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1 Bounds on finite algebraic configurations

V C C" irreducible algebraic set,
N e N,
Then |V NILX;| < O(N?) where d = dim(V).
Question 1.1. For what V is this exponent d optimal,
ie |[VNILX;| £ O(N9¢) for any € > 0.
(also interested in similar questions when co-ordinates C are replaced by higher
dimensional varieties)

Theorem 1.2 (Elekes-Szabd). Forn =3 and d = 2,
the exponent 2 is optimal iff either

e V is in co-ordinatewise correspondence with the graph of the group opera-
tion of a 1-dimensional algebraic group G,
i.e. V is a component of the Zariski closure of {(a1(g),a2(h),as(g+h)) :
g,h € G} where o; : G — C are finite-to-finite algebraic correspondences,

e or V projects to a curve, i.e. dim(m;;(V)) =1 some i # j € {1,2,3}.

( Hong Wang, Raz-Sharir-deZeeuw: When 2 isn’t optimal, 11/6 works.
(Could be that 1 + € works for any € > 0...)
Raz-Sharir-deZeevw: case (n =4,d = 3).)

2 Hrushovski §-formalism
Hrushovski “On Pseudo-Finite Dimensions” (2013)
o K :=1II; .y K,
U C P(w) non-principal ultrafilter,
K; expansions of (C;+,-) in a countable language £ D Lying.

e X C K™ is internal if X = II,_,,(X;) for some X; C K.
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e Then | X| :=IT; | X;| € RY U {co}.

o Let & € Rgo with & > R.

e §(X) = st (lffg((lg‘))) € Rx>g U {—00,00} ("coarse pseudofinite dimen-

sion”).
o Note 3(X x Y) = &(X) + 8(Y), and (X UY) = max(8(X),8(Y)).
o 5(9) = 8(4(K)).

o 5(P) :=inf{d(¢): ¢ € D).

o 5(a/C) = 8(tp(a/C)).

Assume ¢ is continuous:
Given ¢(z,y) and o € R, for € € Ry exists definable Y s.t.

0(d(z,b) <a=beY = d(o(x,b) <a+e

Can add quantifiers 3 <ed for ¢ € Q to get continuity.
Fact 2.1.

(i) a=c b= 6(a/C)=48(b/C).

(ii) 6(ab/C) = 6(a/bC) + 6(b/C).

(iii) A partial type ® over a countable set C has a realisation K F ®(a) with
d(a/C) =d8(D).

Fix Cy a countable algebraically closed subfield of K.
Assume Cy C dcl(0).

Definition 2.2. For B C K,
e acl’(B) := Cy(B)*2 < K;
e dim’(B) := trd(Cy(B)/Co).
Note a € acl®(B) = 8(a/B) = 0.

3 Coherent modularity

3.1 Coherence

Definition 3.1. X C K is (coarsely) coherent if dim’(@) = d(a) for any
ae X<¥,

Remark 3.2. fa =ay ...a, and 8(a;) = dim®(a;),
then 8(a) < dim®(a),
and {a1,...,a,} is coherent iff §(a) = dim®(a).
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Remark 3.3. For V over Cy C C,
the exponent d = dim(V') is optimal iff for some such structure K exists coherent
a € V(K) with V = locus(a/Co).
Indeed: if d is optimal,
for € > 0, for arbitrarily large N,
have ‘Xl,N‘ = N s.t. |V N H1X1N| > Nd—e,
Take K in language with IIx_,;yX; y =: X; definable.
Set fo = |Xz|
Then 6(V N HIXZ) = d,
so say a € V NILX; with d(a) = d,
then @ is coherent and generic in V.
Converse is similar.

3.2 Geometries

Recall a pregeometry is a closure operator cl on a set S satisfying exchange
a € cl(Ch) \ cl(C) = b e cl(Ca)

and finite character (cl(A) = Ua,cy,a cl(Ao)).
The associated geometry is

P(S) := (S\ cl(0))/{cl(z) = cl(y)}-
For A C S, dim(A) = min{|Ao|: Ao C A C cl(Ay)}.

Definition 3.4. A geometry (S, cl) is modular if for a,b € S and C C S,
if a € cl(bC) \ cl(C) then exists ¢ € cl(C) such that a € cl(be).

If V is a vector space over a division ring R,
P(V) :=P(V;(:) ), is modular.
Gk :=P(K; aclO) is not modular: a = ¢ - b+ ca.

