Geometry of combinatorially extremal algebraic configurations

Martin Bays

December 23, 2017

Notes for a talk in Paris, 15.12.2017. Part of a project joint with Emmanuel Breuillard.

1 Bounds on finite algebraic configurations

 $V \subseteq \mathbb{C}^n$ irreducible algebraic set, $N \in \mathbb{N}$, $X_i \subseteq \mathbb{C}$ with $|X_i| \leq N, i = 1 \dots n$. Then $|V \cap \prod_i X_i| \leq O(N^d)$ where $d = \dim(V)$. *Question* 1.1. For what V is this exponent d optimal, i.e. $|V \cap \prod_i X_i| \leq O(N^{d-\epsilon})$ for any $\epsilon > 0$.

(also interested in similar questions when co-ordinates \mathbb{C} are replaced by higher dimensional varieties)

Theorem 1.2 (Elekes-Szabó). For n = 3 and d = 2, the exponent 2 is optimal iff either

- V is in co-ordinatewise correspondence with the graph of the group operation of a 1-dimensional algebraic group G,
 i.e. V is a component of the Zariski closure of {(α₁(g), α₂(h), α₃(g + h)) : g, h ∈ G} where α_i : G → C are finite-to-finite algebraic correspondences,
- or V projects to a curve, i.e. $\dim(\pi_{ij}(V)) = 1$ some $i \neq j \in \{1, 2, 3\}$.

(Hong Wang, Raz-Sharir-deZeeuw: When 2 isn't optimal, 11/6 works. (Could be that $1 + \epsilon$ works for any $\epsilon > 0...$) Raz-Sharir-deZeeuw: case (n = 4, d = 3).)

2 Hrushovski δ -formalism

Hrushovski "On Pseudo-Finite Dimensions" (2013)

- $K := \prod_{i \to \mathcal{U}} K_i$, $\mathcal{U} \subseteq \mathcal{P}(\omega)$ non-principal ultrafilter, K_i expansions of $(\mathbb{C}; +, \cdot)$ in a countable language $\mathcal{L} \supseteq \mathcal{L}_{ring}$.
- $X \subseteq K^n$ is **internal** if $X = \prod_{i \to \mathcal{U}} (X_i)$ for some $X_i \subseteq K_i^n$.

- Then $|X| := \prod_{i \to \mathcal{U}} |X_i| \in \mathbb{R}^{\mathcal{U}} \cup \{\infty\}.$
- Let $\xi_0 \in \mathbb{R}_{>0}^{\mathcal{U}}$ with $\xi_0 > \mathbb{R}$.
- $\delta(X) := \operatorname{st}\left(\frac{\log(|X|)}{\log(\xi_0)}\right) \in \mathbb{R}_{\geq 0} \cup \{-\infty, \infty\}$ ("coarse pseudofinite dimension").
- Note $\delta(X \times Y) = \delta(X) + \delta(Y)$, and $\delta(X \cup Y) = \max(\delta(X), \delta(Y))$.
- $\boldsymbol{\delta}(\phi) := \boldsymbol{\delta}(\phi(K)).$
- $\delta(\Phi) := \inf\{\delta(\phi) : \phi \in \Phi\}.$
- $\delta(a/C) := \delta(\operatorname{tp}(a/C)).$

Assume δ is continuous:

Given $\phi(x, y)$ and $\alpha \in \mathbb{R}$, for $\epsilon \in \mathbb{R}_{>0}$ exists definable Y s.t.

$$\boldsymbol{\delta}(\phi(x,b)) \leq \alpha \Rightarrow b \in Y \Rightarrow \boldsymbol{\delta}(\phi(x,b)) < \alpha + \epsilon.$$

Can add quantifiers $\exists_{\xi_0^q}$ for $q \in \mathbb{Q}$ to get continuity.

Fact 2.1.

- (i) $a \equiv_C b \Rightarrow \delta(a/C) = \delta(b/C).$
- (*ii*) $\delta(ab/C) = \delta(a/bC) + \delta(b/C)$.
- (iii) A partial type Φ over a countable set C has a realisation $K \vDash \Phi(a)$ with $\delta(a/C) = \delta(\Phi)$.

Fix C_0 a countable algebraically closed subfield of K. Assume $C_0 \subseteq \operatorname{dcl}(\emptyset)$.

Definition 2.2. For $B \subseteq K$,

- $\operatorname{acl}^0(B) := C_0(B)^{\operatorname{alg}} \le K;$
- $\dim^0(B) := \operatorname{trd}(C_0(B)/C_0).$

Note $a \in \operatorname{acl}^0(B) \Rightarrow \delta(a/B) = 0$.

