Projective geometries arising from Elekes-Szabó problems

Martin Bays
Joint work with Emmanuel Breuillard

> 31-05-2018
> Lyon

Elekes-Szabó

- Suppose $f \in \mathbb{C}[X, Y, Z]$ is an irreducible polynomial in which each of X, Y, Z appears.
- Set $V:=\left\{(x, y, z) \in \mathbb{C}^{3}: f(x, y, z)=0\right\}$.
- Consider intersections with finite "grids" $A \times B \times C$ with $|A|,|B|,|C| \leq N \in \mathbb{N}$.
- We have

$$
|V \cap(A \times B \times C)| \leq O\left(N^{2}\right) .
$$

- Say V "admits no powersaving" if for no $\epsilon>0$ do we have

$$
|V \cap(A \times B \times C)| \leq O\left(N^{2-\epsilon}\right) .
$$

- Example: if $f(x, y, z)=z-x-y$ then arithmetic progressions $A=B=C:=[-m, m]$ witness that V admits no powersaving.

Theorem (Elekes-Szabó 2012)

V admits no powersaving iff V is in co-ordinatewise algebraic correspondence with the graph of addition on a 1-dimensional algebraic group.

Pseudofinite dimension

Hrushovski "On Pseudo-Finite Dimensions" (2013)

- $\mathcal{U} \subseteq \mathbb{P}(\omega)$ non-principal ultrafilter.
- $K:=\mathbb{C}^{4}$.
- $X \subseteq K^{n}$ is internal if $X=\prod_{s \rightarrow u} X_{s}$ for some $X_{s} \subseteq \mathbb{C}^{n}$, and pseudofinite if each X_{s} is finite.
- For X internal, set $|X|:=\prod_{s \rightarrow u}\left|X_{s}\right|$.
- $|X| \in \mathbb{R}^{u}$ if X is pseudofinite, $|X|:=\infty$ else.
- Fix $\xi \in \mathbb{R}^{\mathcal{U}}$ with $\xi>\mathbb{R}$.

Definition (Coarse pseudofinite dimension $\boldsymbol{\delta}$)
For X internal,

$$
\delta(X)=\delta_{\xi}(X):=\operatorname{st}\left(\frac{\log (|X|)}{\log (\xi)}\right) \in \mathbb{R}_{\geq 0} \cup\{-\infty, \infty\} .
$$

- Note that internality is closed under cardinality quantifiers: if $R \subseteq K^{n} \times K^{m}$ is internal and $\alpha \in \mathbb{R}^{\mathcal{U}}$, then $\left\{\bar{y} \in K^{n}: \exists_{\geq \alpha} \bar{x} . R(\bar{x}, \bar{y})\right\}$ is internal.

$\mathcal{L}_{\text {int }}$ monster

- $\mathcal{L}_{\text {int: }}$: predicate for each internal $X \subseteq K^{n}$.
- $\mathbb{K} \succ K$ monster model in $\mathcal{L}_{\text {int }}$.
- For $\phi \in \mathcal{L}_{\text {int }}$, set $\boldsymbol{\delta}(\phi):=\boldsymbol{\delta}(\phi(K))$.
- δ has a unique extension to $\left(\mathcal{L}_{\text {int }}\right)_{\mathbb{K}}$ such that

$$
\begin{aligned}
& \operatorname{tp}(\bar{b}) \mapsto \delta(\phi(\bar{x}, \bar{b})) \\
& S_{y}(\emptyset) \rightarrow\{-\infty\} \cup \mathbb{R} \cup\{\infty\}
\end{aligned}
$$

is well-defined and continuous for each $\phi(\bar{x}, \bar{y}) \in \mathcal{L}_{\text {int }}$.

- Explicitly, $\delta(\phi(\bar{x}, \bar{a})):=\sup \left\{q \in \mathbb{Q}: \mathbb{K} \vDash \exists_{\geq \xi} \bar{X} . \phi(\bar{x}, \bar{a})\right\}$.
- For Φ a partial type, $\boldsymbol{\delta}(\Phi):=\inf \{\boldsymbol{\delta}(\phi): \Phi \vDash \phi\}$.
- $\delta(a / C):=\delta(\operatorname{tp}(a / C))$.

