if we replace d in (8) by any d’ < d, then (8) still holds. Hence,
we may assume that dim(i*j"k*/ad) = 3 and the functional inequality is strict.

Since d >c and (8) holds if we replace ¢ by any ¢’ >c, there is an open
interval C’, with d € C' < C, such that

(V) € C'xA) W' > a — glj" ks f[i", 5 0] > g™ k5 df[i", 75 al).
©)
We will assume from now on that a,d € acl(0).

The statement in (9) can be written as a first-order statement ¢(i*, j*, k"), where
¢(x,y,z) is over the parameters used to define C’. We may choose C’ to be definable
over parameters which are generic over w = (i*, j*,k"); hence w is a generic tuple
over those parameters. Therefore, there is an open set W containing w such that for

every w; € W, ¢(w;) holds. Without loss of generality, we may assume that
W =1'xJ' xK', an open rectangular box containing {i*, j*, k). Hence

for every (¢,b') in C' x A and every (i’, j, kK'Y eI'xJ' x K,
if ' > a then g[j',k'; | f[i'.j"s 0] > gli', ks d)fli', j's al. (10)

In the remainder of this section we show that (10) yields a contradiction.
For every (i,k) € I'x K' we define a binary relation Ry (x,y) on J' as follows:

Ri(j1-j2) & glinkdlfli, jizal(x) <" glio, ks d1f i, jos al (x).

Clearly, for each (i, k), R; is a preorder on J " definable by a first-order formula
using i, k as parameters. Since j* is generic over {i*,k"}, by Lemma 2.12, there
is an open interval J” containing j* such that R;.;- is positive or negative on J".
The two cases can be handled in a similar way, so we may assume that R;:;- is
positive on J”, and hence, without loss of generality, on J'.

Since J' is definable with parameters generic over {i*,k*}, (i*,k*) is generic
over those parameters, and therefore there is an open rectangular box 1" x K"
such that R;, is positive on J' for all (i,k) € 1" xK".

Without loss of generality, assume that I” =" and K" = K’. Thus

gliv ks d1fli jis al(x) =" glia, ks d] fTi, jos @l (x)
for all j, =j, in J" and (i,k) € I' xK'. (11)

To simplify notation we denote by H(x) the function g[j*, k";d|f[i", j*; a](x).

Using the continuity of .# and %, we can find open intervals /[, =/’ and A, c A
containing i* and a, respectively, so that H(ly) c K’ and f[i*, j*,d'|(Iy) cJ' for
all ' € A,,.

LEMMA 5.3. There exist j, € J, ko € K, i1 €1y, a; €Ay, and d, € C’ such that
ko> k", a; > aq,

gljo-kosdi | fi*, j " an](iy) = H(iy)
and

gljo-kos di] fi™, j "1 a1 (%) <X H(x).
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Proof. Fix iy >i" in I,. Let jo =f[i",j";a](iy) and ky = H(iy). By Remark
5.1, glj". ks d](x) = gljo. ko> d](x); hence H(x) = gljo.ko:d]f[i",j";a](x). Take
d, € C' with d, < d. By the properties of .7,

8ljos ko3 di]f[i", j"s al(ip) = ko = H(ip)
and

gljo-kos di] f[i", j "5 al(x) <;, H(x).
We can therefore find x;, x, in I, with i* < x; < iy < x,, such that

gljo-kos di1f[i*, j*5a](x)) > H(xy)
and

gljo-kos dilfi", j*s al(x2) < H(xy).
By the continuity of % and ¥ there is an a; > a in Ay such that

glijo-kos di | fli", j s a)(x1) > H(xy)
and

8ljo kos dilf 1", j*s an](x2) < H(x,).

Again, by the continuity of % and ¥ (and by o-minimality), we can find i,
with x; <i; <x, (hence i; € I, and i; >i"), such that

gljo-kos di ] fli%, j 55 ar)(iy) = H(iy),

and moreover, if we take the maximum of all such i; then we also have
gljo-kos ] f1i", j"5 ar)(x) < H(x),

which completes the proof of Lemma 5.3.

Let {i;,d;,ay, jo. ko) be as in Lemma 5.3 and define
h=f005all), =10 0%d0), k=gl kd] ()
Since i; >i" and a; > a, we must have j; > j,. Also, since
H(i)) =k = gljo. ko: di| fi", "5 an](iy),

we have k; = g[jo, kos d1](j1)-
By Remark 5.1,

Fli% 5 a](x) = fliv, jisal(x),  glio kosdi](x) = glj1. ki3 di](x)
and

H(x) = gljo. ki3 d]fli1, jas al.
Therefore

glin ki di] fliv, jisai] <i| glia. kisd] fliy, jos . (12)
Since a; € A, and i; € I, we have j,, j, €J' and k; € K'. By (10), as a; > a,

gl kisd]fliv, jisal <i glin. ks di]fliv, jisai).
Therefore, by (12) and the above equation,

gliv-ki:d)fliv, jisal <i glja. kisd]f[ir, ja: al,

which contradicts (11), since j; > j,. This completes the proof of Lemma 5.2.
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5.2. Getting a g-relation
We now assume that:

(@) F ={f;: €U} is a p-nice family of functions on an open interval I’
and both # and I’ are definable over the empty set;

(b) i* €1’ is a generic point;
(c) " €U is generic over i";
(d) j* = fur (i7);

(e) a" = m(i"), the projection of a on the first coordinate.
LEMMA 5.4. We have dim(i"j*a") = 3.

Proof. By the dimension formula, dim(z"/i"j") = 1. Since w: U;j» — M is
one-to-one, dim(a*/i"j*) = 1, and hence dim(i"j*a") = 3.

As in §5.1, there are open intervals I, J and A containing i*, j* and a",
respectively, such that for all i€/, j€J and a € A there is a unique # € U such
that j = f;(i) and a = w(#). We may assume that I, J and A are definable over the
empty set and that dom(f;) =1 for all z € U.

For (i, j,a) e IXxJxA, we still use f[i, j;a](x) for the unique function f; € #
such that j = f;(i) and w(&z) = a. We use f,(x) for f[i*, j*; a](x).

LEMMA 5.5. For every a,c,d € A with a generic over {i*, j*},

(1) if ¢ >d then there exists b>a in A such that f,f, " <jt fofi
() if ¢ <d then there exists b<a in A such that f,f, " >]+ it
(3) if ¢ <d then there exists b<a in A such that f,”'f, < £
(4) if ¢ >d then there exists b>a in A such that f,”'f, =i £

Proof. Since the proofs of all cases are almost identical, we will discuss only
(1). All we do is change the setting slightly so we can use Lemma 5.2.

Suppose that (1) fails, and hence there are ¢ >d and a generic over {i", "}
such that

Lfi > Lt forallb>a (13)

Decreasing ¢ and increasing d if needed, we may assume that dim(i*j*acd) = 5;
hence dim(i*j*/acd) = 2. Let R(x,y) be the following definable relation on I:

R(ki) & flk j5sblflk j5sal™ () =) flij" bl £l 7 a) ™ (x) for b € (a).