3 Coherent modularity

3.1 Coherence

Definition 3.1. $X \subseteq K$ is (coarsely) **coherent** if $\dim^0(\overline{a}) = \delta(\overline{a})$ for any $\overline{a} \in X^{<\omega}$.

Remark 3.2. If $\overline{a} = a_1 \dots a_n$ and $\delta(a_i) = \dim^0(a_i)$, then $\delta(\overline{a}) \leq \dim^0(\overline{a})$, and $\{a_1, \dots, a_n\}$ is coherent iff $\delta(\overline{a}) = \dim^0(\overline{a})$. Remark 3.3. For V over $C_0 \subseteq \mathbb{C}$, the exponent $d = \dim(V)$ is optimal iff for some such structure K exists coherent $\overline{a} \in V(K)$ with $V = \operatorname{locus}(\overline{a}/C_0)$. Indeed: if d is optimal, for $\epsilon > 0$, for arbitrarily large N, have $|X_{i,N}| = N$ s.t. $|V \cap \prod_i X_{i,N}| > N^{d-\epsilon}$. Take K in language with $\prod_{N \to \mathcal{U}} X_{i,N} =: X_i$ definable. Set $\xi_0 := |X_i|$. Then $\delta(V \cap \prod_i X_i) = d$, so say $\overline{a} \in V \cap \prod_i X_i$ with $\delta(\overline{a}) = d$, then \overline{a} is coherent and generic in V. Converse is similar.

3.2 Geometries

Recall a **pregeometry** is a closure operator cl on a set S satisfying exchange

$$a \in \operatorname{cl}(Cb) \setminus \operatorname{cl}(C) \Rightarrow b \in \operatorname{cl}(Ca)$$

and finite character $(\operatorname{cl}(A) = \bigcup_{A_0 \subseteq_{\operatorname{fin}} A} \operatorname{cl}(A_0)).$

The associated **geometry** is

$$\mathbb{P}(S) := (S \setminus \mathrm{cl}(\emptyset)) / \{ \mathrm{cl}(x) = \mathrm{cl}(y) \}.$$

For $A \subseteq S$, dim $(A) = \min\{|A_0| : A_0 \subseteq A \subseteq cl(A_0)\}$.

Definition 3.4. A geometry (S, cl) is **modular** if for $a, b \in S$ and $C \subseteq S$, if $a \in cl(bC) \setminus cl(C)$ then exists $c \in cl(C)$ such that $a \in cl(bc)$.

If V is a vector space over a division ring R, $\mathbb{P}(V) := \mathbb{P}(V : \langle . \rangle)$ is modular

 $\mathbb{P}(V) := \mathbb{P}(V; \langle \cdot \rangle_R), \text{ is modular.}$ $\mathcal{G}_K := \mathbb{P}(K; \operatorname{acl}^0) \text{ is not modular: } a = c_1 \cdot b + c_2.$

Definition 3.5 (SKIP). • $(S_1, cl_1), (S_2, cl_2)$ geometries.

The **coproduct** is the geometry $(S_1 \cup S_2, \operatorname{cl}_1 \cup \operatorname{cl}_2)$ where $(\operatorname{cl}_1 \cup \operatorname{cl}_2)(X_1 \cup X_2) = \operatorname{cl}_1(X_1) \cup \operatorname{cl}_2(X_2)$ for $X_i \subseteq S_i$.

• A subgeometry of a geometry (S; cl) is $(X; cl\restriction_X)$ where $X \subseteq S$ and $cl\restriction_X (A) = cl(A) \cap X$.

Fact 3.6. (S, cl) modular geometry.

Say $a, b \in S$ are collinear (equiv: non-orthogonal) if $a \in cl(bc)$ for some $c \neq a$.

Then (S, cl) is the coproduct of the subgeometries on the collinearity equivalence classes,

and each class of dim > 3 is a projective geometry $\mathbb{P}(V)$ over a division ring (coordinatisation theorem of projective geometry).

3.3 Coherent modularity

Hrushovski observes that incidence bounds yield modularity.

If $y = a \cdot x + b$, $x, y, a, b \in K \setminus C_0$, then $\{x, y, a, b\}$ is not coherent:

Theorem 3.7 (Szemeredi-Trotter for \mathbb{C} , due to Zahl). For $P, L \subseteq \mathbb{C}^2$ with $|P|, |L| \leq N^2$,

$$|\{((x,y),(a,b)) \in P \times L : y = a \cdot x + b\}| \le O(N^{\frac{2}{3}}).$$

Lemma 3.8. For $X \subseteq K$ coherent, $ccl(X) := \{c \in acl^0(X) : c \text{ is coherent}\}$ is coherent.