Fact

For $C \subseteq \mathbb{K}$ small and $a, b \in \mathbb{K}^{<\omega}$,
(i) $a \equiv c b \Longrightarrow \delta(a / C)=\delta(b / C)$.
(ii) $\delta(a b / C)=\delta(a / b C)+\delta(b / C)$.
(iii) A partial type Φ over C has a realisation $a \in \Phi(\mathbb{K})$ with $\delta(a / C)=\delta(\Phi)$.

acl^{0}

We have $\mathbb{C} \leq \mathbb{C}^{\mathcal{U}} \leq \mathbb{K}$.

Definition

Superscript 0 means: reduct to ACF $_{\mathbb{C}}$. Work in $\mathbb{K}^{\text {eq0 }}:=\{A C F$-imaginaries $\}$ (or, essentially equivalently, $\mathbb{K}^{\text {eq0 }}:=\mathbb{K}^{<\omega}$).

- $d^{0}(B):=\operatorname{trd}(B / \mathbb{C})$
- $a \in \operatorname{acl}^{0}(B)$ iff $d^{0}(a / B)=\operatorname{trd}(a / \mathbb{C}(B))=0$.
- $\mathrm{Cb}^{0}(a / B):=\mathrm{Cb}^{A C F}(a / \mathbb{C}(B))$

Remark

$a \in \operatorname{acl}^{0}(B) \Longrightarrow \delta(a / B)=0$.

Coherence

Definition

$P \subseteq \mathbb{K}$ is coherent if for any tuple $\bar{a} \in P^{<\omega}$,

$$
\delta(\bar{a})=d^{0}(\bar{a}) .
$$

In other words, δ is equal on $P^{<\omega}$ to the dimension function of the pregeometry $\left(P ; \mathrm{acl}^{0}\right)$.

Coherence

Definition

$a \in \mathbb{K}^{\text {eq0 }}$ is in coarse general position (or is cgp) if for any $B \subseteq \mathbb{K}$,

$$
d^{0}(a / B)<d^{0}(a) \Longrightarrow \delta(a / B)=0
$$

Any $a \in \mathbb{K}$ is cgp.

Definition

$P \subseteq \mathbb{K}^{\text {eq0 }}$ is coherent if

- every $a \in P$ is cgp, and
- for any tuple $\bar{a} \in P^{<\omega}$,

$$
d^{0}(\bar{a})=\delta(\bar{a})
$$

Then $\left(P ; \mathrm{acl}^{0}\right)$ is a pregeometry, and if $d^{0}(a)$ is constant for $a \in P$, then δ is proportional on $P^{<\omega}$ to the dimension function.

Example

Definition

Let W be an irreducible variety over \mathbb{C}.
A \mathbb{K}-definable set $X \subseteq W(\mathbb{K})$ with $\delta(X) \in \mathbb{R}_{>0}$ is cgp if for any $W^{\prime} \subsetneq W$ proper subvariety over \mathbb{K},

$$
\delta\left(X \cap W^{\prime}\right)=0 .
$$

If X is cgp, then any $a \in X$ is cgp.

Example

Let G be a complex semiabelian variety, e.g. $G=\left(\mathbb{C}^{\times}\right)^{n}$. Let $\gamma \in G(\mathbb{C})$ generic.
Let $X:=\prod_{s \rightarrow \mathcal{u}}\{-s \cdot \gamma, \ldots, s \cdot \gamma\}$, and set ξ such that $\delta(X)=\operatorname{dim}(G)$.
Then X is cgp, since $\left|X \cap W^{\prime}\right|<\aleph_{0}$ by uniform Mordell-Lang.
Also $\delta\left(X^{3} \cap \Gamma_{+}\right)=2 \boldsymbol{\delta}(X)$. So if $(a, b, c) \in X^{3} \cap \Gamma_{+}$with $\delta(a b c)=2 \delta(X)$, then $\{a, b, c\}$ is coherent.

Szemerédi-Trotter bounds

Suppose $X_{1} \subseteq \mathbb{K}^{n_{1}}$ and $X_{2} \subseteq \mathbb{K}^{n_{2}}$ are Λ-definable, and $V \subseteq \mathbb{K}^{n_{1}+n_{2}}$ is \mathbb{K}-Zariski closed.
Let $X:=\left(X_{1} \times X_{2}\right) \cap V$.
Suppose thazetat for $b, b^{\prime} \in X_{2}$ with $b \neq b^{\prime}$, we have $\delta\left(X(b) \cap X\left(b^{\prime}\right)\right)=0$.