Then R is definable over j*, a and it is easy to verify that R is a preorder on I.
Since i* is generic over j*, by Lemma 2.12, there is an open interval containing
i* such that R is positive or negative on it. In either case we can find k" €1
generic over {i", j*} such that R(k",i") holds, that is,

S5 BLIK jsal™ A Sl 5 Bl jTa) T for b e (o)
Combining the above equation with (13) we obtain

FIE 5 fIK 75 a) ™ (x) > Lo (x) for be (a)”. (14)
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After rearranging terms in (14), we have

Fli*, e K, G5 b)(x) =5 fi%, i d) 7 fk, ja)(x) forbe (a)™.  (15)

Consider now the family ¥ =7 ' = {f~': f€ #}. Then ¢ is a nice family
of functions and, without loss of generality, we may assume that the domain of all
functions in & is J. Notice that f[i*, j*;¢] ' (x) <; f[i*, j*;d]”'(x); hence we can
apply Lemma 5.2 to 4, & and the triple (k*, j*,i"). Therefore, there exists b > a
such that

LA I A (GO R A R (W AT COF
But then the last equation holds for b € ()", which contradicts (15).

We define the binary relation R, on A* as

(a,b)R(c.d) < ffy ' <F L

It is easy to check that R, satisfies (ql)—(q4) from the definition of a g-relation.
By Lemma 5.5, R, satisfies properties (R1)—(R4) for a,b,c,d € A with a generic
over {i *J *} Therefore, by cutting down A, if needed, we may assume that these
hold for all a,b,c,d € A. Putting together Lemma 3.18 and Theorem 3.19, we see
that R, is a g-relation on some convex set.

We can thus formulate a general theorem.

THEOREM 5.6. Let # = {f;: u € U} be a definable nice family of functions on
an interval I, and let a* be generic in w (U). Then the binary relation R.,
defined above, is a definable g-relation on an infinite convex set </ containing a".

5.3. Proof of Theorem 1.1

We are now ready to prove Theorem 1.1. For the first part of the proof we will
assume that the reader is familiar with the paper [16]; namely we will need the
definition and properties of definable quotients.

Let a€ .# be a non-trivial point, that is, there exist an open interval [
containing a and a definable function F: [x[ which is continuous and strictly
monotone in both variables. By Lemma 2.7, we can assume that every two points
in [ are non-orthogonal. As in the beginning of the proof of Theorem 5.1 in [16],
we may assume that F is strictly increasing in both variables.

The goal is to show that there is a convex A-definable group in / containing a.
However, since any two points a,, a, in I are non-orthogonal to each other, it
suffices to find such a group anywhere in /.

Following the proof of Theorem 5.1 in [16] up to the point where Lemma 4.4
is applied, we obtain an open subset U; < I X[ (and without loss of generality we
can assume that U; is O-definable), a generic point e € I and a definable family of
functions f, such that ecdom(f, f,,) for all (y;,y,)€U;. The function
G(y1,y2.x) = fy, f,(x) is continuous and strictly increasing in all its arguments.
Since e is a generic point, there is an open interval I' </ such that
I' cdom(f, f,,) for all (y,,y,) € U;. We will assume that Uy =U and I' =1.
For it = (y;,y,), we use both G(i,x) and G(yi,y,,x), depending on context.

For a € I, we denote by ~ the equivalence relation on U defined by it; ~ i, if and
only if G(it;,x) = G(ii, x) forx € (a)". We use [ii] -+ to denote the ~; -class of it € U.
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If J c I is an open interval, then we define it; ~; i, if and only if G(&t;,x) = G(i5,x)
for all x € J.
Notice that since G(y;,y,,x) is strictly increasing in all arguments, if we

take (y,y1),(%,y2) €U with y; #y, then (y,y)#4(»y2) and therefore
dim([(y;,y2)]-+) <2. Let &ty be generic in U over e.

LemMmA 5.7. If dim([ito]+) = 1 then there are an open subset V. U and an
open interval J C I containing a such that dim(V/~;) < 1.

Proof. Let @i, be generic in [iio] .+ over {iy,e}. Then dim(@,/efiy) = 1 and
there is an e; >e such that G(i1g,x) = G(i1y,x) for e <x <e;. Decreasing ey, if
needed, we can assume that dim(e; /eiigii;) = 1 and therefore dim(it, /ee;iiy) = 1
and dim(ity/ee;) =2. Let J be the interval (e,e;). Since iy ~;ii; and
dim(i, /eeyity) = 1, one of the projections, say m, of [@;], contains an open
interval around m(&,). As @, is generic in U over e, e;, the dimension of the set

{n € U: m([i] -,) contains an open interval around (i)}

is 2 and we can take any open subset of the set above as V.

Thus, if dim([iy]-+) = 1, then instead of applying Lemma 4.4 in the proof of
Theorem 5.1 in [16], we use Lemma 5.7, replacing e by any generic point in J
and leaving the rest of the proof unchanged. We obtain the existence of a convex
A-definable ordered group.

Therefore the only case we need to consider is the case when dim([i]-+) = 0.
Since [ity] .+ is a finite set, cutting down U, we can assume that it contains only
iy, and thus

(Vo € U)(G(,x) ~, G(iig,x) — 0 = i)
holds. By genericity of i, and e, there exist an open rectangular box V < U and
an open interval J I, such that
(VoeVVbel VauecU)(G(o,x)~} G(it,x) — 2 = ).
By o-minimality, it follows that for & # o from V,
{{x,y) €I XM: G(i,x) = y} n{{x,y) € J X M: G(D,x) =y} is finite.

If we restrict G to V X J, then G defines a definable normal family of functions of
dimension 2.

By Theorem 4.3, we can replace G by a nice family of functions % on a
subinterval of J, parametrized over a subset of J 2, By Theorem 5.6 and Theorem
3.13, given a” generic in J, there is in .# a convex A-definable ordered divisible
and abelian group containing a”.

This completes the proof of Theorem 1.1.

6. Getting a g-relation: the additive case

We assume now that (I,+,<,...) is an o-minimal expansion of a group-
interval, 7, i*, j*, a" as at the beginning of §5.2. We still use f,(x) to denote the
function f[i*, j*; a(x). Define the relation

(a,D)R (c,d) & fo—fp <i fo —fa-
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It is easily verified that R, satisfies (ql)—(q4) of the g-relation properties. To
show that R, is a g-relation on some convex set, it remains to prove properties
(R1)—(R4). The proof is very similar to that of Lemma 5.5, with the main
difference that composition of functions is everywhere replaced by addition, and
the compositional inverse, f ', replaced by the additive inverse —f. We therefore
omit some details in the proof of this case.

LEMMA 6.1. For every c¢,d € A and a generic over {i", "},
(1) if ¢ >d then there exists b>a in A such that f, — f, < f. — fu
(2) if ¢ < d then there exists b<a in A such that f, —f, =1 f. — fu.

Proof. 'We prove (1) only. Suppose that (1) fails and there are ¢ > d such that
fo—fami fo—fa forbe(a)’. (16)

Decreasing c, if needed, we can assume that ¢ is generic over i*, j*, a, d, and thus
(i*,j*) is generic over a, ¢, d. We will assume from now on that a,d € acl(0).
Rewriting (16) we obtain

Fli*, j5b) —fli%, j s a) =5 flit, j55 ) = fi*, j*.d] for b€ (a)*.

