MATH 3TP3 Assignment \#1 Solutions

1. Find a derivation in the MIU-system of the string MIUI.
```
MI, MII,MIIII,MIIIIIIII,MIIIIIIIIU,
MIIIIIUU,MIIIII,MIUI
```

2. Write down all the derivations (including the "stupid" ones) in the MIU-system of length (number of lines) at most 3 (Hint: there's only 1 of length 1, there are 3 of length 2, and there are 12 of length 3).
(MI);

(MI, MI);	(MI, MIU);	(MI, MII);
(MI, MI, MI);	(MI, MI, MIU);	(MI, MI, MII);
(MI, MIU, MIU);	(MI, MIU, MI);	(MI, MIU, MIIU);
(MI, MIU, MII);	(MI, MII, MI);	(MI, MII, MII);
(MI, MII, MIIII);	(MI, MII, MIIU);	(MI, MII, MIU)

3. Consider the system MIU+, the variant of the MIU-system obtained by adding as a fifth production rule: given MUx and MUy, produce MUxy. Find a derivation of $M U$ in this system.

> MI, MII, MIIII, MUI, MIIIIIIIII, MUIIIII, MUIIIIII, MUUIII, MUUU, MU
4. (a) Let x be a string of Is of length 2^{n} for some integer $n \geq 0$. Show that Mx is an MIU-theorem.
We can prove this by induction on n.
For $n=0,2^{n}=1$ and $\mathrm{MI}^{2^{n}}=\mathrm{MI}$, which is an axiom, and hence a theorem.
Assume that $\mathrm{MI}^{2^{n}}$ is a theorem. Then by applying Rule (II), we see that $\mathrm{MI}^{2^{n}} \mathrm{I}^{2^{n}}=\mathrm{MI}^{2^{n+1}}$ is also a theorem.
(b) Let x be a string of Is whose length l is not a multiple of 3. Show that the string $M x$ is an MIU-theorem. Hint: first show that there is some number n such that 2^{n} is congruent to l modulo 3 and $2^{n} \geq l$.
First, we find an n as in the hint. Let m be such that $2^{m} \geq l$. Since 2 is prime, 2^{m} is not divisible by 3 , so is congruent to either 1 or $2 \bmod 3$. So $2^{m+1}=2 \cdot 2^{m}$ is congruent respectively to 2 or $1 \bmod 3$. So since l is not divisible by 3 , one of 2^{m} and 2^{m+1} is congruent to $l \bmod 3$. Let $n=m$ or $n=m+1$ accordingly. So $l=2^{n}-3 k$ for some $k \geq 0$.
Now from part (a) we have that $\mathrm{MI}^{2^{n}}$ is a theorem. Note that applying Rules (I), (III) then (IV) to a string MI^{3+m} produces MI^{m}. So applying this succession of rules k times to $\mathrm{MI}^{2^{n}}$ produces MI^{l}. So MI ${ }^{l}$ is a theorem.
(c) Let x be a string over the alphabet $\{I, U\}$ such that the number of occurrences of the symbol I in x is not a multiple of 3. Show that the string Mx is an MIU-theorem.
Let l be the number of occurrences of I in x and k the number of occurrences of U in x.
Let $l+3 k$ is congruent to l modulo 3 , so is not divisible by 3 . Thus by part (b), the string $\mathrm{MI}^{l+3 k}$ is a theorem. With k judicious applications of Rule (III), we can produce $M x$ from it.
(d) From this and the solution to the MU-puzzle given in lectures, you can conclude that there is a decision procedure for MIU-theoremhood. Explain briefly how to decide, given an MIU-string S, whether or not S is an MIU-theorem.
We saw in class that if $\mathrm{M} x$ is a theorem then the number of occurrences of I in x cannot be a multiple of 3 . From part c) we know that the converse holds and so $M x$ is a theorem if and only if the number of occurrences of I in x is not divisible by 3 .
We also saw in class that every theorem is of the form $M x$, where x is a string in the alphabet $\{\mathrm{I}, \mathrm{U}\}$.
Thus, to recognize whether a string is an MIU-theorem, we need only check that it starts with M, has no other occurrences of M and that the number of occurrences of I in the string is not divisible by 3 .

BONUS: Consider the function C from natural numbers to natural numbers which takes n to $n / 2$ if n is even, and to $3 n+1$ if n is odd. The Collatz conjecture (currently unsolved) states that for every $n>0$, if you repeatedly apply this function you will eventually get 1 (i.e. $C(n)=1$ or $C(C(n))=1$ or $C(C(C(n)))=1$ or $\ldots)$.

Find a formal system with an alphabet including C such that the Collatz conjecture is true if and only if every string consisting entirely of Cs is a theorem of the system.

Here's my solution, using a three-character alphabet. I'd be interested to see a natural way of doing it with only two.

- Alphabet: $\{\mathrm{C}, \mathrm{I}, \mathrm{S}\}$;
- Axioms: $\{\mathrm{S}\}$;
- Production rules:
(I) $x \mathrm{~S} y \mapsto x \mathrm{CSI} y$
(II) $x \mathrm{~S} y \mapsto x y$
(III) $x \mathrm{C} y y \mapsto x \mathrm{C} y$
(IV) x CyyI $\mapsto x$ CyyyyyyIIII
(V) $x \mathrm{CI} \mapsto x \mathrm{C}$