Remark

We have the trivial bound $\delta(X) \leq \frac{1}{2} \delta\left(X_{1}\right)+\delta\left(X_{2}\right)$. Proof on board.

Lemma (Elekes-Szabó)
If $\delta\left(X_{2}\right)>\frac{1}{2} \delta\left(X_{1}\right)>0$, then $\delta(X)<\frac{1}{2} \delta\left(X_{1}\right)+\delta\left(X_{2}\right)$.
Hrushovski: such bounds correspond to modularity.

Linearity

Lemma

Suppose $P \subseteq \mathbb{K}^{\text {eq0 }}$ is coherent, $a_{1}, a_{2}, b_{1}, \ldots, b_{n} \in P$, and:

- $d^{0}\left(a_{1}\right)=k=d^{0}\left(a_{2}\right)$
- $a_{1} \downarrow^{0} a_{2}$
- $a_{1} \not \backslash \frac{0}{b} a_{2}$.

Let $e:=\mathrm{Cb}^{0}(\bar{a} / \bar{b})$. Then $d^{0}(e)=k$.

Linearity

Lemma

Suppose $P \subseteq \mathbb{K}^{\text {eq0 }}$ is coherent, $a_{1}, a_{2}, b_{1}, \ldots, b_{n} \in P$, and:

- $d^{0}\left(a_{1}\right)=k=d^{0}\left(a_{2}\right)$
- $a_{1} \downarrow^{0} a_{2}$
- $a_{1} \mathbb{X}_{b}^{0} a_{2}$.

Let $e:=\mathrm{Cb}^{0}(\bar{a} / \bar{b})$. Then $d^{0}(e)=k$.

Proof.

$X_{1}:=\operatorname{tp}(\bar{a}), X_{2}:=\operatorname{tp}(e), V:=\operatorname{loc}^{0}(\bar{a} e)$.
By cgp and canonicity, $\delta\left(X\left(e_{1}\right) \cap X\left(e_{2}\right)\right)=0$ for $e_{1} \neq e_{2} \in X_{2}$. Meanwhile,
$\delta(X)-\delta\left(X_{2}\right) \geq \delta(\bar{a} / e) \geq \delta(\bar{a} / \bar{b})=d^{0}(\bar{a} / \bar{b})=\frac{1}{2} d^{0}(\bar{a})=\frac{1}{2} \delta\left(X_{1}\right)$.
So by Szemerédi-Trotter bounds, must have $\delta\left(X_{2}\right) \leq \frac{1}{2} \delta\left(X_{1}\right)$.
Now $e \in \operatorname{acl}^{0}(\bar{b})$ and \bar{b} is coherent, and it follows that $d^{0}(e) \leq \delta(e)$.
So $d^{0}(e) \leq \delta(e)=\delta\left(X_{2}\right) \leq \frac{1}{2} \delta\left(X_{1}\right)=k$.

Modularity

Recall

- A geometry is a pregeometry with $\mathrm{cl}(\emptyset)=\emptyset$ and $\mathrm{cl}(\{x\})=\{x\}$.
- The geometry of a pregeometry $(P ; \mathrm{cl})$ is $(\{\mathrm{cl}(x): x \in P\} ; \mathrm{cl})$.

Definition

- A geometry (P, cl) is modular if for $a, b \in P$ and $C \subseteq P$, if $a \in \mathrm{cl}(b C) \backslash \mathrm{cl}(C)$ then there exists $c \in \mathrm{cl}(C)$ such that $a \in \operatorname{cl}(b c)$.
- Say $a, b \in P$ are non-orthogonal if $a \in \mathrm{cl}(b C)$ for some $C \subseteq P$.

Fact (Veblen-Young co-ordinatisation theorem)

The modular geometries of dimension ≥ 4 in which every two points are non-orthogonal are precisely the projective geometries $\mathbb{P}_{F}(V)$ of vector spaces of dimension ≥ 4 over division rings.

Canonical base is cgp

Lemma
Suppose P is coherent, $a_{1}, a_{2}, b_{1}, \ldots, b_{n} \in P$, and:

- $d^{0}\left(a_{1}\right)=k=d^{0}\left(a_{2}\right)$
- $a_{1} \downarrow^{0} a_{2}$
- $a_{1} \not X_{\frac{0}{b}}^{0} a_{2}$.

