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Elekes-Szabó
I Suppose f ∈ C[X ,Y ,Z ] is an irreducible polynomial in which

each of X ,Y ,Z appears.
I Set V := {(x , y , z) ∈ C3 : f (x , y , z) = 0}.
I Consider intersections with finite “grids” A× B × C with
|A|, |B|, |C| ≤ N ∈ N.

I We have
|V ∩ (A× B × C)| ≤ O(N2).

I Say V “admits no powersaving” if for no ε > 0 do we have

|V ∩ (A× B × C)| ≤ O(N2−ε).

I Example: if f (x , y , z) = z − x − y then arithmetic progressions
A = B = C := [−m,m] witness that V admits no powersaving.

Theorem (Elekes-Szabó 2012)

V admits no powersaving iff V is in co-ordinatewise algebraic
correspondence with the graph of addition on a 1-dimensional
algebraic group.



Pseudofinite dimension
Hrushovski “On Pseudo-Finite Dimensions” (2013)
I U ⊆ P(ω) non-principal ultrafilter.
I K := CU .
I X ⊆ K n is internal if X =

∏
s→U Xs for some Xs ⊆ Cn, and

pseudofinite if each Xs is finite.
I For X internal, set |X | :=

∏
s→U |Xs|.

I |X | ∈ RU if X is pseudofinite, |X | :=∞ else.
I Fix ξ ∈ RU with ξ > R.

Definition (Coarse pseudofinite dimension δ)

For X internal,

δ(X ) = δξ(X ) := st
(

log(|X |)
log(ξ)

)
∈ R≥0 ∪ {−∞,∞}.

I Note that internality is closed under cardinality quantifiers: if
R ⊆ K n × K m is internal and α ∈ RU , then
{y ∈ K n : ∃≥αx .R(x , y)} is internal.



Lint monster
I Lint: predicate for each internal X ⊆ K n.
I K � K monster model in Lint.
I For φ ∈ Lint, set δ(φ) := δ(φ(K )).
I δ has a unique extension to (Lint)K such that

tp(b) 7→ δ(φ(x ,b))

Sy (∅)→ {−∞} ∪ R ∪ {∞}
is well-defined and continuous for each φ(x , y) ∈ Lint.

I Explicitly, δ(φ(x ,a)) := sup{q ∈ Q : K � ∃≥ξq x . φ(x ,a)}.
I For Φ a partial type, δ(Φ) := inf{δ(φ) : Φ � φ}.
I δ(a/C) := δ(tp(a/C)).

Fact
For C ⊆ K small and a,b ∈ K<ω,

(i) a ≡C b =⇒ δ(a/C) = δ(b/C).
(ii) δ(ab/C) = δ(a/bC) + δ(b/C).
(iii) A partial type Φ over C has a realisation a ∈ Φ(K) with

δ(a/C) = δ(Φ).



acl0

We have C ≤ CU ≤ K.

Definition

Superscript 0 means: reduct to ACFC.
Work in Keq0 := {ACF−imaginaries}
(or, essentially equivalently, Keq0 := K<ω).

I d0(B) := trd(B/C)

I a ∈ acl0(B) iff d0(a/B) = trd(a/C(B)) = 0.
I Cb0(a/B) := CbACF (a/C(B))

Remark

a ∈ acl0(B) =⇒ δ(a/B) = 0.



Coherence

Definition

P ⊆ K is coherent if for any tuple a ∈ P<ω,

δ(a) = d0(a).

In other words, δ is equal on P<ω to the dimension function of the
pregeometry (P; acl0).



Coherence
Definition

a ∈ Keq0 is in coarse general position (or is cgp) if for any B ⊆ K,

d0(a/B) < d0(a) =⇒ δ(a/B) = 0.

Any a ∈ K is cgp.

Definition

P ⊆ Keq0 is coherent if
I every a ∈ P is cgp, and
I for any tuple a ∈ P<ω,

d0(a) = δ(a).

Then (P; acl0) is a pregeometry, and if d0(a) is constant for a ∈ P,
then δ is proportional on P<ω to the dimension function.



Example

Definition

Let W be an irreducible variety over C.
A K-definable set X ⊆W (K) with δ(X ) ∈ R>0 is cgp if for any
W ′ ( W proper subvariety over K,

δ(X ∩W ′) = 0.

If X is cgp, then any a ∈ X is cgp.

Example

Let G be a complex semiabelian variety, e.g. G = (C×)n.
Let γ ∈ G(C) generic.
Let X :=

∏
s→U{−s · γ, . . . , s · γ}, and set ξ such that δ(X ) = dim(G).

