Newton's method

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Example:

$$
e^{\sin \left(\frac{\pi}{2} x\right)}=x
$$

Let $f(x)=e^{\sin \left(\frac{\pi}{2} x\right)}-x$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\pi}{2} \cos \left(\frac{\pi}{2} x\right) e^{\sin \left(\frac{\pi}{2} x\right)}-1 \\
x_{0} & =2 \\
x_{1} & =1.6110154703516575 \\
x_{2} & =1.6609035259641185 \\
x_{3} & =1.6611375113211584 \\
x_{4} & =1.6611375194231848 \\
x_{5} & =1.6611375194231848
\end{aligned}
$$

but

$$
\begin{aligned}
x_{0} & =3, x_{1} \\
x_{2} & =-0.7004442394773245 \\
x_{3} & =0.8682758685413106 \\
x_{4} & =13.55349391880111 \\
\ldots x_{100} & =-201.15250823446343 \\
\ldots x_{130} & =1.6611375194231848
\end{aligned}
$$

Failure:

$$
\begin{gathered}
f(x):=x^{1 / 3} \\
f^{\prime}(x)=(1 / 3) x^{-2 / 3} \\
\frac{f(x)}{f^{\prime}(x)}=3 x
\end{gathered}
$$

So $x_{n+1}=-2 x_{n}$, so diverges unless $x_{0}=0$.

Chain rule

$$
(f \circ g)^{\prime}=g^{\prime}\left(f^{\prime} \circ g\right)
$$

Explanation in terms of linear approximations: Near $b, g(x) \approx g(b)+$ $g^{\prime}(b)(x-b)$ Near $g(b), f(u) \approx f(g(b))+f^{\prime}(g(b))(u-g(b))$ So near b,

$$
\begin{aligned}
f(g(x)) & \approx f\left(g(b)+g^{\prime}(b)(x-b)\right) \\
& \approx f(g(b))+f^{\prime}(g(b))\left(g(b)+g^{\prime}(b)(x-b)-g(b)\right) \\
& =f(g(b))+g^{\prime}(b) f^{\prime}(g(b))(x-b)
\end{aligned}
$$

Example:

$$
\frac{d}{d x} e^{\sin (x)}=(\exp \circ \sin)^{\prime}(x)=\sin ^{\prime}(x) \exp ^{\prime}(\sin (x))=\cos (x) e^{\sin (x)}
$$

Alternative notation: if u is a function of x and y is a function of u, say $u=g(x)$ and $y=f(u)=f(g(x))$, then

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}
$$

Example:

$$
\frac{d}{d x}\left(x^{3}-1\right)^{9}
$$

$y:=\left(x^{3}-1\right)^{9}, u:=x^{3}-1$, so $y=u^{9}$; so

$$
\frac{d}{d x} \sqrt{x^{3}-1}=\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}=9 u^{8} 3 x^{2}=27 x^{2}\left(x^{3}-1\right)^{8}
$$

Differentiating invertible functions

Suppose f is invertible, so $x=f^{-1}(f(x))$.
Suppose f^{-1} is differentiable. Chain rule:

$$
1=\frac{d}{d x} x=\frac{d}{d x} f^{-1}(f(x))=f^{\prime}(x) f^{-1 \prime}(f(x))
$$

so

$$
f^{-1 \prime}(f(x))=\frac{1}{f^{\prime}(x)}
$$

Fact: If f is invertible and is differentiable at x, then f^{-1} is differentiable at $f(x)$, and $f^{-1 \prime}(f(x))=\frac{1}{f^{\prime}(x)}$.

Examples:

$$
\ln ^{\prime}(\exp (x))=\frac{1}{\exp ^{\prime}(x)}=\frac{1}{\exp (x)}
$$

i.e.

$$
\begin{gathered}
\ln ^{\prime}(y)=\frac{1}{y} \\
\arcsin ^{\prime}(\sin (x))=\frac{1}{\cos (x)}
\end{gathered}
$$

Now $\cos (x)=\sqrt{1-\sin (x)^{2}}$, so

$$
\begin{gathered}
\arcsin ^{\prime}(y)=\frac{1}{\sqrt{1-y^{2}}} \\
\arctan ^{\prime}(\tan (x))=\cos ^{2}(x)=\frac{1}{1+\tan ^{2}(x)} \\
\arctan ^{\prime}(y)=\frac{1}{1+y^{2}}
\end{gathered}
$$

Power rule: For t a real number,

$$
\frac{d}{d x} x^{t}=\frac{d}{d x} e^{\ln x^{t}}=\frac{d}{d x} e^{t \ln x}=\frac{t}{x} e^{t \ln x}=t x^{t-1}
$$

Implicit differentiation

Suppose we know some relation between x and y, e.g.

$$
x^{2}+y^{2}=1
$$

Here, y isn't a function of x.
But if we restrict attention to $y \geq 0$, then y is a function of x; similarly for $y \leq 0$. These functions are implicitly defined by $x^{2}+y^{2}=1$.

Restricting to a function in this way, it makes sense to differentiate with
respect to x :

$$
0=\frac{d}{d x} 1=\frac{d}{d x}\left(x^{2}+y^{2}\right)=\frac{d}{d x} x^{2}+\frac{d}{d x} y^{2}=2 x+\frac{d y}{d x} 2 y
$$

and we conclude that, whichever function we chose,

$$
\frac{d y}{d x}=\frac{-2 x}{2 y}=-\frac{x}{y}
$$

for all x at which the function is differentiable.
Confirm this agrees with the chain rule.
Another example: TODO