Let $e:=\mathrm{Cb}^{0}(\bar{a} / \bar{b})$. Then $d^{0}(e)=k$.
Moreover, $\{e\}$ is coherent.

Canonical base is cgp

Lemma

Suppose P is coherent, $a_{1}, a_{2}, b_{1}, \ldots, b_{n} \in P$, and:

- $d^{0}\left(a_{1}\right)=k=d^{0}\left(a_{2}\right)$
- $a_{1} \perp^{0} a_{2}$
- $a_{1} \not \backslash \frac{0}{b} a_{2}$.

Let $e:=\mathrm{Cb}^{0}(\bar{a} / \bar{b})$. Then $d^{0}(e)=k$.
Moreover, $\{e\}$ is coherent.

Proof.

We already saw $\delta(e)=d^{0}(e)$; it remains to show that e is cgp. Suppose $B \subseteq \mathbb{K}^{\text {eq0 }}$ and e $\mathbb{X}^{0} B$; we show $\delta(e / B)=0$. Let $\bar{a}^{\prime}=a_{1}^{\prime} a_{2}^{\prime}$ such that $\bar{a}^{\prime} \equiv_{e} \bar{a}$ and $\bar{a}^{\prime} \perp_{e}^{\delta} B$. So $e \in \operatorname{acl}{ }^{0}\left(\bar{a}^{\prime}\right)$. Then $\bar{a}^{\prime} \not X^{0} B$. So since \bar{a}^{\prime} is coherent, $\delta\left(\bar{a}^{\prime} / B\right) \leq \delta\left(a_{i}^{\prime}\right)=k$.
Meanwhile, $\delta\left(\bar{a}^{\prime} / e\right)=\delta\left(\bar{a}^{\prime}\right)-\delta(e)=d^{0}\left(\bar{a}^{\prime}\right)-d^{0}(e)=k$. So $\delta(e / B)=\delta\left(\bar{a}^{\prime} / B\right)-\delta\left(\bar{a}^{\prime} / e B\right)=\delta\left(\bar{a}^{\prime} / B\right)-\delta\left(\bar{a}^{\prime} / e\right) \leq k-k=0$.

Modularity of coherence

Definition

For $P \subseteq \mathbb{K}^{\mathrm{eq} 0}$,

$$
\operatorname{ccl}(P):=\left\{x \in \operatorname{acl}^{0}(P):\{x\} \text { is coherent }\right\} .
$$

Lemma
If P is coherent, so is $\operatorname{ccl}(P)$.

Proposition

Suppose $P=\operatorname{ccl}(P)$ is coherent. Then the geometry of $\left(P ; \mathrm{acl}^{1}\right)$ is modular.

Projective subgeometries in ACF

Define $\mathbb{P}(\mathbb{K}):=\left\{\operatorname{acl}^{0}(x): x \in \mathbb{K}\right\}$.

Example

Suppose G is a 1 -dimensional complex algebraic group and $F \leq \mathbb{Q} \otimes_{\mathbb{Z}} \operatorname{End}(G)$ is a division subring.
$G(\mathbb{K}) / G(\mathbb{C})$ is naturally an F-vector space.
Let $A \subseteq G(\mathbb{K})$ be a set of independent generics, and set
$V:=\langle A / G(\mathbb{C})\rangle_{F}$.
Define $\eta: \mathbb{P}_{F}(V) \rightarrow \mathbb{P}(\mathbb{K})$ by $\eta\left(\langle x / G(\mathbb{C})\rangle_{F}\right):=\operatorname{acl}^{0}(x)$.
Then η embeds $\mathbb{P}_{F}(V)$ as a subgeometry of $\mathbb{P}(\mathbb{K})$.
Theorem (Evans-Hrushovski 1991)
Any projective subgeometry of $\mathbb{P}(\mathbb{K})$ of dimension at least 3 arises in this way.

Projective geometries fully embedded in $A C F^{\text {eq }}$

 Define $\mathbb{P}\left(\mathbb{K}^{\mathrm{eq}}{ }^{0}\right):=\left\{\operatorname{acl}^{0}(x): x \in \mathbb{K}^{\mathrm{eq} 0}\right\}$.
Definition

$\eta: \mathbb{P}_{F}(V) \rightarrow \mathbb{P}\left(\mathbb{K}^{\text {eq0 }}\right)$ is a k-dimensional full embedding if for all $\bar{b} \in \mathbb{P}_{F}(V)^{<\omega}$, we have $d^{0}(\eta(\bar{b}))=k \cdot \operatorname{dim}_{\mathbb{P}_{F}(V)}(\bar{b})$.