We consider the function on the left-hand side. Since j* is generic over
{i*,a,b}, we may replace j* on the left, using a suitable preorder, with k" generic
over all other parameters. We obtain

fl k5 0] = fli ks a) = fo — fa(x) for b€ (a)"
We fix k*, and after rearranging terms in the above equation we obtain
Sl Kb — £l ] i fli K2 a] = fli% j"2d] for b (@)

Instead of using here an additive analogue of Lemma 5.2, as we did in the
proof of Lemma 5.5, we proceed directly to derive a contradiction. As before, we
may use the properties of # and genericity arguments, to find open intervals D',
A, I', J', K’ containing d, a, i*, j*, k*, respectively, such that

for every (¢,b') in D' x A" and every (i’, j', k'Y€ I' xJ' xK’,

if ' > a then f[i',k'; 0] — f[i’, j's 1 = fli' K a] — £1i' j's d). (17)
For every (i,l) we define a binary relation R;(x,y) on J' as follows:
Ry(ji,j2) & flisji +Lal = fli jid)(x) <7 flis o + L.al = fis jos d](%).

Notice that the functions on both sides of the inequality take the value [ at i. If
we let [* = k" —j* then, as before, we may assume that for some open interval L
containing [, for all {i,I) € I' X L, the relation R;, is uniformly either positive or
negative on J'. Let us assume now, in contrast to the proof of Lemma 5.2, that R;
is negative on J'. We have then for all {i,I) €I’ XL,

flis v+ Lal = flis jrsd)(x) < fl o + L a) = flis jos d](x)
for all j, = j, in J" and (i,I) € I' X L. (18)

We denote by H(x) the function f[i*,k";a] — f[i*, j*;d]. Using the continuity of
Z#, we can find open intervals [y c/ " and Ay cA containing i* and a",
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respectively, so that H(Iy) €L and f[i*,k*,d'|(I,) cK' for all d' € A,. Moreover,
we may assume that K "—J' cL.

LEMMA 6.2. There are {i\,a;,d;) €lyxAyxD' and jy,iy such that i; > i,
a; <a and

f[i*’k*;al] — flios jos di1(iy) = H(iy)
and

fli K s ai] = flig, jos di)(x) >3 H ().
Proof. This is similar to the proof of Lemma 5.3 and we omit it.

Let {i,d;,ay, iy, jo) be as in Lemma 6.2 and define

I=H(iy) =fli". k"5 a1] — flio» jos di)(iy),
and
h=fI5 K a]) =L g =fli5 k5 a) (i) — L

Since i; >i" and a; < a, we must have j, > j,, and clearly f[iy, jo;d;](i;) =j; and
Fli% 775 d)(i) = jo-
By Remark 5.1,
FE K al(x) = fliv, ji + La (), flios jos dil(x) = flir, jrz di](x)
and
H(x) = fli1, j» + Lal(x) = fli1, j2; d](x).

Therefore

flivsjr + Lay) = fliv, jiidi] >3 flivs jo + La] = fliy, josd]. (19)
Since a; € Ay and i; €I,, we have [ €L and j, + 1, j, + € K'; hence j,, j, €J'.
By (17), as a; <a,

fliv v + La) = fliv, jisd] =15 fliv, ji + Lay = flivs jis di),
and together with (19), we have

f[llajl +laa] _f[ll’]]ad] >;]L f[ll’]Z +l’a] _f[ll9]2ad]’

which contradicts (18) (since j; > j).

Notice that by Lemma 6.1, R, satisfies (R1)-(R4) on A. (For (R1) and (R2)
this is immediate; (R3) and (R4) follow by rearranging terms.) Let o/ C A be a
convex set containing a*, good over the parameters defining R,. By Theorem
3.19, we may conclude that the following theorem holds.

THEOREM 6.3. The relation R, is a g-relation on <.

REMARKS. 1. Assume that M is an o-minimal expansion of a real closed field
R. Then the differentiable structure of R can be used to give a fast proof of
Lemma 5.5 and Lemma 6.1. The proof involves a uniqueness theorem for some
differential equations, and basic calculus properties (see [15] for related work).
The argument above might suggest an alternative, purely geometric approach, to
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some of these calculus questions. In the Appendix we show how to prove some
basic calculus results in this manner.

2. The standing assumption in Lemma 5.5 and Lemma 6.1 is that (i, j*) is a
generic point. As the next example shows, at least in the additive case the lemma
would have failed if we omitted the genericity assumption.

ExaMPLE 6.4. We work in (R, <,+,-,¢"). For O<a<1,0<b<1,0sx<1,
define

funlx) = x4 p.

For any r < 1 we get a nice family of functions on the interval [0, r]. Take i* = 0,
j*=0 and for a€(0,1) denote by f,(x) the function x'/¢ (in our previous
notation this is f[i*, j*; a](x)).

If we now define R by (a,b)R{c,d ) if and only f, — f, <4 f. — fs» then we obtain
precisely the relation which was defined in Example 3.2. It satisfies (q1)—(q4) but
not (q5).

In particular, if we take any d < ¢ < a then for every b > a,

fo —fa>0 fo—fu

QUESTION. Find a similar example that shows that Lemma 5.5 would have
failed without the assumption that (i*, j*) is generic.

7. Getting a field

We are now ready to prove Theorem 1.2.

We assume that a is non-trivial in M. By Theorem 1.1, there is a definable
group-interval (I,<,+,a), with a as the identity element. For simplicity we use 0
instead of a and assume that / and + are O-definable.

DEerINITION 7.1. (i) For two groups H, G, a presentation of H on G is a
homomorphism o: H — Aut(G). We say that ¢ is faithful if Ker(o) = {1}. For
h € H we use o, to denote the corresponding automorphism of G.

(i) For H, G two convex A-definable groups, we say that a presentation ¢ of H
on G is definable if there is a definable set D c M 3 such that

DNHXG* = {(h, g1, 82 € HxG* o,(g1) = &}

We say that o is continuous if the map (h, g;) — o0,,(g;) is continuous from H x G
into G.

For the proof of the proposition below we need the notion of a partial
endomorphism which is taken from [9].

DEFINITION 7.2. (i) A partial definable function \: M — M is called a partial
endomorphism, or p.e., if its domain, dom()\), is an interval (—a,a) around O and
it is linear where defined, that is, N(x + y) = Nx) + N(y), if x,y,x +y € dom(N).

(i) For N\ a p.e., we say that the germ of N\ at 0 is A-definable if there are an
A-definable function f(x) and an open neighbourhood J of O such that f|J = \|J.
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PROPOSITION 7.3.  Assume that 4|l does not satisfy clause (1) of Theorem 1.2.
Then there are convex A-definable groups Hcl and Gl and a definable,
faithful and continuous presentation o: H — Aut(G).

Proof. By Proposition 4.2 in [9], the theory of .Z|I is not linear. Namely, one
of the following two statements holds (as we show below, (1) implies (2); the
converse fails).

(1) There is a definable p.e. & whose germ at O is not O-definable.

(2) There is a definable function 4 on an interval J < I which is not linear on
any subinterval of J. (Recall that f is called linear on an interval J if for
every a,b € J, h(a+ x) — h(a) = h(b + x) — h(b) for x € (0).)

