IVT

Continuous functions can't jump.

Fact [Intermediate Value Theorem ("IVT")]: If f is continuous on $[b, c]$ and d is between $f(b)$ and $f(c)$ then there exists e in $[b, c]$ such that $f(e)=d$

Example: Does

$$
e^{\sin \left(x \frac{\pi}{2}\right)}=x
$$

have any solutions for x ?

Try some obvious values:

$$
e^{\sin 0}=e^{0}=1>0
$$

$$
e^{\sin (\pi / 2)}=e^{1}=e=2.72>1
$$

$$
e^{\sin \pi}=e^{0}=1<2
$$

Let $f(x)=e^{\sin \left(x \frac{\pi}{2}\right)}-x$ so we want to know if there exists x such that $f(x)=0$.

$$
\begin{gathered}
f(0)=1 \\
f(1)=e-1 \approx 1.72 \\
f(2)=1-2=-1
\end{gathered}
$$

Key point: f is continuous!
0 is between $f(1)$ and $f(2)$ so by the IVT, there exists e in $[1,2]$ such that $f(e)=0$.

Better still, we can use this trick to actually find a solution!
// Demonstrate binary search to find the root at 1.661

$$
\begin{aligned}
f(1.6) & =0.1999974573044334 \\
f(1.661) & =0.00044671501254378576 \\
f(1.5) & =0.5281149816474726 \\
f(1.7) & =-0.1254169615450087 \\
f(1.6) & =0.1999974573044334 \\
f(1.65) & =0.036235559313816834 \\
f(1.66) & =0.00369563789547267 \\
f(1.67) & =-0.028749143599565707 \\
f(1.665) & =-0.01253926227311819 \\
f(1.662) & =-0.002801246291008308 \\
f(1.661) & =0.00044671501254378576 \\
f(1.6615) & =-0.001177386453861784
\end{aligned}
$$

Differentiation

Definition: For f a function and b in the domain of f, we say f is differentiable at b if the limit

$$
\lim _{x \rightarrow b} \frac{f(x)-f(b)}{x-b}
$$

exists, and then the derivative of f at b is the value of this limit.
(Saying the limit exists means that there is a finite limit.)
f^{\prime} is the function

$$
f^{\prime}(b)=[\text { derivative of } f \text { at } b],
$$

defined where f is differentiable.

Remark:

$$
\lim _{x \rightarrow b} \frac{f(x)-f(b)}{x-b}=\lim _{h \rightarrow 0} \frac{f(b+h)-f(b)}{h} .
$$

Interpretations: For clarity, suppose $f(0)=0$ and we're considering the derivative at 0

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-0}{x-0}=\frac{f(x)}{x}
$$

Local linearity: $f^{\prime}(b)=c$
iff $\frac{f(x)}{x}$ is arbitrarily close to c for all x sufficiently close to but not equal to 0 ,
iff $f(x)$ is arbitrarily close to $c x$ for all such x (in the sense of a cone rather than a strip),
iff sufficiently close to 0 , the graph of $f(x)$ is arbitrarily close to a straight line with slope c

So generally, a function f is differentiable at b iff the graph of f is "approximately a non-vertical straight line near $b "$, and $f^{\prime}(b)$ is then the slope of this line. That line is then called the tangent line of f at b.

Rate of change: If f is a function of time, $f^{\prime}(t)$ is the rate of change of f at time t : if $f(0)=0$, then for all t sufficiently small, $f(t)=f^{\prime}(0) t$.

Example: suppose an object moves along a line, and $s(t)$ is its position at time t. By Newton's First Law, if at time b we remove all forces acting on the object, its position after b will be

$$
s(t)=s(b)+(t-b) s^{\prime}(b)
$$

(same idea as swinging an object in a circle then releasing it.)

Examples: [sketch of f^{\prime} for a smooth function f] $f(x):=x^{2}$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(2 h x+h^{2}\right.}{h} \\
& =\lim _{h \rightarrow 0}(2 x+h) \\
& \left.=\lim _{h \rightarrow 0} 2 x\right)+\left(\lim _{h \rightarrow 0} h\right) \\
& =2 x+0 \\
& =2 x .
\end{aligned}
$$

Fact: If a function f is differentiable at b, then f is continuous at b.
Proof:

$$
\begin{array}{rlr}
\lim _{x \rightarrow b}(f(x)-f(b)) & =\lim _{x \rightarrow b}\left((x-b) \frac{f(x)-f(b)}{x-b}\right) \\
& =\left(\lim _{x \rightarrow b}(x-b)\right)\left(\lim _{x \rightarrow b} \frac{f(x)-f(b)}{x-b}\right) \\
& =0 f^{\prime}(b) & =0
\end{array}
$$

, so $\lim _{x \rightarrow b} f(x)=f(b)$

Examples of non-differentiability: By the fact, if f is not continuous at b, then f is not differentiable at b.
$|x|$ is continuous but not differentiable at 0 (different behaviours on left and right).
\sqrt{x} is continuous but not differentiable at 0 (limit is infinite).
$f(x)=x \sin (1 / x)$ if $x \neq 0$ and $f(0)=0$: continuous but not differentiable at 0 , since $\lim _{x \rightarrow 0} \frac{f(x)}{x}=\lim _{x \rightarrow 0} \sin (1 / x)$ does not exist.