Example

If G is a complex abelian algebraic group, $F \leq \mathbb{Q} \otimes_{\mathbb{Z}} \operatorname{End}(G)$ a division ring, $A \subseteq G(\mathbb{K})$ independent generics, and $V:=\langle A / G(\mathbb{C})\rangle_{F}$. Then $\eta\left(\langle x / G(\mathbb{C})\rangle_{F}\right):=\operatorname{acl}^{0}(x)$ is a $\operatorname{dim}(G)$-dimensional full embedding.

Theorem ("Evans-Hrushovski for $\mathbb{K}^{\text {eq0") }}$)
Suppose V is a vector space of dimension at lesat 3 over a division ring F, and $\eta: \mathbb{P}_{F}(V) \rightarrow \mathbb{P}\left(\mathbb{K}^{\text {eq0 }}\right)$ is a k-dimensional full embedding. Then there are G and embeddings $F \leq \mathbb{Q} \otimes_{\mathbb{Z}} \operatorname{End}(G)$ and $V \leq G(\mathbb{K}) / G(\mathbb{C})$ such that η is as in the example.

Projective geometries fully embedded in $\mathrm{ACF}^{\text {eq }}$

Proof idea.

Abelian group configuration yields G.

Version due to Faure of the fundamental theorem of projective geometry (semilinearity of projective morphisms) yields embeddings $F \longleftrightarrow \mathbb{Q} \otimes_{\mathbb{Z}} \operatorname{End}(G)$ and $V \longleftrightarrow G(\mathbb{K}) / G(\mathbb{C})$.

Elekes-Szabó consequences

Definition

Say a finite subset X of a variety W is τ-cgp if for any proper subvariety $W^{\prime} \subsetneq W$ of complexity $\leq \tau$, we have $\left|X \cap W^{\prime}\right|<|X|^{\frac{1}{\tau}}$.

Definition

If $V \subseteq \prod_{i} W_{i}$ are irreducible complex algebraic varieties, with $\operatorname{dim}\left(W_{i}\right)=m$ and $\operatorname{dim}(V)=d m$, say V admits a powersaving if for some τ and $\epsilon>0$ there is a bound

$$
\left|\prod_{i} x_{i} \cap V\right| \leq O\left(N^{d-\epsilon}\right)
$$

for τ-cgp $X_{i} \subseteq W_{i}$ with $\left|X_{i}\right| \leq N$.
Lemma
V admits no powersaving iff exists coherent generic $\bar{a} \in V(\mathbb{K})$.

Elekes-Szabó consequences

Definition

$H \leq G^{n}$ is a special subgroup if G is a commutative algebraic group and $H=\operatorname{ker}(A)^{0}$ for some $A \in \operatorname{Mat}(F \cap \operatorname{End}(G))$ for some division subalgebra $F \leq \mathbb{Q} \otimes_{\mathbb{Z}} \operatorname{End}(G)$.

Theorem
$V \subseteq \prod_{i} W_{i}$ admits no powersaving iff it is in co-ordinatewise algebraic correspondence with a product of special subgroups.

Elekes-Szabó consequences; detailed statement

Definition

$a \in W(\mathbb{K})$ is dcgp if $a \in X \subseteq W(\mathbb{K})$ for some \emptyset-definable $\operatorname{cgp} X$.

Theorem

Given $V \subseteq \prod_{i} W_{i}$, TFAE
(a) V admits no powersaving.
(b) Exists coherent generic $\bar{a} \in V(\mathbb{K})$ with $a_{i} d c g p$ in W_{i}.
(c) Exists coherent generic $\bar{a} \in V(\mathbb{K})$.
(d) V is in co-ordinatewise algebraic correspondence with a product of special subgroups.

Proof.

(a) \Leftrightarrow (b): ultraproducts.
$(b) \Longrightarrow(c)$: clear.
$(c) \Longrightarrow(d)$: modularity of coherence + "higher Evans-Hrushovski".
$(d) \Longrightarrow(b)$: see below.