As we now show, (1) gives the conclusion of the proposition directly.

LEMMA 7.4. Assume that there is a definable p.e. whose germ at 0 is not
definable. Then there exist convex A-definable groups Hcl and GC I and a
definable, faithful and continuous presentation o: H — Aut(G). Moreover, G is
definably embedded in (I,<,+).

Proof. Assume that the graph of h(x) is definable via a formula ¢(x,y,a). We
may assume that for every b, the formula ¢(x,y,b) defines a p.e., which we
denote by hj. Since the germ of & at 0 is not 0-definable, as b varies we obtain
infinitely many partial endomorphisms, whose germs at 0 are pairwise distinct.
Without loss of generality, we may assume that there is an open interval I; C/
such that I; cdom(h;) for all b. As was pointed out in [9], if two partial
endomorphisms agree on a non-zero point, then they agree on all of their common
domain. Therefore, by fixing a non-zero generic g € I; we can reparametrize the
family of germs defined by ¢ so that we get h.(g) = ¢ for all ¢ in some interval
J. By taking ¢q sufficiently close to 0 and cutting down J if needed, we may also
assume that J C I;.

We now fix p € J generic over all mentioned parameters and replace every A,
by h;lhc (clearly, a p.e. as well). After cutting down J and [;, if needed, we have
g €J. If we reparametrize again, as above, we obtain /,(g) = ¢ and hence #, is
the identity map, where defined. Since p was generic over ¢, the map
(a,b) — h,(b) is continuous on a neighbourhood of (g, q). Hence, for every a, b
close to ¢ there is ¢ €J such that h,h,(q) = h.(q) and by the above remarks
hahy(x) = h.(x) for every x in their common domain. We can now define a partial
operation on J:

a*xb=c & hhy(q) = h(q)

Let B be the definable closure of all parameters mentioned thus far and let H
be the .#-cut of g over B (see Definition 3.14). It is easy to see that * makes H
into a convex A-definable ordered group, with ¢ as its identity element.

Let G be the .#-cut of 0 over B. For every a € H, h, defines an automorphism
of G. By the definition of * we have h,,, = h,h;,, and clearly h, = id if and only
if a = q. Hence, the map a — h, gives a definable faithful presentation of H on
G. The continuity of this action is proved similarly to Lemma 2.10(2).

We have therefore reduced Proposition 7.3 to the following. We have a (fixed)
definable function %(x) on an interval J which is not linear on any subinterval.
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LEMMA 7.5. Let f, ,(x) = h(u+ x) 4+ v. Then there are an open set UcM?
and an open interval Iy cJ such that:
@) {fi,0,(x): Cuy,v1) € U} is a p-nice family on I,
(i) if uy <u, then for every v, v, the function f,, ., (x) —f, o (x) is strictly
increasing on I,.

Proof. For a' generic in J, we may assume that i(x) is strictly increasing on a
neighbourhood of a’ (if not, replace & with —k). By the assumptions on the non-
linearity of A(x), for b € (a')", we have either

h(d +x) — h(a") > h(b + x) — h(b) for x € (0)"
or
h(d +x) — h(d") <h(b+x) — h(b) for x € (0)*. (20)
We may assume that (20) holds (if not replace h with hil). Take b >d
sufficiently close and generic over . By (20), there are open intervals I,
containing @', and I, containing »’, such that for all a; < a, in I, and b, < b, in I,,
if a —a; = bz — bl then
h(ay) — h(ay) < h(by) — h(by).
Hence
h(ay) = h(ay) > h(by) — h(bs),
and in particular,
h(a' +x) — h(d') > h(b' +x) — h(b") for x € (0)". (21)
Putting together (20) and (21) we obtain
h(a +x) — h(d") <o h(b' +x) — h(b).

The above holds for b’ € (a')*.
We can now use an appropriate preorder as we have done several times before,
and by the genericity of @' we will assume that, for every a; < a, in J,

h(a; +x) — h(ay) <o h(ay + x) — h(ay). (22)

Take J; c J a proper subinterval and let £ > 0 be such that for every a € J, a — ¢
and a + ¢ are still in J. We let I}, = (—¢,¢€), f, ,(x) = h(u +x) + v, and define

F ={fiou,veJ,x el }.

We take (u;,v,) # {u,,v,). We may assume that u; # u,, for if u; = u, then the
two functions agree at a point if and only if v; = v,. Without loss of generality,
assume that u; < u,. By o-minimality, it is sufficient to show that if f, , (i) =
Sur0, (i) for some i € Iy then f, . <; f,, ., (forthenf, ., andf, . canagree at most
once on /;). This is immediate, for if f,, ,, (i) = fi, ., (i) thenf, ;. (0) = fi, 1 0,(0)
and by (22), fu, +i,0, <0 fu,+i 0, It follows that f, o <; fu, o,

For Z to be p-nice it remains only to find U cJ{ such that U,, is either
empty or a 1-cell for every {x,y) € I; x M. By Theorem 2.2, we can find such a
U, thus proving (i).

Given (u;,v;),{ur,v) €U and i€l, let j, =h(uy+i)+v, and j, =
h(u, 4+ i) + v,. Then

fuz,vz(x> _ful,vl ()C) :j2 _jl +fu2,v2<x) _ful,vlJrjz—jl (x)
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But £, o 4j,—j, (i) = fu,.0,(i): hence, by part (i), for (u;,v,),{us,v,) € U and i € I,
if u; <u, then f,, ,,(x) — fi, o (x) is strictly increasing at i. (23)
We use f[i, j;a] as in previous sections. Let (i*, j*) be a fixed generic point in
I, xM and let f,(x) =f[i*, j*; a](x).
For J; as in the last proof, we let R, be the relation on J; X J; defined by
<a9b>R+<C7d> < f[,l _fb <1tfc_fd’
and let R, be the relation on J; X J; defined by
(a.b)R(c.d) & fufy ' <} fufi"

Let .# cJ; be a good convex set over the parameters defining R, and R, (i*
and j* are of course among those). By Theorem 5.6 and Theorem 6.3, R, and R,
are qg-relations on .#. They induce two equivalence relations, E, and E,, on
S x . We first show that E, and E, are different.

LEMMA 7.6. For c,d in .#, let [c,d] and c¢/d denote the E, and E, classes of
(c,d), respectively. If dim(c,d/i*, j*) =2 then [c,d] nc/d = {{c,d)}.

Proof.  Suppose that (a,b)E {c,d), (a,b)E.{(c,d) and {a,b) #{c,d).

Then, by Lemma 3.10(3), a # ¢ and b # d. Without loss of generality, assume
that b < d < ¢ (all other cases can be handled similarly).

Take ¢’ > c. By the properties of E,, we can find @' > a such that

ks <y fofi
By subtracting the identity function from both sides we see that
(for =Sy " <o (for =) fa "
By the definition of E., we have f. — f; <;« f,» — f,. Therefore for all ¢’ > ¢,

(fe =ffs " <o (fr = L) i (24)

We will use Lemma 5.2 to derive a contradiction. Rewriting (24) we see that
for every ¢’ > ¢,

(P 55 el = fU% 5 d) ot < (Fl G5 =% 5 5dD frt (25)

By Lemma 7.6, since ¢ > d, we may assume that f., — f; is increasing at i* for
¢’ = ¢. From (25), for all ¢’ > ¢,

(FI* 5 = fli, 5 d) T (fli 7 = fli% 5 d) <ie fi e

If we consider the function on the left-hand side, we may use a suitable
preorder (as was done in previous sections) to replace j* on the left by k* generic
over all parameters mentioned.

