So the sum of the areas is
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e.g. withn = 10: Ayp = 10%11%21/6000 = 0.385. with n = 1000: Ajge|= (1000 * 1001 % 2001) /(6 % 1000 * 1

0.3338335

Now: since the estimate gets more and more accurate for larger n, we can expect that the area *is®

the limit lim, 00 An = 3.
Remarks:
each interval to define the height of the corresponding rectangle. Taking
the interval should work just as well.

Sometimes, we won't be able to find a nice formula for the limit as n —

the

It wasn’t important to our reasoning that we took the value of

f at the right end-point of
value of f at *any™ point of

oo as we could above. Still,

we expect the above approach to give a good estimate (assumin is “reéasomable”).
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Definite Integrals

Definition: A function f is integrable on an interval [a, b] if the limit 1i]£nn_+
and is the same for any choice of Riemann sums, and in this case that ilimii
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Here, a Riemann sum S, is the sum
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So the definite integral is the limit of Riemann sums; but if f is ill- bchaved, this limit might depend

on exactly how we calculate the Riemann sums (what points we calculeite I
well-defined integral and we say that f is not integrable on a, b]. Luckﬂy
Theorem: If f is continuous on [a,b], then [ is integrable on [a, b].

Notation: We write

for the definite integral from a to b of f.
s 4o he,le should be read as notation indicating the variable we are inte

like the 4 -+ of differentiation. So e.g. |

/:f(r)dr=f:f(t)df
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So

T = lim
N—00

ilbf@ﬂd (w

2) foa::))@
i=1

where for each n, each z} is a choice of point in thewt interval, and the limit exists and doesn’t depend

on these choices (which is true if f is continuous on [a, b]).
So e.g. we saw above that
1
/ P dy =
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If f is non-negative on [a, b}, then f: f (z) dz is precisely the limit of the ¢
the graph we discussed above. We *define*
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Interpretation/Definition: If a < b, the signed area (or net area) betwe

and the vertical lines y = a and y = b is defined to be f:f (z)dx

So the signed area is the sum of the areas below the positive parts of the

areas above the negative parts. I
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see Appendix E problem 40 for a rather nice proof.)
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Facts:
]
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Remark: It follows from (iv) and (v) that [ f(z)dx = — f:’f('r) dz solin terms of the signed area
interpretation, taking the endpoints the “wrong way round” introduces a mitus sign.
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