More notation:

$$
\begin{aligned}
\frac{d f(x)}{d x} & =f^{\prime}(x) \\
\frac{d f(t)}{d t} & =f^{\prime}(t) \\
\frac{d f(x)}{d x} \upharpoonright_{b} & =f^{\prime}(b)
\end{aligned}
$$

If $y=f(x)$,

$$
\frac{d y}{d x}=f^{\prime}(x)
$$

$$
\frac{d y}{d x} \upharpoonright_{b}=f^{\prime}(b)
$$

Also, e.g.

$$
\frac{d}{d x} x^{2}=\frac{d\left(x^{2}\right)}{d x}=2 x .
$$

Higher derivatives: f^{\prime} is a function, so we can consider $\left(f^{\prime}\right)^{\prime}$, abbreviated to $f^{\prime \prime}$ or $f^{(2)}$.
e.g. if $f(x)=x^{2}$ then $f^{\prime \prime}(x)=\frac{d f^{\prime}}{d x}=\frac{2 x}{d x}=\lim h \rightarrow 0 \frac{2(x+h)-2 x}{h}=\lim h \rightarrow 02=$ 2.

If $s(t)$ is position of an object at time t, then $s^{\prime \prime}(t)$ is acceleration at time t (so Newton's 2nd Law in one dimension is $s^{\prime \prime}(t)=F(t) / m$, where $F(t)$ is the sum of the forces and m is the mass).
$f^{\prime \prime \prime}=f^{(3)}=\left(f^{\prime \prime}\right)^{\prime}$, and so on.

Calculating derivatives

Fact (Linearity of derivatives):

$$
\frac{d}{d x}(f(x)+g(x))=f^{\prime}(x)+g^{\prime}(x)
$$

For c a real number,

$$
\frac{d}{d x} c f(x)=c f^{\prime}(x)
$$

These follow very easily from definition of derivative.

Product rule: If f and g are differentiable at b, then so is the product $h(x):=$ $f(x) g(x)$, and

$$
h^{\prime}(b)=\frac{d}{d x} f(x) g(x) \upharpoonright_{b}=f(b) g^{\prime}(b)+f^{\prime}(b) g(b)
$$

Explanation: for small h,

$$
\begin{aligned}
f(x+h) g(x+h)-f(x) g(x) & \approx\left(f(x)+h f^{\prime}(x)\right)\left(g(x)+h g^{\prime}(x)\right) \\
& =h\left(f(x) g^{\prime}(x)+f^{\prime}(x) g(x)\right)+h^{2} f^{\prime}(x) g^{\prime}(x) \\
& \approx h\left(f(x) g^{\prime}(x)+f^{\prime}(x) g(x)\right) .
\end{aligned}
$$

Differentiating polynomials: Clearly $\frac{d}{d x} 1=0$ and $\frac{d}{d x} x=1$.

$$
\begin{aligned}
& \frac{d}{d x} x^{2}=\frac{d}{d x} x x=1 x+x 1=2 x \\
& \frac{d}{d x} x^{3}=\frac{d}{d x} x x^{2}=1 x^{2}+x\left(\frac{d}{d x} x^{2}\right)=x^{2}+x(2 x)=3 x^{2} \\
& \frac{d}{d x} x^{4}=\frac{d}{d x} x x^{3}=1 x^{3}+x\left(\frac{d}{d x} x^{3}\right)=x^{3}+x\left(3 x^{2}\right)=4 x^{3} . \\
& \cdots \\
& \frac{d}{d x} x^{n}=n x^{n-1} . \\
& \text { So e.g. } \frac{d}{d x}\left(2 x^{5}-3 x^{2}+8\right)=\ldots
\end{aligned}
$$

Quotient rule: We'll see later, as a consequence of the Chain Rule, that

$$
\frac{d}{d x} \frac{1}{g(x)}=\frac{-g^{\prime}(x)}{g(x)^{2}}
$$

So by the product rule,

$$
\frac{d}{d x} \frac{f(x)}{g(x)}=f(x) \frac{-g^{\prime}(x)}{g(x)^{2}}+f^{\prime}(x) g(x)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g(x)^{2}} .
$$

e.g. rational functions

Differentiating power functions:

$$
\frac{d}{d x} b^{x}=\lim _{h \rightarrow 0} \frac{b^{x+h}-b^{x}}{h}=\lim _{h \rightarrow 0} \frac{b^{x} b^{h}-b^{x}}{h}=b^{x} \lim _{h \rightarrow 0} \frac{b^{h}-1}{h} .
$$

e is the unique real number such that $\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1$, i.e. such that $\frac{d}{d x} e^{x}=e^{x}$.

Differentiating trig functions: Fact:

$$
\begin{gathered}
\sin ^{\prime}=\cos \\
\cos ^{\prime}=-\sin
\end{gathered}
$$

[give diagrammatic argument]
By the quotient rule,

$$
\tan ^{\prime}=\left(\sin ^{\prime} \cos -\sin \cos ^{\prime}\right) / \cos ^{2}=\left(\cos ^{2}+\sin ^{2}\right) / \cos ^{2}=\sec ^{2}
$$