After rearranging terms we find that for ¢’ € (¢)™,

(Fi k5] = fli K d)) f ! < (Fli Kl — fli Kk d])

Rearranging terms again, we see that for ¢’ € (¢)*,

Flit ks ey =k < flit ks dlfy =ik d)
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We consider the function on the left. Since k* is generic over all other parameters
mentioned there, we can replace it on the left, using a suitable preorder, by k™
generic over all previously-mentioned parameters (including k*). Rearranging
terms back we find the following: for ¢’ € (¢)*,

(f[i*,k**;C] —f[l*,k*,d])f[l*,]*,b]il <j* (f[i*,k**;c'] —f[l*,k*,d])f[l*,]*,d]71
(26)

Let ig,it; € U be such that f; (x) =f[i",k™;c](x) and f; (x) =f[i",k";d](x).
Since dim(i*k"k™cd) = 5, we have dim(i “@git;) = 5.

By Lemma 7.5, f; —f; (x) is increasing on some neighbourhood of i*. By
genericity, there are an open set V containing ii; and an open interval J, c.¥
containing i* such that (f; —f; )(x) is increasing on J, for every i € V. We let

G={fa—faneV}
It is easy to verify that ¢ is a p-nice family on J,. Since {i*, j*, k", k™) is of
dimension 4, the triple {i*, j*,k*™ — k™) is of dimension 3.

We can now apply Lemma 5.2 to %, # ' and the triple {j*,i*, k"™ — k*). Since
£ ' > fi', there is a ¢’ > ¢ such that

This contradicts (26) and thus completes the proof.

By Lemma 3.12, if E is an equivalence relation induced by a g-relation, then the
map ([(a,b)], (D, c)]) — [{a,c)] is a definable group operation on the E-classes of
.#. Furthermore, the group is ordered by the ordering

Ka,e)] <[(b,e)] < a<b.

We take (H,*,<) to denote the group induced on .# 2/E, by E,, and let
(G,®,<, ) denote the group induced on Jz/EJr by E.. We still use a/b and
[a,b] to denote the classes of (a,b) with respect to E, and E,, respectively.

We define k: #° — 7 by

k(a,p.q) =b <& {(a,p)E.(b.q).

By Lemma 3.10, k is a well-defined map and if we fix any two of the three
variables, the function in the third variable that we obtain is a strictly monotone
permutation of .#. It follows that k is strictly monotone and continuous in each
variable; hence k is a continuous map from .#° into .#. Notice that k(x,y,z) is
definable in .Z|.7.

By the commutativity of H, a/p*p/b=p/b*a/p. Hence

k(a,p.q) =b < a/p=b/q < a/b=p/q (27)

By Lemma 3.10 and (27), for every a,p,q € .7, k(a,p,q) = k(a,p’,q’) if and
only if p/q=p'/q’. Also by (27), k(k(x,p.q),r,s) = k(x,pr,qs) and therefore we
have the following lemma.

LEMMA 7.7. The map p/q v h(x,p,q) is a well-defined faithful action of the
group H on the set 4.

_As we show below, this action induces a faithful group presentation
k: H— Aut(G).
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LEMMA 7.8. For every ay,a,p,q € 2,
al/a2 = k(al’p’ q)/k(a23p9q)'

Proof. We have
ai/p=k(a,p.q)/q, a/p=k(az,p.q)/q.
By the group properties
(p.a2)E(q. k(az, . q)),
and by Lemma 3.11(1), a,/a, = k(ay,p,q)/k(az,p,q).

LEMMA 7.9. For all a,b,c,d € .9 and p,q € 4,
(a,D)E(c,d) = (k(a,p,q),k(b,p,q))E(k(c.p,q). k(d.p.q)).
Proof. To simplify notation we use k(x) instead of k(x,p, q) here. Assume that

(a,b)E {c,d) and that it is not true that (k(a),k(b))E (k(c),k(d)). Then, without
loss of generality, we may assume that there exists ¢” > k(c) such that

for = Feay <i* fua) — Few)
We compose both sides of the inequality with qul on the right and obtain
forfy ' =fafy ' < fali ' —haonfy
By property (5) of g-relations, for k(c) < ¢’ < ¢” there is a & such that f., qul <j
fcfp < fc,,fq Since (k(c),q)E.{c,p), we have ¢ <é. By the definitions of k
and Eo, for every d'>d da' >a, b, < b,

fey = fo by <p By =R By <E Rl = fanfy <5 fafy = Fo k!

Hence after composing both sides of the above inequality with f,, we find that
(é,d! >R+(a b,). We have thus established that

for all d' >d,a' > a,b, <b, and all ¢' € (c)",(c',d" )R, (a',b)).  (28)

Since (a,b)E (c,d), it is sufficient to prove the following in order to get a
contradiction:

there exists ¢' > ¢ such that {c',d)R.{a,b). (29)
To prove (29), we first show that
for all d' >d,b; <b, and ¢' € (¢)", (cl,dl)R+<a by). (30)

For if not, there are d' >d and b, <b such that for ¢! € (c)*, (a,b, )R+<c ahy,
and therefore, by (28) for ¢! € (¢)*, (c',d")E,(a,b,). This ylelds a contradiction
since, by Lemma 3.10, there is a unique ¢, such that {cy,d')E (a,b).

Similarly, we can use (30) to show that

for all b; <b and ¢' € (c)",(c',d)R,(a,b;). (31)
And finally, using (31), we can prove that
for ¢! € (c)*,(cl,d)R+<a,b).

Hence (29) follows, and hence the lemma is true.
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We showed that for every p, k(x,p,q): # — 4, as a function of x, is an
automorphism of (.#,E_ ). It follows from the definition of @& on G that
[x,y] — [k(x,p,q),k(y,p,q)] is a group-endomorphism of (G, ®). Hence,

p/q~ ([a,b] — [k(a,p,q),k(b,p,q)])

is a group presentation; call it k: H — Aut(G). We now show that the presentation
is faithful.

LEMMA 7.10. If p#p in .7 then k(p/q) #k(p'/q).

Proof. We assume that £, and E, are defined over the empty set. Let a;,a,
be in .#, and dim(a,a,/p,p’,q) = 2. We show that {k(a,,p,q),k(a»,p,q)) is not
E,-equivalent to (k(ay,p’,q),k(a».p’,q)).