Example

- $G:=\left(\mathbb{C}^{\times}\right)^{4}$.
- $\mathbb{Q} \otimes_{\mathbb{Z}} \operatorname{End}(G) \cong \mathbb{Q} \otimes_{\mathbb{Z}} \operatorname{Mat}_{4}(\mathbb{Z}) \cong \operatorname{Mat}_{4}(\mathbb{Q})$.
- $\mathcal{H}_{\mathbb{Q}}=\left(\mathbb{Q}[i, j, k]: i^{2}=j^{2}=k^{2}=-1 ; i j=k ; j k=i ; k i=j\right)$ embeds in $\operatorname{Mat}_{4}(\mathbb{Q})$ via the left multiplication representation.
- $\mathcal{H}_{\mathbb{Z}}=\mathbb{Z}[i, j, k] \subseteq \mathcal{H}_{\mathbb{Q}}$ acts on G by endomorphisms:

$$
\begin{aligned}
n \cdot(a, b, c, d) & =\left(a^{n}, b^{n}, c^{n}, d^{n}\right) \\
i \cdot(a, b, c, d) & =\left(b^{-1}, a, d^{-1}, c\right) \\
j \cdot(a, b, c, d) & =\left(c^{-1}, d, a, b^{-1}\right) \\
k \cdot(a, b, c, d) & =\left(d^{-1}, c^{-1}, b, a\right)
\end{aligned}
$$

- Then

$$
\begin{aligned}
V:= & \left\{\left(x, y, z_{1}, z_{2}, z_{3}\right) \in G^{5}\right. \\
& \left.: z_{1}=x+y, z_{2}=x+i \cdot y, z_{3}=x+j \cdot y\right\}
\end{aligned}
$$

is a special subgroup of G^{5}.

Example (continued)

- $V:=\left\{\left(x, y, z_{1}, z_{2}, z_{3}\right) \in G^{5}: z_{1}=x+y, z_{2}=x+i \cdot y, z_{3}=\right.$ $x+j \cdot y\}$ is a special subgroup of G^{5}.
- "Approximate $\mathcal{H}_{\mathbb{Z}}$-submodules" witness that V admits no powersaving:
- $H_{N}:=\{n+m i+p j+q k: n, m, j, k \in[-N, N]\} \subseteq \mathcal{H}_{\mathbb{Z}}$
- $g \in G$ generic
- $X_{N}:=H_{N} \cdot g=\left\{h \cdot g: h \in H_{N}\right\} \subseteq \mathcal{H}_{\mathbb{Z}} \cdot g \subseteq G$.
- Then (by uniform Mordell-Lang), for $W \subsetneq G$ proper closed of complexity $\leq \tau,\left|W \cap \mathcal{H}_{\mathbb{Z}} g\right| \leq O_{\tau}(1)$.
- So $\forall \tau . \forall N \gg 0 . X_{N}$ is τ-cgp in G.
- But $i \cdot X_{N}=X_{N}=j \cdot X_{N}$, so $\left|X_{N}^{5} \cap V\right| \geq \Omega\left(\left|X_{N}\right|^{2}\right)$.

Sharpness

Fact (Amitsur-Kaplansky)

Any division subring $F \subseteq$ Mat $_{n}(\mathbb{C})$ has finite dimension over its centre.

Corollary

Any finitely generated subring of a division subring $F \subseteq \operatorname{End}^{0}(G)$ is contained in a finitely generated subring $\mathcal{O} \subseteq F$ which is constrainedly filtered: there are finite $\mathcal{O}_{n} \subseteq \mathcal{O}$ such that
(CFO) $\mathcal{O}_{n} \subseteq \mathcal{O}_{n+1} ; \bigcup_{n \in \mathbb{N}} \mathcal{O}_{n}=\mathcal{O}$
(CF1) $\exists k . \forall n . \mathcal{O}_{n}+\mathcal{O}_{n} \subseteq \mathcal{O}_{n+k}$;
(CF2) $\forall a \in \mathcal{O} . \exists k . \forall n . a \mathcal{O}_{n} \subseteq \mathcal{O}_{n+k}$;
(CF3) $\forall \epsilon>0$. $\frac{\left|\mathcal{O}_{n+1}\right|}{\left|\mathcal{O}_{n}\right|} \leq O\left(\left|\mathcal{O}_{n}\right|^{\epsilon}\right)$.
(e.g. $\mathbb{Z}=\bigcup_{n}\left[-2^{n}, 2^{n}\right]$ is constrainedly filtered.) Let " $X_{k}:=\prod_{s \rightarrow \mathcal{U}}\left(\sum_{i=1}^{s} \mathcal{O}_{s-k} \gamma_{i}\right)$ " with $\gamma_{i} \in G$ generic independent. Then $X:=\bigcap_{k} X_{k}$ is an \mathcal{O}-submodule and $\delta(X)=\delta\left(X_{0}\right)$ and X is cgp. So any special subgroup defined using \mathcal{O} admits no powersaving.

