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Adding up

Summation notation: Given numbers ai and integers m ≤ n,

n∑
i=m

ai = am + am+1 + ... + an.

So e.g. if we have 50 boxes containing balls, and the ith box contains Bi balls, then the total number
of balls in the boxes is

50∑
i=1

Bi.

Similarly, given a function f and integers m ≤ n,

n∑
i=m

f (i) = f (m) + f (m + 1) + ... + f (n) .

So e.g. we can abbreviate the sum
1 + 2 + ... + n

as
n∑

i=1

i.

Remarks: By basic algebra,
n∑

i=m

cai = c
n∑

i=m

ai

n∑
i=m

(ai + bi) =

(
n∑

i=m

ai

)
+

(
n∑

i=m

bi

)
.

Also, if m ≤ n < s, then
n∑

i=m

ai +
s∑

i=n+1

ai =
s∑

i=m

.

We don’t have to use i as the index; e.g.

t∑
n=s

f (n) =
t∑

i=s

f (i)

Examples:
n∑

i=n

ai = an

n∑
i=1

1 = n

n∑
i=0

1 = n + 1

n∑
i=n

1 = 1
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n∑
i=m

1 = n + 1−m

The nth /triangular number/ is

Tn :=
n∑

i=0

i.

2Tn =
n∑

i=0

i +
n∑

i=0

(n− i)

=
n∑

i=0

n

= (n + 1)n.

So

Tn =
n (n + 1)

2
.

Note that we can then easily calculate e.g.

1337∑
i=37

i =
1337∑
i=0

i−
36∑
i=0

= T1337 − T36

=
(1337) (1338)− (36) (37)

2
= 893787.

Sum of consequetive squares:

Sn :=
n∑

i=0

i2

Sn =
n (n + 1) (2n + 1)

6

We can test this formula: clearly it works for n = 0, and if it works for n = k − 1 then

Sk = Sk−1 + k2

=
(k − 1) (k) (2k − 1)

6
+ k2

=
k ((k − 1) (2k − 1) + 6k)

6

=
k ((k − 1) (2k − 1) + 6k)

6

=
k (k + 1) (2k + 1)

6
.

(since ((k − 1) + 2) ((2k − 1) + 2) = (k − 1) (2k − 1) + (4k − 2) + (2k − 2) + 4 = (k − 1) (2k − 1) + 6k)
So the formula works for all n.
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Estimating areas

Areas of shapes defined by straight lines (rectangles, triangles, polygons etc) are easy to calculate. But
what about when the boundary is a curve?

e.g. What is the area of an ellipse? What is the area below a catenary?

Area beneath a graph: Let [a, b] be an interval and let f (x) be a function continuous and non-negative
on the interval. We will try to estimate the area bounded by the graph of f , the x-axis, and the vertical
lines x = a and x = b.

e.g. f (x) = x2, [a, b] = [0, 1].
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Idea: estimate area below the graph as the sum of the areas of rectangles, with height given by
evaluating the function. When width of the rectangles is small, this should be a good estimate.

e.g. split [0, 1] into n equally sized intervals, so the endpoints are ai = i/n for i = 0, 1, ..., n, and
consider n rectangles with bases these intervals, and with height the value of the function at, say, the right
end-point of the corresponding interval.

So the ith rectangle has width 1/n and height f (ai) = f
(
i
n

)
=
(
i
n

)2
, so its area is

RectAreai =

(
1

n

)(
i

n

)2

=
i2

n3
.
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So the sum of the areas is

An =
n∑

i=1

RectAreai

=
n∑

i=1

i2

n3
=

1

n3

n∑
i=1

i2 =
n (n + 1) (2n + 1)

6n3
.

e.g. with n = 10: A10 = 10∗11∗21/6000 = 0.385. with n = 1000: A1000 = (1000 ∗ 1001 ∗ 2001) / (6 ∗ 1000 ∗ 1000 ∗ 1000) =
0.3338335

Now: since the estimate gets more and more accurate for larger n, we can expect that the area *is*
the limit limn→∞An = 1

3
.

Remarks: It wasn’t important to our reasoning that we took the value of f at the right end-point of
each interval to define the height of the corresponding rectangle. Taking the value of f at *any* point of
the interval should work just as well.

