Adding up

Summation notation: Given numbers a_{i} and integers $m \leq n$,

$$
\sum_{i=m}^{n} a_{i}=a_{m}+a_{m+1}+\ldots+a_{n}
$$

So e.g. if we have 50 boxes containing balls, and the $i^{\text {th }}$ box contains B_{i} balls, then the total number of balls in the boxes is

$$
\sum_{i=1}^{50} B_{i} .
$$

Similarly, given a function f and integers $m \leq n$,

$$
\sum_{i=m}^{n} f(i)=f(m)+f(m+1)+\ldots+f(n)
$$

So e.g. we can abbreviate the sum

$$
1+2+\ldots+n
$$

as

$$
\sum_{i=1}^{n} i
$$

Remarks: By basic algebra,

$$
\begin{gathered}
\sum_{i=m}^{n} c a_{i}=c \sum_{i=m}^{n} a_{i} \\
\sum_{i=m}^{n}\left(a_{i}+b_{i}\right)=\left(\sum_{i=m}^{n} a_{i}\right)+\left(\sum_{i=m}^{n} b_{i}\right) .
\end{gathered}
$$

Also, if $m \leq n<s$, then

$$
\sum_{i=m}^{n} a_{i}+\sum_{i=n+1}^{s} a_{i}=\sum_{i=m}^{s} .
$$

We don't have to use i as the index; e.g.

$$
\sum_{n=s}^{t} f(n)=\sum_{i=s}^{t} f(i)
$$

Examples:

$$
\begin{gathered}
\sum_{i=n}^{n} a_{i}=a_{n} \\
\sum_{i=1}^{n} 1=n \\
\sum_{i=0}^{n} 1=n+1 \\
\sum_{i=n}^{n} 1=1
\end{gathered}
$$

$$
\sum_{i=m}^{n} 1=n+1-m
$$

The $n^{t h} /$ triangular number/ is

$$
\begin{aligned}
& T_{n}:=\sum_{i=0}^{n} i . \\
2 T_{n}= & \sum_{i=0}^{n} i+\sum_{i=0}^{n}(n-i) \\
= & \sum_{i=0}^{n} n \\
= & (n+1) n .
\end{aligned}
$$

So

$$
T_{n}=\frac{n(n+1)}{2} .
$$

Note that we can then easily calculate e.g.

$$
\begin{aligned}
\sum_{i=37}^{1337} i & =\sum_{i=0}^{1337} i-\sum_{i=0}^{36} \\
& =T_{1337}-T_{36} \\
& =\frac{(1337)(1338)-(36)(37)}{2} \\
& =893787
\end{aligned}
$$

Sum of consequetive squares:

$$
\begin{gathered}
S_{n}:=\sum_{i=0}^{n} i^{2} \\
S_{n}=\frac{n(n+1)(2 n+1)}{6}
\end{gathered}
$$

We can test this formula: clearly it works for $n=0$, and if it works for $n=k-1$ then

$$
\begin{aligned}
S_{k} & =S_{k-1}+k^{2} \\
& =\frac{(k-1)(k)(2 k-1)}{6}+k^{2} \\
& =\frac{k((k-1)(2 k-1)+6 k)}{6} \\
& =\frac{k((k-1)(2 k-1)+6 k)}{6} \\
& =\frac{k(k+1)(2 k+1)}{6} .
\end{aligned}
$$

$($ since $((k-1)+2)((2 k-1)+2)=(k-1)(2 k-1)+(4 k-2)+(2 k-2)+4=(k-1)(2 k-1)+6 k)$ So the formula works for all n.

Estimating areas

Areas of shapes defined by straight lines (rectangles, triangles, polygons etc) are easy to calculate. But what about when the boundary is a curve?
e.g. What is the area of an ellipse? What is the area below a catenary?

Area beneath a graph: Let $[a, b]$ be an interval and let $f(x)$ be a function continuous and non-negative on the interval. We will try to estimate the area bounded by the graph of f, the x-axis, and the vertical lines $x=a$ and $x=b$.
e.g. $f(x)=x^{2},[a, b]=[0,1]$.

Idea: estimate area below the graph as the sum of the areas of rectangles, with height given by evaluating the function. When width of the rectangles is small, this should be a good estimate.
e.g. split $[0,1]$ into n equally sized intervals, so the endpoints are $a_{i}=i / n$ for $i=0,1, \ldots, n$, and consider n rectangles with bases these intervals, and with height the value of the function at, say, the right end-point of the corresponding interval.

So the $i^{\text {th }}$ rectangle has width $1 / n$ and height $f\left(a_{i}\right)=f\left(\frac{i}{n}\right)=\left(\frac{i}{n}\right)^{2}$, so its area is

$$
\text { RectArea }_{i}=\left(\frac{1}{n}\right)\left(\frac{i}{n}\right)^{2}=\frac{i^{2}}{n^{3}} .
$$

So the sum of the areas is

$$
\begin{aligned}
A_{n} & =\sum_{i=1}^{n} \text { RectArea }_{i} \\
& =\sum_{i=1}^{n} \frac{i^{2}}{n^{3}} \quad=\frac{1}{n^{3}} \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6 n^{3}} .
\end{aligned}
$$

e.g. with $n=10: A_{10}=10 * 11 * 21 / 6000=0.385$. with $n=1000: A_{1000}=(1000 * 1001 * 2001) /(6 * 1000 * 100$ 0.3338335

Now: since the estimate gets more and more accurate for larger n, we can expect that the area $*_{\text {is }}$ * the limit $\lim _{n \rightarrow \infty} A_{n}=\frac{1}{3}$.

