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In|z| as an antiderivative of 1

Recall that Linz = 1. So e.g. it does follow that ff ide = in2 — Inl.

But [nz is only d;ﬁned for z > 0, while % is also defined for z < 0.

Cunning trick: When z > 0:
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So we can write

/ld;c =In|z| + C,
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(meaning that this is family of all antiderivatives when we restrict to an interval not containing 0)

Warning: }; is not integrable on any interval containing 0. So e.g.
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does not exist (and in particular is not equal to WI—&'W, even though the function is odd!).
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Example: g \ Sl CL x
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(but again, you can only integrate tan (x) on intervals on which it is|defi
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Area between curves |

Example: Find the area of the region enclosed by the graphs of 22 and 6 — 3 (z — 2)%.
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Solution: We first find the z-values of the intersection points :
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g =0.634 or £ = 2.37
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Then the area between the graphs is the difference between the area between top one and the x-axis



and the area between the bottom one and the x-axis. So the area is
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It wasn't important that the area was above the x-axis, and so we get in

Formula: If f and g are continuous functions on [a, b], and if f (z) > g ()
region enclosed by the graphs of f (z), g (z) and the lines z =a and x = b i
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general:

on [a, b], then the area of the




Example - Volume of a sphere: Consider a sphere of radius r, centred at the origin (0,0,0).
Chop it perpendicular to the x-axis into n slivers of equal width.
The volume of the sphere is the sum of the volumes of the slivers.
For large n, i.e. for thin slivers, each sliver is roughly a cylinder of width |A, = 2—; The radius depends

on z: the 1** sliver has radius y/r*— (39;-‘)2 on its right face, where z7 = +r 41 - )
So we can estimate the volume of the it" sliver as

Volumes i
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So our estimate for the volume with n slivers is
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V, = Zanw (r* = (z)°).
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As n — o0, our estimates converge to the actual volume. So the volume of the sphere is

=00

: . w32
= lim 3 A (- (=) | |

= f T (?‘2 - mz) dx v

V= limV, ‘