Sometimes, we won’t be able to find a nice formula for the limit as n → ∞ as we could above. Still,
we expect the above approach to give a good estimate (assuming f is “reasonable”).

Definite Integrals

Definition: A function f is integrable on an interval [a, b] if the limit limn→∞ Sn of Riemann sums exists
and is the same for any choice of Riemann sums, and in this case that limit is the definite integral of f
from a to b.

Here, a Riemann sum Sn is the sum

Sn =
n∑

i=1

∆nf (x∗i )

where ∆n = b−a
n

, and x∗i is a choice of a point in the interval

[a + (i− 1) ∆n, a + i∆n].

So the definite integral is the limit of Riemann sums; but if f is ill-behaved, this limit might depend
on exactly how we calculate the Riemann sums (what points we calculate f at), so then we don’t get a
well-defined integral and we say that f is not integrable on [a, b]. Luckily...

Theorem: If f is continuous on [a, b], then f is integrable on [a, b].

Notation: We write ∫ b

a

f (x) dx

for the definite integral from a to b of f .
“dx” here should be read as notation indicating the variable we are integrating with respect to, much

like the d
dx

of differentiation. So e.g. ∫ b

a

f (x) dx =

∫ b

a

f (t) dt



5

So ∫ b

a

f (x) dx = lim
n→∞

(
(b− a)

n

n∑
i=1

f (x∗i )

)
where for each n, each x∗i is a choice of point in the nth interval, and the limit exists and doesn’t depend
on these choices (which is true if f is continuous on [a, b]).

So e.g. we saw above that ∫ 1

0

x2dx =
1

3

If f is non-negative on [a, b], then
∫ b

a
f (x) dx is precisely the limit of the estimates to the area beneath

the graph we discussed above. We *define* that area to be the integral. More generally:

Interpretation/Definition: If a ≤ b, the signed area (or net area) between the graph of f , the x-axis,

and the vertical lines y = a and y = b is defined to be
∫ b

a
f (x) dx.

So the signed area is the sum of the areas below the positive parts of the graph minus the sum of the
areas above the negative parts.

Example: ∫ 2

−2

(
x3 − x

)
dx

We can use right-hand endpoints, i.e. choosing sample point x∗i to be −2 + i∆n

∫ 2

−2

(
x3 − x

)
dx = lim

n→∞
∆n

n∑
i=1

f (x∗i )

= lim
n→∞

4

n

n∑
i=1

f

(
−2 +

4i

n

)
= lim

n→∞

4

n

n∑
i=1

(
−2 +

4i

n

)3

−
(
−2 +

4i

n

)

= lim
n→∞

4

n

n∑
i=1

(
−6 +

(3) (4) (4i)− 4i

n
+

(3) (−2) (4i)2

n2
+

(4i)3

n3

)

= lim
n→∞

4

n

n∑
i=1

(
−6 + 44

i

n
− 96

i2

n2
+ 64

i3

n3

)

= lim
n→∞

4

(
−6 + 44

n (n + 1)

2n2
− 96

n (n + 1) (2n + 1)

6n3
+ 64

(n (n + 1))2

4n4

)

= 4

(
−6 +

44

2
− 96

1

3
+ 64

1

4

)
= 4 (−6 + 22− 32 + 16)

= 0

(we used here the formula

n∑
i=1

i3 =

(
n∑

i=1

i

)2

=

(
n (n + 1)

2

)2

see Appendix E problem 40 for a rather nice proof.)
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Facts:

(i)
∫ b

a
1dx = b− a

(ii)
∫ b

a
cf (x) dx = c

∫ b

a
f (x) dx

(iii)
∫ b

a
(f (x) + g (x)) dx =

∫ b

a
f (x) dx +

∫ b

a
g (x) dx

(iv)
∫ b

a
f (x) dx +

∫ c

b
f (x) dx =

∫ c

a
f (x) dx

(v)
∫ a

a
f (x) dx = 0

Remark: It follows from (iv) and (v) that
∫ a

b
f (x) dx = −

∫ b

a
f (x) dx so in terms of the signed area

interpretation, taking the endpoints the “wrong way round” introduces a minus sign.