Then X is cgp, since |X ∩W ′| < ℵ0 by uniform Mordell-Lang.
Also δ(X 3 ∩ Γ+) = 2δ(X ). So if (a,b, c) ∈ X 3 ∩ Γ+ with
δ(abc) = 2δ(X ), then {a,b, c} is coherent.



Szemerédi-Trotter bounds

Suppose X1 ⊆ Kn1 and X2 ⊆ Kn2 are
∧

-definable, and V ⊆ Kn1+n2 is
K-Zariski closed.
Let X := (X1 × X2) ∩ V .
Suppose thazetat for b,b′ ∈ X2 with b 6= b′, we have
δ(X (b) ∩ X (b′)) = 0.

Remark

We have the trivial bound δ(X ) ≤ 1
2δ(X1) + δ(X2). Proof on board.

Lemma (Elekes-Szabó)

If δ(X2) > 1
2δ(X1) > 0, then δ(X ) < 1

2δ(X1) + δ(X2).

Hrushovski: such bounds correspond to modularity.



Linearity
Lemma

Suppose P ⊆ Keq0 is coherent, a1,a2,b1, . . . ,bn ∈ P, and:
I d0(a1) = k = d0(a2)

I a1 |̂ 0 a2

I a1 6 |̂ 0
b

a2.

Let e := Cb0(a/b). Then d0(e) = k.

Proof.

X1 := tp(a), X2 := tp(e), V := loc0(ae).
By cgp and canonicity, δ(X (e1) ∩ X (e2)) = 0 for e1 6= e2 ∈ X2.
Meanwhile,
δ(X )− δ(X2) ≥ δ(a/e) ≥ δ(a/b) = d0(a/b) = 1

2d0(a) = 1
2δ(X1).

So by Szemerédi-Trotter bounds, must have δ(X2) ≤ 1
2δ(X1).

Now e ∈ acl0(b) and b is coherent, and it follows that d0(e) ≤ δ(e).
So d0(e) ≤ δ(e) = δ(X2) ≤ 1

2δ(X1) = k .
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Modularity
Recall

I A geometry is a pregeometry with cl(∅) = ∅ and cl({x}) = {x}.
I The geometry of a pregeometry (P; cl) is ({cl(x) : x ∈ P}; cl).

Definition

I A geometry (P, cl) is modular if for a,b ∈ P and C ⊆ P,
if a ∈ cl(bC) \ cl(C) then there exists c ∈ cl(C) such that
a ∈ cl(bc).

I Say a,b ∈ P are non-orthogonal if a ∈ cl(bC) for some C ⊆ P.

Fact (Veblen-Young co-ordinatisation theorem)

The modular geometries of dimension ≥ 4 in which every two points
are non-orthogonal are precisely the projective geometries PF (V ) of
vector spaces of dimension ≥ 4 over division rings.



Canonical base is cgp
Lemma

Suppose P is coherent, a1,a2,b1, . . . ,bn ∈ P, and:
I d0(a1) = k = d0(a2)

I a1 |̂ 0 a2

I a1 6 |̂ 0
b

a2.

Let e := Cb0(a/b). Then d0(e) = k.
Moreover, {e} is coherent.

Proof.

We already saw δ(e) = d0(e); it remains to show that e is cgp.
Suppose B ⊆ Keq0 and e 6 |̂ 0 B; we show δ(e/B) = 0.
Let a′ = a′1a′2 such that a′ ≡e a and a′ |̂ δ

e
B. So e ∈ acl0(a′). Then

a′ 6 |̂ 0 B. So since a′ is coherent, δ(a′/B) ≤ δ(a′i) = k .
Meanwhile, δ(a′/e) = δ(a′)− δ(e) = d0(a′)− d0(e) = k . So
δ(e/B) = δ(a′/B)− δ(a′/eB) = δ(a′/B)− δ(a′/e) ≤ k − k = 0.
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Modularity of coherence

Definition

For P ⊆ Keq0,

ccl(P) := {x ∈ acl0(P) : {x} is coherent}.

Lemma

If P is coherent, so is ccl(P).

Proposition

Suppose P = ccl(P) is coherent.
Then the geometry of (P; acl0) is modular.



Projective subgeometries in ACF

Define P(K) := {acl0(x) : x ∈ K}.

