Fundamental Theorem of Calculus (FTC) Reiterated

Theorem [FTC]:

(I) Let f be continuous on [a, b]. Then

$$F(x) = \int_{a}^{x} f(t) dt$$

is differentiable on (a, b) and continuous on [a, b], and for x in (a, b) we have

$$F'(x) = f(x).$$

So for continuous f,

$$\frac{d}{dx} \int_{a}^{x} f(t) dt = f(x),$$

or in the indefinite integral notation;

(II) If f is continuous on [a, b] and F' = f on [a, b], then

$$\int_{a}^{b} f(t) dt = F(b) - F(a).$$

In other words: if g is differentiable on [a, b] with continuous derivative, then

$$\int_{a}^{b} g'(t) dt = [g(t)]_{a}^{b} = g(b) - g(a).$$

Idea of proof:

replace b $= \lim_{h \to 0} \frac{F(b+h) - F(b)}{h}$ $= \lim_{h \to 0} \frac{1}{h} \left(\int_{a}^{b+h} f(t) dt - \int_{a}^{b} f(t) dt \right)$ $= \lim_{h \to 0} \frac{1}{h} \int_{t}^{b+h} f(t) dt$ $=\lim_{h\to 0} \frac{1}{h} [\text{signed area between t=b and t=b+h}]$

(II) By (I), $\int_a^x g'(t) dt$ is an antiderivative of g'(t) on (a,b). So by the MVT, $g(x) = \int_a^x g'(t) dt + C$ on (a,b), and hence by continuity on [a,b].

Since $\int_a^a g'(t) dt = 0$, we must have C = g(a). So

$$\int_{a}^{b} g'(t) dt = g(b) - g(a).$$

Substitution

Examples and intuition

We know $\int_2^3 \cos(x) dx = \sin(3) - \sin(2) (= -0.768)$. Consider $\int_2^3 \cos(2x)$.

Let u = 2x. The area between x = 2 and x = 3 for $\cos(2x)$ corresponds to the area between u = 4 and u = 6 for $\cos(u)$ - but the former is squashed by a constant factor of 2 relative to the latter.

We can compensate for the squashing by multiplying $\cos(2x)$ by a constant factor of 2, so we expect:

$$\int_{2}^{3} 2\cos(2x) \, dx = \int_{4}^{6} \cos(u) \, du = \sin(6) - \sin(4) \, .$$

Indeed, by the chain rule, $\sin(2x)$ is an antiderivative of $2\cos(2x)$, so this is right.

We deduce

$$\int_{2}^{3} \cos(2x) \, dx = \frac{1}{2} \int_{2}^{3} 2 \cos(2x) \, dx = \frac{\sin(6) - \sin(4)}{2} = 0.239$$

Now consider $\int_2^3 \cos(x^2) \lambda x$

Let $u=x^2$. The area between x=2 and x=3 for $\cos{(x^2)}$ corresponds to the area between u=4 and u=9 for $\cos{(u)}$ - but the former is squashed by a factor of $\frac{d}{dx}x^2=2x$ relative to the latter. We can compensate for the squashing by multiplying $\cos{(x^2)}$ by a factor of 2x, so we expect:

$$\int_{2}^{3} 2x \cos(x^{2}) dx = \int_{4}^{9} \cos(u) du = \sin(9) - \sin(4).$$

Again, we can confirm this using the chain rule: $\sin(x^2)$ is an antiderivative of $2x \cos(x^2)$.

Note that we have actually discovered **nothing** about $\int_2^3 \cos(x^2)!$ Instead, we have found an entirely **different** integral, namely

 $\int_2^3 2x \cos\left(x^2\right) dx.$

There is no way to get from that to any information about $\int_2^3 \cos(x^2)!$

Formal formulation

Theorem [substitution rule]:

(a) For indefinite integrals: Suppose f is continuous and g is differentiable. Then

$$\int f(g(x)) g'(x) dx = \int f(u) du$$

where u = g(x).

(b) For definite integrals: Suppose further that g' is continuous. Then

$$\int_{a}^{b} f(g(x)) g'(x) dx = \int_{g(a)}^{g(b)} f(u) du$$

Proof:

(a) If F is an antiderivative of f, then by the chain rule

$$\frac{d}{dx}F\left(g\left(x\right)\right) = f\left(g\left(x\right)\right)g'\left(x\right)$$

so F(u) = F(g(x)) is an antiderivative of f(g(x))g'(x).

(b) Now by FTC-II

$$\int_{a}^{b} f(g(x)) g'(x) dx = F(g(b)) - F(g(a)) = \int_{g(a)}^{g(b)} f(u) du$$

Further examples

$$\int_{-1}^{2} x^{3} e^{x^{4}} dx = \frac{1}{3} \int_{-1}^{2} e^{x^{4}} 3x^{3} dx$$

$$= \frac{1}{3} \int_{(-1)^{4}}^{2^{4}} e^{u} du$$

$$= \left[\frac{1}{3} e^{u}\right]_{(-1)^{4}}^{2^{4}}$$

$$= \left[\frac{1}{3} e^{u}\right]_{1}^{16}$$

$$= \frac{e^{16} - e}{3}$$

$$= 2.96 * 10^{6}$$

$$\int x^3 e^{x^4} dx = \frac{1}{3} \int e^{x^4} 3x^3 dx$$

$$= \frac{1}{3} \int e^u du$$

$$= \frac{1}{3} e^u + C$$

$$= \frac{e^{x^4}}{3} + C$$

$$\left(u = x^4, \frac{du}{dx} = 4x^3\right)$$