Assume that (k(ay,p,q),k(a,p,q))E.(k(ay,p', q),k(axp',q)). By the group
properties and the definition of k we also have

aj/ay=a,/p*p/a, =k(ai,p,q)/q*q/k(az.p,q) = k(ai,p,q)/k(az,p. q).
Similarly, a, /a, = k(ay,p’,q)/k(as,p’, q); hence

<k(a1’p’ Q>’k(a2’p’ Q) >E°<k(a1,p/, (’I)’k(abp/’ Q) >
Since a@; and k(a;,p’,q) are interdefinable over p’, g, for i = 1,2, we have

dim(k(ay,p', q). k(ax.p'.q) /P’ q) = 2.
We can now apply Lemma 7.6 to {(k(a,,p,q).k(a»,p.q)) and {k(a;,p',q),
k(a,,p',q)), and conclude that k(a;, p, q) = k(a\,p’,q) and k(a,, p,q) = k(as,p', q). It
follows that p/g = p’/q and therefore p = p', in contradiction to our assumption.

We now return to the proof of Proposition 7.3. By Lemma 3.10 and property (q2),
the map x+— (x,e) induces an order-preserving bijection (and hence a home-
omorphism) between .# and the linearly ordered set .#*/E, or .#%/E. . Therefore,
we can definably equip .# with the ordered group structures of H and G and
assume that H and G are convex A-definable groups. Since k was a continuous
map, the map (h, g) — k(h)(g) is a continuous map from H x G into G.

By Lemma 7.10 and the preceding remarks, k: H — Aut(G) is a definable
continuous faithful presentation of H on G. This completes the proof of
Proposition 7.3.

In order to define a real closed field we are going to need the following lemma.

LEMMA 7.11. Let R=(7,<,+,9,0) be a convex A-definable commutative
ordered ring in M. Then K, the fraction field of R, is a real closed field definable
in M, and R is definably embedded onto a convex subring of K.

Proof. This argument stems from an earlier observation of A. Wilkie.

We let .#2 = {(a,b) € .: b#0}. For {(a,b),{(c,dy e .92, let {a,b) ~{(c,d) if
and only if aed = b e c. We take <K ,+,-) to be the standard field of fractions of
R on 2/~ and let a/b denote the ~-class of {(a,b). Now K is ordered as a
field by making a,/a, positive in K if and only if a; >0 and a, >0 in R.
The graphs of + and - in K are the images under the quotient map of definable
sets in ./|.#. We want to show that K is definable (not only A-definable) in ..
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By Lemma 2.10, e is continuous on .#. Since 0e(0 = (0, we can show that for
every (a,b) € .#2 and every neighbourhood U of (0,0), there is a (c,d) € U such
that a/b = c¢/d. It follows that for every open interval I around 0, every ~-class
has a representative in [ 2. Moreover, there are many definable sets of
representatives for .#2/~. For instance, if 8 €.7 is positive in R then the set

{{a,—|al+B): —B<a<p}

is a (definable) set of representatives for .# *2/ ~. The map x+— x/ — |x|+ B is an
order-preserving bijection between K = (—@3,() (with the ordering induced from
) and the ordered field K. Therefore, we can definably equip K with an ordered
field structure isomorphic to K, whose ordering is compatible with that of .#. By
[18], K is a real closed field.

As usual, if we fix any b € .#, the map 7(x) =xeb/b is an order-preserving
embedding of R in its field of fractions K. Hence we get a definable embedding of
R into K. Since 7 is continuous, the image of R in K is a convex subring.

It remains to prove the following proposition.

PrOPOSITION 7.12. Let (H,<,*,1) and {G,<,+,0) be two convex infinite A-
definable ordered groups in M, and let o: H — Aut(G) be a definable continuous
faithful presentation. Then there is a definable real closed field K whose
underlying set is an interval in M and its ordering is compatible with <.
Moreover, there is a convex subgroup of G which is definably isomorphic to a
convex subgroup of (K, +).

Proof. By Lemma 2.9, H and G are both commutative and divisible.

Let A be the collection of all definable endomorphisms of G. It is easily
verified that A, with addition and composition of functions, is a ring, with id(x) as
the identity element and the zero map as the zero element. We can make it into
an ordered ring by letting A > 0 if and only if N is an increasing function. Since
no proper subgroup of G is definable in .#|G, if two definable endomorphisms
agree on any non-zero point of G then they agree everywhere on G. Moreover,
for 0,0, €A, 0, <0, if and only if ¢,(p) <o,(p) for some p>0 in G. For
h € H, we let 0, denote the corresponding automorphism of G.

It follows from our hypothesis that H = {o,: h€ H} is isomorphic to H and
furthermore it is a subgroup of the multiplicative group of units in A.

Step 1: H is a convex subset of the ordered set (A,<). For g,h € H, assume
that o), < 0 < g,, where ¢ € A. Then for p >0 in G, 0,,(p) < o(p) < g,(p). By the
continuity of the presentation, we can find kK € H between h and g such that
ox(p) = o(p), but then, by the above comments, a(x) = g;(x) for all x € G; hence
ccH.

Step 2. for every g,h,k € H, o, + 0, — 0} € H. Assume first that o, < o, and
o; < 0;,. Without loss of generality, let o, <o0,. Then on one hand, since
Og—! < id,

O, + 0y — 0 =0y + 0, — 0, = 0y,
while on the other hand,
Ogut 1 wh = Og T Oguiian = 0g = Og + Ot g1 (Og a1 4y — 0g) = 0 + 04 — 0y

Since H is convex, g, + 0; — 0y is in H.
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If 0, < oy < o), then
0, < 0+ 0 — 0 < 0y

hence o, + o), — 0} is in H. The case where o, = o, and g, = 0y, is handled similarly.

Step 3: the set R = {0y, — 0, h,g € H} is a convex commutative subring of A.
We first show closure under addltlon Given g,h,k,l € H, by Step 2 there exists
[y € H such that o — 0; = 0j, — 0,5 hence o, — 0}, + o) — 0, = 0, — 0y,

The closure under multiplication follows immediately from closure under
addition. The convexity and commutativity follow from that of H.

Notice that if .# is the underlying convex set of H then we can equip .# with a
definable ring structure making it into a convex A-definable ordered ring
isomorphic to R. For p >0 in G, the additive group of R is definably isomorphic
to the convex subgroup of G whose underlying set is {0,(p) — 0,(p): g, h € H}.
By Lemma 7.11, we can complete the proof of Proposition 7.12 and with it the
proof of Theorem 1.2.

8. Some examples on the global picture

The Trichotomy Theorem gives a characterization of the local structure in a
neighbourhood of each non-trivial point in .# as either an ordered vector space or
an o-minimal expansion of a real closed field. Since .# is an ordered structure,
there are inherent difficulties in trying to give a global characterization of the
structure of definable subsets of M". Below are some basic examples to
demonstrate the difference between the local and global analysis.

ExampLE 8.1. Let I be a linearly ordered set and assume that for each i €/,
A ; is an o-minimal structure in the language L; such that L; and L; are disjoint
for i #£j. If we let L =J;¢;L; then there is an o-minimal L-structure which is
made up by ‘patching’ the .#; in the right order, and inserting new points at the
ends of each .#;. Clearly, there is no interaction between the different pieces of
the structure.

We denote by 71, 72, 73 the sets of points satisfying (T1), (T2) and (T3)
from the Trichotomy Theorem, respectively. Every non-orthogonality class is
contained in 1, 2 or 3 and by Lemma 2.7, if a is in either 72 or 73 its
non-orthogonality class is an open set.