Application: Generalised sum-product phenomenon

Corollary

Let $\left(G_{1},+_{1}\right)$ and $\left(G_{2},+_{2}\right)$ be one-dimensional non-isogenous connected complex algebraic groups, and for $i=1,2$ let $f_{i}: G_{i}(\mathbb{C}) \rightarrow \mathbb{C}$ be a rational map. Then there are $\epsilon, c>0$ such that if $A \subset \mathbb{C}$ is a finite set lying in the range of each f_{i}, then setting $A_{i}=f_{i}^{-1}(A) \subseteq G_{i}(\mathbb{C})$ we have

$$
\max \left(\left|A_{1}+{ }_{1} A_{1}\right|,\left|A_{2}+{ }_{2} A_{2}\right|\right) \geq c|A|^{1+\epsilon} .
$$

Proof.

Else, get group ($G ;+$) such that $\Gamma_{+;}$is in co-ordinatewise correspondence with $\Gamma_{+}, i=1,2$.
But then (by Ziegler) G_{i} is isogenous to G.
Similarly in higher dimension, with a cgp assumption.

Application: Intersections of varieties with approximate subgroups

Theorem

$\Gamma \leq G(\mathbb{K})$ a \emptyset - \bigwedge-definable subgroup of a 1-dimensional algebraic group G, with $\delta(\Gamma)=\operatorname{dim}(G)$.
Then any coherent tuple $\bar{\gamma} \in \Gamma^{n}$ is generic in a coset of an algebraic subgroup of G^{n}.

Similarly in higher dimension, with a cgp assumption.

Corollary

Let G be a commutative complex algebraic group. Suppose V is a subvariety of G^{n} which is not a coset of a subgroup. Then there are $N, \epsilon, \eta>0$ depending only on G and the complexity of V such that if $A \subseteq G$ is a finite subset such that $A-A$ is τ-cgp and $|A+A| \leq|A|^{1+\epsilon}$ and $|A| \geq N$, then $\left|A^{n} \cap V\right|<|A|^{\frac{\operatorname{dim}(V)(G)}{\operatorname{dim}(G)}-\eta}$.

Diophantine connection

Example

$G=E$ complex elliptic curve.
$E[\infty]:=\bigcup_{m} E[m]$ torsion subgroup.
Suppose $V \subseteq E^{n}$ is an irreducible closed complex subvariety such that $V(\mathbb{C}) \cap E[\infty]$ is Zariski dense in V. Let $d:=\operatorname{dim}(V)$.
By Manin-Mumford, V is a coset of an algebraic subgroup. Hence for any $\epsilon>0$, for arbitrarily large $r \in \mathbb{N}$,

$$
\left|V(\mathbb{C}) \cap E[r!]^{n}\right| \geq|E[r!]|^{d-\epsilon} .
$$

Suppose conversely that we only know this consequence of Manin-Mumford on the asymptotics of the number of torsion points in V. Then V has a coherent generic non-standard torsion point, and so by above theorem V is a coset.
Similarly for Mordell-Lang.

Relaxing general position

Remark

$V:=$ graph of $\left(a_{1}, b_{1}\right) *\left(a_{2}, b_{2}\right)=\left(a_{1}+a_{2}+b_{1}^{2} b_{2}^{2}, b_{1}+b_{2}\right)$,
$X_{i}:=\left\{-N^{4}, \ldots, N^{4}\right\} \times\{-N, \ldots, N\} \subseteq \mathbb{C}^{2}=: W_{i}$.
Then $\left|X_{i}^{3} \cap V\right| \geq \Omega\left(\left|X_{i}\right|^{2}\right)$, but not in coarse general position, and V is not in co-ordinatewise correspondence with the graph of a group operation.

Thanks