Remarks: It wasn't important to our reasoning that we took the value of f at the right end-point of each interval to define the height of the corresponding rectangle. Taking the value of f at *any* point of the interval should work just as well.

Sometimes, we won't be able to find a nice formula for the limit as $n \rightarrow \infty$ as we could above. Still, we expect the above approach to give a good estimate (assuming f is "reasonable").

Definite Integrals

Definition: A function f is integrable on an interval $[a, b]$ if the limit $\lim _{n \rightarrow \infty} S_{n}$ of Riemann sums exists and is the same for any choice of Riemann sums, and in this case that limit is the definite integral of f from a to b.

Here, a Riemann sum S_{n} is the sum

$$
S_{n}=\sum_{i=1}^{n} \Delta_{n} f\left(x_{i}^{*}\right)
$$

where $\Delta_{n}=\frac{b-a}{n}$, and x_{i}^{*} is a choice of a point in the interval

$$
\left[a+(i-1) \Delta_{n}, a+i \Delta_{n}\right] .
$$

So the definite integral is the limit of Riemann sums; but if f is ill-behaved, this limit might depend on exactly how we calculate the Riemann sums (what points we calculate f at), so then we don't get a well-defined integral and we say that f is not integrable on $[a, b]$. Luckily...

Theorem: If f is continuous on $[a, b]$, then f is integrable on $[a, b]$.
Notation: We write

$$
\int_{a}^{b} f(x) d x
$$

for the definite integral from a to b of f.
" $d x$ " here should be read as notation indicating the variable we are integrating with respect to, much like the $\frac{d}{d x}$ of differentiation. So e.g.

$$
\int_{a}^{b} f(x) d x=\int_{a}^{b} f(t) d t
$$

So

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty}\left(\frac{(b-a)}{n} \sum_{i=1}^{n} f\left(x_{i}^{*}\right)\right)
$$

where for each n, each x_{i}^{*} is a choice of point in the $n^{t h}$ interval, and the limit exists and doesn't depend on these choices (which is true if f is continuous on $[a, b]$).

So e.g. we saw above that

$$
\int_{0}^{1} x^{2} d x=\frac{1}{3}
$$

If f is non-negative on $[a, b]$, then $\int_{a}^{b} f(x) d x$ is precisely the limit of the estimates to the area beneath the graph we discussed above. We *define* that area to be the integral. More generally:

Interpretation/Definition: If $a \leq b$, the signed area (or net area) between the graph of f, the x-axis, and the vertical lines $y=a$ and $y=b$ is defined to be $\int_{a}^{b} f(x) d x$.

So the signed area is the sum of the areas below the positive parts of the graph minus the sum of the areas above the negative parts.

Example:

$$
\int_{-2}^{2}\left(x^{3}-x\right) d x
$$

We can use right-hand endpoints, i.e. choosing sample point x_{i}^{*} to be $-2+i \Delta_{n}$

$$
\begin{aligned}
\int_{-2}^{2}\left(x^{3}-x\right) d x & =\lim _{n \rightarrow \infty} \Delta_{n} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \\
& =\lim _{n \rightarrow \infty} \frac{4}{n} \sum_{i=1}^{n} f\left(-2+\frac{4 i}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{4}{n} \sum_{i=1}^{n}\left(-2+\frac{4 i}{n}\right)^{3}-\left(-2+\frac{4 i}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{4}{n} \sum_{i=1}^{n}\left(-6+\frac{(3)(4)(4 i)-4 i}{n}+\frac{(3)(-2)(4 i)^{2}}{n^{2}}+\frac{(4 i)^{3}}{n^{3}}\right) \\
& =\lim _{n \rightarrow \infty} \frac{4}{n} \sum_{i=1}^{n}\left(-6+44 \frac{i}{n}-96 \frac{i^{2}}{n^{2}}+64 \frac{i^{3}}{n^{3}}\right) \\
& =\lim _{n \rightarrow \infty} 4\left(-6+44 \frac{n(n+1)}{2 n^{2}}-96 \frac{n(n+1)(2 n+1)}{6 n^{3}}+64 \frac{(n(n+1))^{2}}{4 n^{4}}\right) \\
& =4\left(-6+\frac{44}{2}-96 \frac{1}{3}+64 \frac{1}{4}\right) \\
& =4(-6+22-32+16) \\
& =0
\end{aligned}
$$

(we used here the formula

$$
\sum_{i=1}^{n} i^{3}=\left(\sum_{i=1}^{n} i\right)^{2}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

see Appendix E problem 40 for a rather nice proof.)

Facts:

(i) $\int_{a}^{b} 1 d x=b-a$
(ii) $\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x$
(iii) $\int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$
(iv) $\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x$
(v) $\int_{a}^{a} f(x) d x=0$

Remark: It follows from (iv) and (v) that $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$ so in terms of the signed area interpretation, taking the endpoints the "wrong way round" introduces a minus sign.