ExampLE 8.2. Let P(x,y) be the restriction to [—1,1]2 of the standard real
multiplication function. Consider the structure .# =(R,<,+,P(x,y)). Then .#
consists of a single non-orthogonality class, contained in .7 3. Hence every point
lies in a definable real closed field. However, as implied by [13], no real closed
field whose universe is R is definable in ..

ExamMpPLE 8.3. Let (K,<,+,-) be a non-standard elementary extension of the
structure (R, <,+,-). For @ € K infinitesimally close to 0, define P(x,y,z) to be
the partial function x +y — z whenever the distance between any two of x, y, z is
no more than «. Consider the structure .# =(K,<,P). For every acK, P
induces the structure of a group-interval (after fixing the parameter a) on the

interval [a —jo,a+31al. This group-interval can be extended to the interval
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[a — na, a + nal, for every n € N. In .4 every point is in 7 2 and a and b are non-
orthogonal to each other if and only if |a — b| < na for some n € N. By Theorem
1.1 every point lies in a definable group-interval (or a convex A-definable group)
but there are no definable ordered groups in .#.

9. Some corollaries

A large body of work has been developed for o-minimal expansions of ordered
groups and real closed fields, which can now be applied, at least locally, for o-minimal
structures of types (Z2) and (Z3). We mention here a few such applications.

O-minimal expansions of ordered groups (or ordered group-intervals) are known
to have definable Skolem functions (see [2]). The same is true for o-minimal
expansions of group-intervals. We can conclude that the following corollary holds.

COROLLARY 9.1. Ifais anon-trivial point in an o-minimal ./ then there is a closed
interval I, with a in the interior of I, such that M|l has definable Skolem functions.

QUESTION. Does (some version of) elimination of imaginaries hold globally in
an arbitrary o-minimal structure?

Even though the main theorems of this paper are local in nature there are some
cases in which global results can be proved. Consider an o-minimal expansion .#
of an ordered group. If the structure is of type (Z2) (or ‘linear’ as it was called in
[9]), it eliminates quantifiers and can be embedded onto an elementary
substructure of a reduct of a vector space over a division ring (see [9]). When
A is of type (Z3) we can still prove global results in some cases.

For ./ an o-minimal expansion of an ordered group, we say that f: M — M is
not eventually linear if there is no ¢ € M such that f is linear on [c, +00).

COROLLARY 9.2. Let M ={M,<,+,...) be an o-minimal expansion of an
ordered group. Then the following are equivalent.

(1) There is in # a definable function which is not eventually linear.

(2) There is in # a definable bijection between bounded and unbounded
intervals (sometimes referred to as ‘M has poles’).

(3) There is an M -definable real closed field whose underlying set is M and
whose ordering is compatible with <.

Proof. By Proposition 4.4 in [11], (1) implies (2). With Theorem 1.2, the rest
of the argument is identical to [14].

An important property of o-minimal expansions of real closed fields is that definable
sets are locally n-differentiable manifolds with respect to the field structure and
topology. In [12], this was used to show that if H is an n-dimensional definable
group in an o-minimal expansion of a real closed field R then H/Z(H) can be
definably embedded in GL,(R). Moreover, it was shown there that the group of
definable automorphisms of H can be embedded (not definably though) in
GL,(R). We can now conclude that the following corollary is true.
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COROLLARY 9.3. Let M be an o-minimal expansion of an ordered group of
type (Z3). Let R be the real closed field obtained by Theorem 1.2. If H is an n-
dimensional group definable in M then the group of definable automorphisms of
H can be embedded in GL,(R).

Proof. We may assume that H has an element of the form (a,q,...,a) as its
identity. Since all points in M are non-orthogonal to each other, we may assume
that a is the zero element of R. As the proof in [12] only used the structure of the
field in a neighbourhood of the group identity, we can repeat the proof there to
get the desired result.

The last corollary provides us with an interesting family of examples of o-minimal
structures which cannot be properly expanded while still preserving o-minimality.
Let {(D,<,+,-) be an ordered division ring which is not a field and let V be an
ordered vector space over D. By standard quantifier elimination methods, this
structure can be shown to be o-minimal.

Assume now that V is an o-minimal expansion of V of type (Z3). By Corollary
9.3, the ring of V-definable endomorphisms of (V,+), call it D, can be embedded
in a real closed field R. But D is a subring of D, which contradicts the
commutativity of R. It follows that every expansion of V is of type (Z2), that is,
there is an ordered division ring D extending D such that V is a reduct of an
ordered vector space over D.

We may consider D above as an ordered vector space over itself by restricting
ourselves to the language containing <, + and a unary function A\,(x) = ax for
every a € D. It is not too difficult to show that if D; is an o-minimal expansion of
D then every linear function definable in D; is already definable in D; hence for
D; to be a proper expansion, it must be of type (Z3). However, by the above this
is impossible. We have thus proved our final corollary.

COROLLARY 9.4. Let D be an ordered division ring which is not a field. Then D,
considered as an ordered vector space over itself, has no proper o-minimal expansions.

10. Appendix: geometric calculus

Let .# be an o-minimal structure with a nice family of functions. By the main
theorem of this paper, a real closed field is definable in .. It is known (see [2] for
example), that definable functions in such structures possess good differentiability
properties and many theorems from basic calculus, for instance, the uniqueness
theorem for solutions of differential equations (see [12]), hold for them.

In this section we want to show how one can recover a differentiable structure of .#
from its geometry only, without using a field structure at all. We call this approach
‘Geometric Calculus’. Although we do not use it directly in proving the main
results of this paper, almost all ideas of the proofs were inspired by this approach.

We assume from now on that .# is an o-minimal structure with a p-nice family
of functions # = {f(x,%): # € U} on an open interval I. We are going to use this
family to define the notion of tangency in the same way as the family of linear
functions {y = ax + b: a,b € R} is used to define the standard derivative over the
field of reals.
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DEFINITION 10.1.  Let h(x) be a definable function with / c dom(k) and p € I.
We say that h is F-bounded at p if there are f'(x),f>(x) €Z such that

f'(p) =f(p) =h(p) and f'(x) <, h(x) <, 7 (x).

We fix a point pel and a function h(x) which is Z-bounded at p. For
simplicity, we assume that 4, I and U are O-definable. Let g = h(p). As before,
U, ={ucU: f(p,u)=q}. Let J,,=m(U,) and, for acJ,,, we let f,(x)
denote the unique function f(x,?) € # such that o € U, and a = m(2).

Let

SE(p) = {a € 1yt fulx) = h@)Y. ST(p) = {a € Tyt fi2) <5 A()}.
S2(p) = {a € dg i) =y H@)}, S=(p) = {a € Jyg ful) <5 (D)},
By o-minimality, there are a” and a~ in M such that
a” =inf(Sy) = sup(S2)
and
a” =inf(S2) = sup(S,).

We denote this a” and a~ by dj;h(p) and dzh(p), and call them the right 7 -
derivative of h at p and the left ¥ -derivative of h at p, respectively.

DEerINITION 10.2.  We say that a function h(x) is Z -differentiable at p and a is
the 7 -derivative of h at p if d;h(p) = dzh(p) = a. The F -derivative of h at p
is denoted by dz h(p), and the function f,(x) is denoted by 75 h(p).

