Partial fractions

Definition: A rational function is one of the form $\frac{P(x)}{Q(x)}$ where P and Q are polynomials.
e.g. $\frac{x^{3}-2 x+1}{x^{2}-7}, x^{2}, \frac{1}{x^{9}+1}$

We already know how to integrate some of these.

Recall:

- $\int x^{n} \mathrm{dx}=\frac{x^{n+1}}{n+1}+C$ if $n \neq-1$
- $\int \frac{1}{x} \mathrm{dx}=\ln |x|+C$
- $\int \frac{1}{x^{2}+1} \mathrm{dx}=\arctan x+C$
- $\int \frac{2 x}{x^{2}+1} \mathrm{dx}=\int \frac{1}{u} d u=\ln \left|x^{2}+1\right|+C$

How about $\int \frac{1}{x^{2}-1} d x$?

$$
\begin{aligned}
\int \frac{1}{x^{2}-1} \mathrm{dx} & =\int \frac{1}{(x+1)(x-1)} \mathrm{dx} \\
& =\int \frac{1}{2}\left(\frac{1}{x-1}-\frac{1}{x+1}\right) \mathrm{dx} \\
& =\frac{1}{2}\left(\int \frac{1}{x-1} \mathrm{dx}-\int \frac{1}{x+1}\right) \mathrm{dx} \\
& =\frac{1}{2}(\ln |x-1|-\ln |x+1|) \\
& =\ln \sqrt{\frac{|x-1|}{|x+1|}}
\end{aligned}
$$

The key trick here was to recognise the rational function $\frac{1}{(x+1)(x-1)}$ as being a linear combination of simpler rational functions ("partial fractions"), namely $\frac{1}{2}\left(\frac{1}{x-1}-\frac{1}{x+1}\right)$.

We will see that this technique, along with the integrals recalled above and polynomial division, allows us to integrate any rational function.

Example of using polynomial division:

$$
\begin{aligned}
\int \frac{x^{3}+1}{x^{2}+1} \mathrm{dx} & =\int \frac{x\left(x^{2}+1\right)-x+1}{x^{2}+1} \\
& =\int\left(x+\frac{1-x}{x^{2}+1}\right) \mathrm{dx} \\
& =\int\left(x+\frac{1}{x^{2}+1}-\frac{x}{x^{2}+1}\right) \mathrm{dx} \\
& =\frac{x^{2}}{2}+\arctan (x)-\frac{\ln \left|x^{2}+1\right|}{2}+C
\end{aligned}
$$

Fact I: Any polynomial over the reals can be factored as a product of linear and quadratic factors.

Proof: Consequence of the "Fundamental Theorem of Algebra" - ask your 1ZC3 lecturer about it next semester.

Examples:

- $x^{3}+1=(x+1)\left(x^{2}-x+1\right)$
- $x^{4}-1=\left(x^{2}+1\right)\left(x^{2}-1\right)=\left(x^{2}+1\right)(x+1)(x-1)$

Fact II: Given $\frac{P(x)}{Q(x)}$ with $\operatorname{deg}(P)<\operatorname{deg}(Q)$, if $Q(x)$ factors into distinct irreducible factors

$$
Q(x)=q_{1}(x) q_{2}(x) \ldots q_{n}(x)
$$

(each q_{i} linear or irreducible quadratic) then there exist $p_{i}(x)$ with $\operatorname{deg}\left(p_{i}\right)<$ $\operatorname{deg}\left(q_{i}\right)$ such that

$$
\frac{P(x)}{Q(x)}=\sum_{i} \frac{p_{i}(x)}{q_{i}(x)} .
$$

Proof: Can be proven quite easily with linear algebra. Ask your 1ZC3 lecturer about this too!

Examples:

- $\frac{1}{x^{3}-x}$
- $\frac{x^{2}-4}{x^{4}-1}$

General technique for integrating rational functions:

- if the top has greater degree than the bottom, first use polynomial division to fix this;
- factor the bottom;
- split up in to partial fractions;
- integrate each.

Examples:

- $\int \frac{x^{2}-4}{x^{4}+1} \mathrm{dx}$
- $\int \frac{x^{4}-x^{2}+1}{x^{3}-x} \mathrm{dx}$

Repeated factors: If $Q(x)$ has repeated factors, e.g. $Q(x)=x^{3}-2 x^{2}+$ $x=x(x-1)^{2}$, then we can still use partial fractions but we need a new trick:

If $(x-a)^{n}$ is a factor of $Q(x)$, in the partial fractions expression we should use

$$
\frac{A_{1}}{x-a}+\frac{A_{2}}{(x-a)^{2}}+\ldots+\frac{A_{n}}{(x-a)^{n}}
$$

Example: $\int \frac{x^{2}+1}{x^{3}-2 x^{2}+x} d x$