Definition 3.5 (SKIP). e (S1,cly), (S2,cly) geometries.
The coproduct is the geometry (S U Ss,cly Ucly) where (cly Ucly)(X7 U
XQ) = Cll(Xl) U CIQ(XQ) for Xz Q Sz

e A subgeometry of a geometry (S;cl) is (X;cl[x) where X C S and cl[x
(A)=cl(A)NX.

Fact 3.6. (5,cl) modular geometry.

Say a,b € S are collinear (equiv: non-orthogonal) if a € cl(bc) for some
c#a.

Then (S, cl) is the coproduct of the subgeometries on the collinearity equiva-
lence classes,
and each class of dim > 3 is a projective geometry P(V) over a division ring
(coordinatisation theorem of projective geometry).

3.3 Coherent modularity

Hrushovski observes that incidence bounds yield modularity.
Ify=a-x+b,z,y,a,be K\ CCy, then {x,y,a,b} is not coherent:
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Theorem 3.7 (Szemeredi-Trotter for C, due to Zahl). For P,L C C? with
|PI,|IL| < N?,

{((z,9),(a,b)) EP X L:y=a-z+b}| <O(N5).

Lemma 3.8. For X C K coherent,
ccl(X) := {c € acl’(X) : ¢ is coherent} is coherent.

Using generalisations of Szemeredi-Trotter proved in various levels of gener-
ality by various authors (one by Elekes-Szabé suffices for our purposes),

Proposition 3.9. If X is coherent and X = ccl(X),
then Gx := G(X; aclo) C Gk 1is a modular geometry.

Remark 3.10. If Ba is coherent and a ¢ acl®(B),
then exists ' =p a with 8(a’/Ba) = 8(a’/B),
and then o’ ¢ acl®(Ba),

and so Baa' is coherent.

Hence: Gx = U G; where for each 1,
—{*}OrngP( )CgK7

some V; vector space over a division ring Fj.

3.4 Projective subgeometries of Gy

Ezxample 3.11. Let G be a 1-dimensional algebraic group over Cj,
let FF < End%O (@) = Q ®z End¢, (G) be a division subring.

Then G(K)/G(Cp) is an F-vector space.

Let g1,...,9n € G be independent generics.

Then Pr((91/G(Co),...,9n/G(Co)) ) is a subgeometry of Gx.

Theorem 3.12 (Evans-Hrushovski '91). Any projective subgeometry G C G

of dim > 3 of the above form.

K)/G(Cy)) —> Gk

So suppose @ coherent and each (a;, a;) is collinear in ccl(a),
and dim(a) > 1.
Then there is a 1-dimensional group G and g; acl’-interalgebraic with a;,
s.t. locus(g) = ker(M)? for some M € Mat(Endc, (G)).
Same holds for dim(@) = 1, with G := G, and g; = g;.
So -

Theorem 3.13. The exponent d = dim (V) is optimal for V iff,
up to finite-to-finite correspondences on the co-ordinates,
V' is a product of algebraic subgroups of powers of 1-dimensional algebraic groups.
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4 Higher dimension

Theorem 4.1 (Elekes-Szabo). V' C Wy xWo x W3, dim(W;) = k, dim(V') = 2k,
all vrreducible complex.

(Nice example: W; surfaces in C3, V' collinearity.)

X; CW,, |X;| = N, in general position:

for W! & W, proper subvariety,

[ Xi N W] € Odeg(wy)(1).

Then either |V NILX;| < O(N?77) or V is in correspondence with a group
operation (or trivial case).

Remark 4.2. Example showing necessity of general position:
V := graph of (a1, b) * (az,b2) = (a1 + az + b3b3, b1 + ba),
Xin:={-N*... N} x{-N,...,N} CC?> = W,.
4.1 Coarse general position
Definition 4.3. @ € K<% is in coarse general position if
dim®(a/B) < dim®(a) = 8(a) =0
for any B C K.
Definition 4.4.
o K:=, K"

e X C K®is (coarsely) coherent if every a € X is in coarse general
position and dim® (@) = §(a) for any @ € X <~.

e ccl(X) :={x € acl®¥(X) : {z} is coherent}.

Theorem 4.5. Suppose X = ccl(X).
0
Then (X, acl®®) is modular.

As in Evans-Hrushovski, using abelian group configuration,
G projective geometry of dim > 4 in P(K°9 acl®?) factors

f\

K)/G(Cy)) —— P(K°9, acl®?)

for some abelian algebraic group G and a division ring F' < End%o(G).
So obtain corresponding analogue of 1-dimensional theorem, generalising
Elekes-Szabo.