Example

Suppose G is a 1-dimensional complex algebraic group and
F ≤ Q⊗Z End(G) is a division subring.
G(K)/G(C) is naturally an F -vector space.
Let A ⊆ G(K) be a set of independent generics, and set
V := 〈A/G(C)〉F .
Define η : PF (V )→ P(K) by η(〈x/G(C)〉F ) := acl0(x).
Then η embeds PF (V ) as a subgeometry of P(K).

Theorem (Evans-Hrushovski 1991)

Any projective subgeometry of P(K) of dimension at least 3 arises in
this way.



Projective geometries fully embedded in ACFeq

Define P(Keq0) := {acl0(x) : x ∈ Keq0}.

Definition

η : PF (V )→ P(Keq0) is a k -dimensional full embedding if for all
b ∈ PF (V )<ω, we have d0(η(b)) = k · dimPF (V )(b) .

Example

If G is a complex abelian algebraic group, F ≤ Q⊗Z End(G) a
division ring, A ⊆ G(K) independent generics, and V := 〈A/G(C)〉F .
Then η(〈x/G(C)〉F ) := acl0(x) is a dim(G)-dimensional full
embedding.

Theorem (“Evans-Hrushovski for Keq0”)

Suppose V is a vector space of dimension at lesat 3 over a division
ring F , and η : PF (V )→ P(Keq0) is a k-dimensional full embedding.
Then there are G and embeddings F ≤ Q⊗Z End(G) and
V ≤ G(K)/G(C) such that η is as in the example.



Projective geometries fully embedded in ACFeq

Proof idea.

Abelian group configuration yields G.

[0 : 1 : 0]

[1 : 1 : 0]

[1 : 0 : 0] [2 : 1 : 1] [1 : 1 : 1]

[1 : 0 : 1]

[0 : 0 : 1]

Version due to Faure of the fundamental theorem of projective
geometry (semilinearity of projective morphisms) yields embeddings
F ↪−→ Q⊗Z End(G) and V ↪−→ G(K)/G(C).



Elekes-Szabó consequences
Definition

Say a finite subset X of a variety W is τ -cgp if for any proper
subvariety W ′ ( W of complexity ≤ τ , we have |X ∩W ′| < |X |

1
τ .

Definition

If V ⊆
∏

i Wi are irreducible complex algebraic varieties, with
dim(Wi) = m and dim(V ) = dm, say V admits a powersaving if for
some τ and ε > 0 there is a bound∣∣∣∣∣∏

i

Xi ∩ V

∣∣∣∣∣ ≤ O(Nd−ε)

for τ -cgp Xi ⊆Wi with |Xi | ≤ N.

Lemma

V admits no powersaving iff exists coherent generic a ∈ V (K).



Elekes-Szabó consequences

Definition

H ≤ Gn is a special subgroup if G is a commutative algebraic group
and H = ker(A)o for some A ∈ Mat(F ∩ End(G)) for some division
subalgebra F ≤ Q⊗Z End(G).

Theorem

V ⊆
∏

i Wi admits no powersaving iff it is in co-ordinatewise algebraic
correspondence with a product of special subgroups.



Elekes-Szabó consequences; detailed statement
Definition

a ∈W (K) is dcgp if a ∈ X ⊆W (K) for some ∅-definable cgp X .

Theorem

Given V ⊆
∏

i Wi , TFAE
(a) V admits no powersaving.
(b) Exists coherent generic a ∈ V (K) with ai dcgp in Wi .
(c) Exists coherent generic a ∈ V (K).
(d) V is in co-ordinatewise algebraic correspondence with a product

of special subgroups.

Proof.

(a)⇔ (b): ultraproducts.
(b) =⇒ (c): clear.
(c) =⇒ (d): modularity of coherence + “higher Evans-Hrushovski”.
(d) =⇒ (b): see below.



Example
I G := (C×)4.
I Q⊗Z End(G) ∼= Q⊗Z Mat4(Z) ∼= Mat4(Q).
I HQ = (Q[i , j , k ] : i2 = j2 = k2 = −1; ij = k ; jk = i ; ki = j)

embeds in Mat4(Q) via the left multiplication representation.
I HZ = Z[i , j , k ] ⊆ HQ acts on G by endomorphisms:

n · (a,b, c,d) = (an,bn, cn,dn);

i · (a,b, c,d) = (b−1,a,d−1, c);

j · (a,b, c,d) = (c−1,d ,a,b−1);

k · (a,b, c,d) = (d−1, c−1,b,a).

I Then

V :={(x , y , z1, z2, z3) ∈ G5

: z1 = x + y , z2 = x + i · y , z3 = x + j · y}

is a special subgroup of G5.



