MATH 3TP3 Assignment #1 Solutions

1. Find a derivation in the MIU-system of the string MIUI.

MI, MII, MIIII, MIIIIIII, MIIIIIIIU, MIIIIIIU, MIIIIIUU, MIIIII, MIUI

2. Write down all the derivations (including the "stupid" ones) in the MIU-system of length (number of lines) at most 3 (Hint: there's only 1 of length 1, there are 3 of length 2, and there are 12 of length 3).

(MI);		
(MI,MI);	(MI,MIU);	(MI,MII);
$({\tt MI}, {\tt MI}, {\tt MI});$	$({\tt MI}, {\tt MI}, {\tt MIU});$	$({\tt MI}, {\tt MI}, {\tt MII});$
$({\tt MI}, {\tt MIU}, {\tt MIU});$	(MI,MIU,MI);	$({\tt MI}, {\tt MIU}, {\tt MIIU});$
$({\tt MI}, {\tt MIU}, {\tt MII});$	(MI,MII,MI);	$({\tt MI}, {\tt MII}, {\tt MII});$
$({\tt MI}, {\tt MII}, {\tt MIIII});$	$({\tt MI}, {\tt MII}, {\tt MIIU});$	$(\mathtt{MI}, \mathtt{MII}, \mathtt{MIU})$

3. Consider the system MIU+, the variant of the MIU-system obtained by adding as a fifth production rule: given MUx and MUy, produce MUxy. Find a derivation of MU in this system.

MI, MII, MIIII, MUI, MIIIIIII, MUIIIII, MUIIIII, MUUIII, MUUU, MU

4. (a) Let x be a string of Is of length 2^n for some integer $n \ge 0$. Show that Mx is an MIU-theorem.

We can prove this by induction on n.

For n = 0, $2^n = 1$ and $MI^{2^n} = MI$, which is an axiom, and hence a theorem.

Assume that MI^{2^n} is a theorem. Then by applying Rule (II), we see that $MI^{2^n}I^{2^n} = MI^{2^{n+1}}$ is also a theorem.

(b) Let x be a string of Is whose length l is not a multiple of 3. Show that the string Mx is an MIU-theorem. Hint: first show that there is some number n such that 2ⁿ is congruent to l modulo 3 and 2ⁿ ≥ l.

First, we find an n as in the hint. Let m be such that $2^m \ge l$. Since 2 is prime, 2^m is not divisible by 3, so is congruent to either 1 or 2 mod 3. So $2^{m+1} = 2 \cdot 2^m$ is congruent respectively to 2 or 1 mod 3. So since l is not divisible by 3, one of 2^m and 2^{m+1} is congruent to l mod 3. Let n = m or n = m + 1 accordingly. So $l = 2^n - 3k$ for some $k \ge 0$.

Now from part (a) we have that MI^{2^n} is a theorem. Note that applying Rules (I), (III) then (IV) to a string MI^{3+m} produces MI^m . So applying this succession of rules k times to MI^{2^n} produces MI^l . So MI^l is a theorem.

(c) Let x be a string over the alphabet {I, U} such that the number of occurrences of the symbol I in x is **not** a multiple of 3. Show that the string Mx is an MIU-theorem.

Let l be the number of occurrences of I in x and k the number of occurrences of U in x.

Let l + 3k is congruent to l modulo 3, so is not divisible by 3. Thus by part (b), the string MI^{l+3k} is a theorem. With k judicious applications of Rule (III), we can produce Mx from it.

(d) From this and the solution to the MU-puzzle given in lectures, you can conclude that there is a decision procedure for MIU-theoremhood. Explain briefly how to decide, given an MIU-string S, whether or not S is an MIU-theorem.

We saw in class that if Mx is a theorem then the number of occurrences of I in x cannot be a multiple of 3. From part c) we know that the converse holds and so Mx is a theorem if and only if the number of occurrences of I in x is not divisible by 3.

We also saw in class that every theorem is of the form Mx, where x is a string in the alphabet $\{I, U\}$.

Thus, to recognize whether a string is an MIU-theorem, we need only check that it starts with M, has no other occurrences of M and that the number of occurrences of I in the string is not divisible by 3.

BONUS: Consider the function C from natural numbers to natural numbers which takes n to n/2 if n is even, and to 3n + 1 if n is odd. The Collatz conjecture (currently unsolved) states that for every n > 0, if you repeatedly apply this function you will eventually get 1 (i.e. C(n) = 1 or C(C(n)) = 1 or C(C(n)) = 1 or ...).

Find a formal system with an alphabet including C such that the Collatz conjecture is true if and only if every string consisting entirely of Cs is a theorem of the system.

Here's my solution, using a three-character alphabet. I'd be interested to see a natural way of doing it with only two.

- Alphabet: $\{C, I, S\};$
- Axioms: {S};
- Production rules:
 - (I) $xSy \mapsto xCSIy$
 - (II) $x Sy \mapsto xy$
 - (III) $x Cyy \mapsto x Cy$
 - (IV) $xCyyI \mapsto xCyyyyyyIIIII$
 - (V) $x CI \mapsto xC$