MATH 3TP3 Assignment #8 Due: Friday, November 16, in class

Consider the following formal system S (which is a fragment of the formal system version of PROP given in the lecture notes):

- Alphabet: P ' $\supset \langle \rangle \vdash$? W F F :
- Axioms: \vdash , WFF:P
- Rules:

(I)	WFF: Px	\mapsto	WFF:P'x	(well-formedness)
(II)	(WFF: x, WFF: y)	\mapsto	$\texttt{WFF:} \langle x \supset y \rangle$	(well-formedness)
(III)	$(x \vdash y, \ \texttt{WFF:} z)$	\mapsto	$x?z \vdash z$	(push)
(IV)	$(x \vdash y, \ \texttt{WFF:} z)$	\mapsto	$x?z \vdash y$	(carry-over)
(V)	$(x?y \vdash z, WFF:y)$	\mapsto	$x \vdash \langle y \supset z \rangle$	(pop)
(VI)	$(x \vdash \langle y \supset z \rangle, \ x \vdash y)$	\mapsto	$x \vdash z$	(detachment)

(a) Give a derivation in this system of

$$\vdash \langle \mathtt{P} \supset \langle \langle \mathtt{P} \supset \mathtt{P'} \rangle \supset \mathtt{P'} \rangle \rangle$$

Hint: First think how you'd derive it in PROP, then try to translate the PROP-derivation into an S-derivation. Remember that the empty string is a valid value for the string variables x, y, and z in the production rules of S.

(b) Define a Gödel numbering of strings in this alphabet, and explain in some detail why there exists a TNT-formula $Theorem_S(x)$ with one free variable x which is true in the natural numbers precisely when x takes value the Gödel number of a theorem of S.

Your explanation should be sufficiently detailed that it is clear that such a TNT-formula exists. One way to give a sufficiently detailed explanation would be to actually write out such a formula without any abbreviations, but that is likely to be rather painful and prone to error. I suggest you make use of abbreviations like those in lectures.

You may assume the β Lemma, and furthermore may assume as understood the existence and properties of the formulae

ListElement(x, y, z); Exp(x, y, z); HasLength(x, y); Concat(x, y, z)

defined in lectures, and any notation defined in lectures.

When finding formulae corresponding to the production rules, I would consider it acceptable to consider only (III) and (VI) in detail and say that the others can be handled similarly.