Example (continued)

I V := {(x , y , z1, z2, z3) ∈ G5 : z1 = x + y , z2 = x + i · y , z3 =
x + j · y} is a special subgroup of G5.

I “Approximate HZ-submodules” witness that V admits no
powersaving:

I HN := {n + mi + pj + qk : n,m, j , k ∈ [−N,N]} ⊆ HZ

I g ∈ G generic
I XN := HN · g = {h · g : h ∈ HN} ⊆ HZ · g ⊆ G.
I Then (by uniform Mordell-Lang), for W ( G proper closed of

complexity ≤ τ , |W ∩HZg| ≤ Oτ (1).
I So ∀τ. ∀N >> 0. XN is τ -cgp in G.
I But i · XN = XN = j · XN , so |X 5

N ∩ V | ≥ Ω(|XN |2).



Sharpness
Fact (Amitsur-Kaplansky)

Any division subring F ⊆ Matn(C) has finite dimension over its centre.

Corollary

Any finitely generated subring of a division subring F ⊆ End0(G) is
contained in a finitely generated subring O ⊆ F which is
constrainedly filtered: there are finite On ⊆ O such that
(CF0) On ⊆ On+1;

⋃
n∈NOn = O

(CF1) ∃k . ∀n. On +On ⊆ On+k ;
(CF2) ∀a ∈ O. ∃k . ∀n. aOn ⊆ On+k ;

(CF3) ∀ε > 0. |On+1|
|On| ≤ O(|On|ε).

(e.g. Z =
⋃

n[−2n,2n] is constrainedly filtered.)
Let “Xk :=

∏
s→U (

∑s
i=1Os−kγi)” with γi ∈ G generic independent.

Then X :=
⋂

k Xk is an O-submodule and δ(X ) = δ(X0) and X is cgp.
So any special subgroup defined using O admits no powersaving.



Application: Generalised sum-product phenomenon

Corollary

Let (G1,+1) and (G2,+2) be one-dimensional non-isogenous
connected complex algebraic groups, and for i = 1,2 let
fi : Gi(C)→ C be a rational map. Then there are ε, c > 0 such that if
A ⊂ C is a finite set lying in the range of each fi , then setting
Ai = f−1

i (A) ⊆ Gi(C) we have

max(|A1 +1 A1|, |A2 +2 A2|) ≥ c|A|1+ε.

Proof.

Else, get group (G; +) such that Γ+i is in co-ordinatewise
correspondence with Γ+, i = 1,2.
But then (by Ziegler) Gi is isogenous to G.

Similarly in higher dimension, with a cgp assumption.



Application: Intersections of varieties with approximate
subgroups

Theorem

Γ ≤ G(K) a ∅-
∧

-definable subgroup of a 1-dimensional algebraic
group G, with δ(Γ) = dim(G).
Then any coherent tuple γ ∈ Γn is generic in a coset of an algebraic
subgroup of Gn.

Similarly in higher dimension, with a cgp assumption.

Corollary

Let G be a commutative complex algebraic group. Suppose V is a
subvariety of Gn which is not a coset of a subgroup. Then there are
N, ε, η > 0 depending only on G and the complexity of V such that if
A ⊆ G is a finite subset such that A− A is τ -cgp and |A + A| ≤ |A|1+ε

and |A| ≥ N, then |An ∩ V | < |A|
dim(V )
dim(G)

−η.



Diophantine connection

Example

G = E complex elliptic curve.
E [∞] :=

⋃
m E [m] torsion subgroup.

Suppose V ⊆ En is an irreducible closed complex subvariety such
that V (C) ∩ E [∞] is Zariski dense in V . Let d := dim(V ).
By Manin-Mumford, V is a coset of an algebraic subgroup. Hence for
any ε > 0, for arbitrarily large r ∈ N,

|V (C) ∩ E [r !]n| ≥ |E [r !]|d−ε .

Suppose conversely that we only know this consequence of
Manin-Mumford on the asymptotics of the number of torsion points in
V . Then V has a coherent generic non-standard torsion point, and so
by above theorem V is a coset.
Similarly for Mordell-Lang.



Relaxing general position

Remark

V := graph of (a1,b1) ∗ (a2,b2) = (a1 + a2 + b2
1b2

2,b1 + b2),
Xi := {−N4, . . . ,N4} × {−N, . . . ,N} ⊆ C2 =: Wi .
Then |X 3

i ∩ V | ≥ Ω(|Xi |2), but not in coarse general position, and V is
not in co-ordinatewise correspondence with the graph of a group
operation.



Thanks


