Midterm remarks:

Review sessions tonight - see yellow website.

No table of integrals will be given: learn the table on p398 of Stewart.

ko na teica bilma

Area of the
Examples:

—v1—=a22. S

C

I

2

1
—1

1

unit circle:

the area enclosed by the graphs

0:

(m - (-m)) dz
l V1 — 22dx

I
&

B B
S

1—- (cos

2

=

1
1
1
1

2/ sin (0) dx

(arccos () ))Zd:r:

1 — cos (0)dx

49
¢ Ix

@ = arccos () ;

+ 1 ¥ 1
_ s , o o
_211 sin (9)—Siﬂ(ﬂ)ddc)S\»\Jﬁt-_{Tu"w;.\
ke

= f sin? (0) df
0

0
2/ —sin” () d

_ ([g]g . % [sin (29)]§>

=a—0

=T

g‘kml 9 =

We can think of this as

of v1—2? and

A ]

(— <0320
-_.—'—F'""-—_.-‘\..,v

do

15_

2

g
- |
v d N\,
Ill/ 0‘1 \_\“'I
f
|

—

S

x:rés@

IR )
Vi —sin(0)

arccas’ Ceosd)

]




Area of an ellipse: After rotating and translating to the origin, any ellip

solutions to az? + by* = 1, i.e.
1
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Area of a crescent:

As seen from the earth, the disc of the sun has ap-
proximately the same radius as the disc of the moon. ]
During a solar eclipse, the latter slides over the for-
mer. When the disc of the moon is centred at the
edge of the disc of the sun, what proportion of the
sun’s disc is covered? st

Intersection points: |
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= 0.3917

So 0.391 of the sun’s disc is blocked.




Volumes

Example - Volume of a sphere: Consider a sphere of radius r, centred at the origin (0,0,0).
Chop it perpendicular to the x-axis into n slivers of equal width.
The volume of the sphere is the sum of the volumes of the slivers.
For large n, i.e. for thin slivers, each sliver is roughly a cylinder of width A, = 2 The radius depends

on x: the i** sliver has radius /72 — (z7)" on its right face, where 2] = —r 4 iA,.

wth .

So we can estimate the volume of the *" sliver as

A (\/r'z —~ (-J;;f)?)2 = A (rP — (z)?)

So our estimate for the volume with n slivers is
n
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As n — 0o, our estimates converge to the actual volume. So the volume of the sphere is
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General formula: If a shape lies between o = @ and = b, and the area of a cross-section perpendicular
to the x-axis is a continuous function A (x), then the volume is
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Indeed, the argument above indicates that the volume is
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where we divide [a,b] into n intervals of equal width, and 7 is a point in the it" interval and A, is the
width of an interval. But this is precisely the definition of the integral ja A|(z) dz, which exists since A is
continuous. ‘



