SOM CO DO SON WINE SW CO CO WOOD OF GMIDN'S WEINED Explanation in terms of linear approximations: Near $b, g(x) \approx g(b) + g'(b)(x-b)$ Near $g(b), f(u) \approx f(g(b)) + f'(g(b))(u-g(b))$ So near $b, g'(x) \approx g(b) + g'(b)(x-b)$ Near $g(b), f(u) \approx f(g(b)) + f'(g(b))(u-g(b))$ So near $b, g'(x) \approx g(b) + g'(b)(x-b)$ Notes $$\Leftrightarrow$$ $f(g(x)) \approx f(g(b) + g'(b)(x - b))$ $$\approx f(g(b)) + f'(g(b))(g(b) + g'(b)(x - b) - g(b))$$ $$= f(g(b)) + g'(b)f'(g(b))(x - b)$$ Example: $$\frac{d}{dx}e^{\sin(x)} = (\exp o \sin)'(x) = \sin'(x) \exp'(\sin(x)) = \cos(x)e^{\sin(x)} \qquad \frac{d}{dx}e^{f(x)} = f(x)e^{f(x)}$$ Alternative notation: Then if u is a function of x and y is a function of u, say u = g(x) and y = f(u) = f(g(x)), then $$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} = f'(u)g'(x)$$ $$= f'(g(x))g'(x)$$ Example: $$\frac{d}{dx}(x^3-1)^9$$ $y := (x^3 - 1)^9$, $u := x^3 - 1$, so $y = u^9$; so $$\frac{d}{dx} \sqrt{x^3 - 1} = \frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} = 9u^8 3x^2 = 27x^2(x^3 - 1)^8.$$ Differentiating invertible functions Suppose f is invertible, so $x = f^{-1}(f(x))$. Suppose f^{-1} is differentiable. Chain rule: ((x)e) = (x) 1 & 2 4. when h'(00)= g'(x1. (f'(g(x))) $$1 = \frac{d}{dx}x = \frac{d}{dx}f^{-1}(f(x)) = f'(x)f^{-1}(f(x))$$ SO $$f^{-1}(f(x)) = \frac{1}{f'(x)}.$$ **Fact:** If f is invertible and is differentiable at x, then f^{-1} is differentiable at f(x), and $f^{-1'}(f(x)) = \frac{1}{f'(x)}$. Examples: $$\ln'(\exp(x)) = \frac{1}{\exp'(x)} = \frac{1}{\exp(x)}$$ i.e. $$\ln'(y) = \frac{1}{y}.$$ $$\arcsin'(\sin(x)) = \frac{1}{\cos(x)}$$ Now $cos(x) = \sqrt{1 - sin(x)^2}$, so $$\arcsin'(y) = \frac{1}{\sqrt{1 - y^2}}$$ $$\arctan'(\tan(x)) = \cos^2(x) = \frac{1}{1 + \tan^2(x)}$$ $$\arctan'(y) = \frac{1}{1 + v^2}$$ Power rule: For t a real number, $$\frac{d}{dx}x^t = \frac{d}{dx}e^{\ln x^t} = \frac{d}{dx}e^{t\ln x} = \frac{t}{x}e^{t\ln x} = tx^{t-1}$$ ## Implicit differentiation Suppose we know some relation between x and y, e.g. $$x^2 + y^2 = 1.$$ Here, y isn't a function of x. But if we restrict attention to $y \ge 0$, then y is a function of x; similarly for $y \le 0$. These functions are *implicitly* defined by $x^2 + y^2 = 1$. Restricting to a function in this way, it makes sense to differentiate with respect to x: $$0 = \frac{d}{dx}1 = \frac{d}{dx}(x^2 + y^2) = \frac{d}{dx}x^2 + \frac{d}{dx}y^2 = 2x + \frac{dy}{dx}2y$$ and we conclude that, whichever function we chose, $$\frac{dy}{dx} = \frac{-2x}{2y} = -\frac{x}{y}$$ for all x at which the function is differentiable. Confirm this agrees with the chain rule. Another example: TODO