LeEmMA 10.3. If p is generic then there is at most one a € J,, such that f,
touches h at p.

Proof.  Suppose that the lemma is not true and there are a; < a, € J,,, such that
both f, and f,, touch h at p. By properties of nice families then for every
a € (ay,a,), f, touches h(x) at p. Going to an elementary extension, if needed, we
can assume that .# is w-saturated.

Leta € (a;,a,) be generic over p. We will assume that f, touches 4 at p from above,
and therefore there are p; < p < p, such that f,(x) = h(x) for all x € (p;,p,). By
o-minimality, since p is generic, & is continuous on an open interval containing p,
and we can choose p;, p, so that h is continuous on [p;,p,]. Also, since a is
generic over p, f, and h cannot be equal on any open interval containing p and
therefore we can assume that f,(x) > h(x) for all x#p in (p(,ps).

Changing p; and p,, if needed, we can assume that p; and p, are generic over
{p,a}, and thus dim(p,a,p;,p,) =4. Let q; =f,(p;). Since f, is the unique
curve in Z passing through (p,,q;) and (p,h(p)), a €dcl(p;,q;,p); therefore
dim(py,q.,p,p2) =4 and p is generic over p;, q, p».

Thus there is an open interval containing p such that for all p’ in this interval
the following holds:

I eU f(p1.w) =q1 &f(p'. W) = h(p) & Vx € (p1.p)) f(x. W) > h(x).

We choose p’ such that p<p' <p,, p’ is generic over p, p;, ¢, a, and the
above statement holds for p’. Let w € U be such that f(p,,w) = q,, f(p/,w) =

h(p'). and (Vx € (p1.p)(f(x. W) > h(x)). Since f,(p) = h(p) and f(p.W) > h(p),
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we have f,(p) <f(p,w); and for the same reason f,(p") >f(p’,w). As both f,(x)
and f(x,w) are continuous, there must be a py € (p,p’) such that f,(py) =
f(po,w). But f,(p;) =f(p;,w), and thus by the properties of a nice family,
fa(x) =f(x,w) for all x € I. This is a contradiction, since f,(p) <f(p,w).

Lemma 10.4. If p is generic, then h is & -differentiable at p and, moreover,
for a=dzh(p), the function f,(x) touches h(x) at p.

Proof. Suppose that h(x) is not differentiable at p, that is, a™ = d h(p)#
dzh(p) = a". Assume that, for instance, a” >a. Then for any a in the interval
(a”,a") we have f,(x)=<, h(x) since a>a", and f,(x) =<, h(x) since a<a™.
Therefore, for every a € (af,aJr), the function f, touches h(x) at p, contradicting
Lemma 10.3.

Thus &(x) is differentiable at p. Write a = d h( p). We want to show that f, touches
h at p. Suppose that it does not, and, for instance, h(x) <, f,(x). Let p; <p < p,
be such that h(x) > f,(x) for all x € (py,p) and f,(x) > h(x) for all x € (p,p,).

Since p is generic, we can choose p; and p, so that for any p' € (py,p,) the
function h(x) is 7 -differentiable at p’ and if f = 75 (h(p')) then f(x) < h(x) for
x € (p1,p) and f(x) > h(x) for x € (p',pa).

Considering an elementary extension of .#, if needed, we can assume that .#
is w-saturated, and the interval (p;, p,) does not contain any elements of acl(p,a)
except p itself.

Let d' < a be an element of J,, (recall that ¢ = h(p)). Then f,, < h(x) and we
can choose @ and y€ (p, p,) so that f,(y) <h(y). Since f,(y)>h(y), by
continuity of f(x,i), we can find b<a€J,, such that f,(y) = h(y). As b<a,

f»(x) <) h(x) and hence we can find p’ € (p,y] such that f,(p') =h(p') and
fb(x)/ <y h(x)/. Namely let p’ be the first point to the right side of p where
fo(P) = h(p).

Since p’ € (p, p,), h(x) is F-differentiable at p’, and let f =75h(p’). As
£(0) < h(x). we have f,(x) <y £(x). Since p € (p1. p'). F(p) < h(p) = fy( ). and
therefore, by continuity of functions f and f,, there must be a point in (p,p’) at
which these functions are equal. But f(p') =f,(p’) and thus, by the properties of
nice families, f(x) and f,(x) must be equal, contradicting the fact that

f(p) <fp(p).

Summarizing all of the above for an arbitrary function g(x) we obtain the
following theorem.

THEOREM 10.5. Let 7 ={f(x,u): uc U} be a nice family on an open
interval I, g(x) a definable function with I c dom(g), and p a point in I generic
over the parameters needed to define f and g. If g(x) is F -bounded at p then it is
F -differentiable at p, and moreover 74 g(p) is the unique function in F which
touches g(x) at p.

Assume that # = {f(x,i1): € U} is a nice family on /. Notice that by clause
(ii) of Definition 4.4, for every (a,b;),{(a,by) € U, f, , (X) = f, p,(x) for some x € I
if and only if by = b,.

The theorem below is a generalization of the calculus theorem which says that
a function with constant derivative must be linear.
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THEOREM 10.6. For & as above, let h(x) be a definable continuous, ¥ -
differentiable function on I. If dzh(x) is constant on I then h € F

Proof. We assume that all functions are definable over the empty set.

Let p be generic in I. By Theorem 10.5, 75 h(p) touches h(x) at p, say, from
above. By genericity, there are p; <p <p, such that for every p' € (py, p,), if
f=17h(p') then f touches h at p’ from above and f(x) = h(x) for all x € (p;, p')
and all x € (p/, p,). Take p’ € (py, p). Then

r7h(p")(P) = h(p') < 77h(p)(P)
and

77h(p')(p) = h(p) = 77h(p)(p).

By continuity, there is an x, € I such that 75 h(p')(xg) = 75 h(p)(xy). By our
assumptions, dzh(p') = dzh(p) = a for some a. Hence there are v’ and v such
that 75 h(p')(x) = fo.or(x) and 77h(p)(x) = fuo(x). It follows that f . (xo) =
fa,v(xo) By the comment preceding the statement of the theorem, v’ = v; hence
77h(p') = 77h(p). We can similarly show that 75h(p’) =75h(p) for all
p' € (p, p2)- But then h(x) = 75 h(p)(x) for all x € (p, p,).

Since p was an arbitrary generic point in /, we can partition / into finitely many
intervals on each of which h(x) =f, ,(x) for some v. By the continuity of A, the
functions from &% must agree on the endpoints of these intervals; hence, as
before, they all are equal to each other. Namely, h(x) =f, ,(x) for all x€ /.

Theorem 10.6 seems surprising since it depends on a particular parametrization
of & . However, note that if we change the parametrization then we might need
first to restrict the domain of % in order to ensure that it is a nice family. After
this has been done, the collection of % -bounded functions could change and the
theorem would not apply to the same functions.

Similarly to Theorem 10.6, one can formulate and prove the % -version of the
Mean Value Theorem and other calculus results. The notion of concavity with
respect to & can also be defined by saying that a function h(x) is % -concave up
on I if dzh(p) is increasing in p. Some basic properties which are usually related
to the second derivative can be proved using the above methods.
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