Using generalisations of Szemeredi-Trotter proved in various levels of generality by various authors (one by Elekes-Szabó suffices for our purposes),

Proposition 3.9. If X is coherent and X = ccl(X), then $\mathcal{G}_X := \mathcal{G}(X; acl^0) \subseteq \mathcal{G}_K$ is a modular geometry.

Remark 3.10. If Ba is coherent and $a \notin \operatorname{acl}^{0}(B)$, then exists $a' \equiv_{B} a$ with $\delta(a'/Ba) = \delta(a'/B)$, and then $a' \notin \operatorname{acl}^{0}(Ba)$, and so Baa' is coherent.

Hence: $\mathcal{G}_X = \bigcup_i \mathcal{G}_i$ where for each i, $\mathcal{G}_i = \{*\}$ or $\mathcal{G}_i \subseteq \mathcal{P}(V_i) \subseteq \mathcal{G}_K$, some V_i vector space over a division ring F_i .

3.4 Projective subgeometries of \mathcal{G}_K

Example 3.11. Let G be a 1-dimensional algebraic group over C_0 , let $F \leq \operatorname{End}_{C_0}^0(G) := \mathbb{Q} \otimes_{\mathbb{Z}} \operatorname{End}_{C_0}(G)$ be a division subring. Then $G(K)/G(C_0)$ is an F-vector space. Let $g_1, \ldots, g_n \in G$ be independent generics. Then $\mathbb{P}_F(\langle g_1/G(C_0), \ldots, g_n/G(C_0) \rangle_F)$ is a subgeometry of \mathcal{G}_K .

Theorem 3.12 (Evans-Hrushovski '91). Any projective subgeometry $\mathcal{G} \subseteq \mathcal{G}_K$ of dim ≥ 3 of the above form.

So suppose \overline{a} coherent and each (a_i, a_j) is collinear in $ccl(\overline{a})$, and $dim(\overline{a}) > 1$.

Then there is a 1-dimensional group G and g_i acl⁰-interalgebraic with a_i , s.t. $locus(\overline{g}) = ker(M)^0$ for some $M \in Mat(End_{C_0}(G))$. Same holds for $dim(\overline{a}) = 1$, with $G := \mathcal{G}_a$ and $g_i = g_j$. So -

Theorem 3.13. The exponent $d = \dim(V)$ is optimal for V iff, up to finite-to-finite correspondences on the co-ordinates, V is a product of algebraic subgroups of powers of 1-dimensional algebraic groups.

4 Higher dimension

Theorem 4.1 (Elekes-Szabo). $V \subseteq W_1 \times W_2 \times W_3$, dim $(W_i) = k$, dim(V) = 2k, all irreducible complex. (Nice example: W_i surfaces in \mathbb{C}^3 , V collinearity.) $X_i \subseteq W_i$, $|X_i| = N$, in general position: for $W'_i \not\subseteq W_i$ proper subvariety, $|X_i \cap W'_i| \in O_{\deg(W'_i)}(1)$. Then either $|V \cap \Pi_i X_i| \leq O(N^{2-\eta})$ or V is in correspondence with a group operation (or trivial case).

Remark 4.2. Example showing necessity of general position: V := graph of $(a_1, b_1) * (a_2, b_2) = (a_1 + a_2 + b_1^2 b_2^2, b_1 + b_2),$ $X_{i,N} := \{-N^4, \dots, N^4\} \times \{-N, \dots, N\} \subseteq \mathbb{C}^2 =: W_i.$

4.1 Coarse general position

Definition 4.3. $\overline{a} \in K^{<\omega}$ is in coarse general position if

$$\dim^0(a/B) < \dim^0(a) \Rightarrow \boldsymbol{\delta}(a) = 0$$

for any $B \subseteq K$.

Definition 4.4.

- $K^{\text{eq}} := \bigcup_n K^n$.
- $X \subseteq K^{\text{eq}}$ is (coarsely) **coherent** if every $a \in X$ is in coarse general position and $\dim^0(\overline{a}) = \delta(\overline{a})$ for any $\overline{a} \in X^{<\omega}$.
- $\operatorname{ccl}(X) := \{ x \in \operatorname{acl}^{\operatorname{eq}}(X) : \{ x \} \text{ is coherent} \}.$

Theorem 4.5. Suppose X = ccl(X). Then (X, acl^{eq^0}) is modular.

As in Evans-Hrushovski, using abelian group configuration, \mathcal{G} projective geometry of dim ≥ 4 in $\mathbb{P}(K^{\text{eq}}, \operatorname{acl}^{eq})$ factors

for some abelian algebraic group G and a division ring $F \leq \operatorname{End}_{C_0}^0(G)$.

So obtain corresponding analogue of 1-dimensional theorem, generalising Elekes-Szabo.