MATH 3TP3 Assignment \#2 Solutions

1. Consider the following formal system:

- Alphabet: \{-, !\};
- Axioms: \{-!--\};
- Production rules:
(I) $-!x \mapsto-!-x$
(II) $x!y \mapsto x-!-y$
(III) $x!y \mapsto y!x$
(a) Find derivations in the system of --!---- and ---!-.
(b) Consider the language consisting of strings of the form x ! y where x and y are (non-empty) strings of hyphens.

Give an interpretation for this language with respect to which the system is consistent and complete. Briefly explain your reasoning.
(a)

$$
\begin{aligned}
& -!--,--!---,--!---- \\
& -!--,- \text { ! ---, },---!-
\end{aligned}
$$

(b) Interpret $-^{n}$! $-m$ as " n is not equal to m ".

The system is consistent with respect to this interpretation, since the axiom is true $(1 \neq 2)$ and the production rules preserve truth:
(I) $1 \neq n \Longrightarrow 1 \neq n+1$ for a positive integer n;
(II) $n \neq m \Longrightarrow n+1 \neq m+1$;
(III) $n \neq m \Longrightarrow m \neq n$.

To see that the system is complete with respect to the interpretation, suppose $n \neq m$ are positive integers; we show that $-^{n}!-^{m}$ is a theorem. First, suppose $n<m$. Then by $(m-n-1)$ applications of rule (I) starting from the axiom, $-!--^{m-(n-1)}$ is a theorem. By ($n-1$) applications of rule (II) to this, so is $-^{n}!-^{m}$ as required.
Finally: if $n>m$, apply rule (III) to the theorem $-{ }^{m}!-{ }^{n}$.
2. We have seen that the pq-system captures addition of positive integers $n+$ $m=k$, and the tq-system captures multiplication $n m=k$. Devise a formal system (with finitely many axioms and production rules) which captures exponentiation $n^{m}=k$.
Argue informally that your system is consistent and complete with respect to the intended interpretation.

Hint: we want a formal system on an alphabet including e, q such that $-^{n} e^{-m} q^{-}$is a theorem iff $n^{m}=k$. Your first thought might be to copy the pattern of the previous systems and have a production rule "given xeyqz, produce xey-qzz...z with as many copies of z as x has hyphens" - but sadly this is not a typographical rule of the kind allowed in our formal systems. So you need to find a way around this. You may find it helpful to make use of systems we have already developed, as we did when we captured compositeness.

Note: the intention of the question was to capture exponentiation of positive integers, hence ignoring the annoying question of what 0^{0} is. The answer below is for that.

- Alphabet: $\{\mathrm{t}, \mathrm{e}, \mathrm{q},-\}$
- Axioms: $\{-\mathrm{t}-\mathrm{q}-,-\mathrm{e}-\mathrm{q}-\}$
- Production rules:
(I) $x \mathrm{t}-\mathrm{q} z \mapsto-x \mathrm{t}-\mathrm{q} z-$
(II) $x \mathrm{t} y \mathrm{q} z \mapsto x \mathrm{t} y-\mathrm{q} z x$
(III) $x \mathrm{e}-\mathrm{q} y \mapsto-x \mathrm{e}-\mathrm{q} y-$
(IV) $(x \mathrm{e} y \mathrm{q} z, x \mathrm{t} z \mathrm{q} w) \mapsto x \mathrm{e} y-\mathrm{q} w$

This embeds the $t q$-system, so we know that $-{ }^{n} t-{ }^{m} q-{ }^{k}$ is a theorem iff $n m=k$.

Consistency: the remaining axiom is true $\left(1^{1}=1\right)$, and the remaining rules (III) and (IV) preserve truth: $n^{1}=m \Longrightarrow(n+1)^{1}=n+1$, and if $n^{m}=k$ and $n k=l$, then $n^{m+1}=l$.

Completeness: we prove by induction on m that if n, m are positive integers, then $-^{n} \mathrm{e}^{m} \mathrm{q}^{n^{m}}$ is a theorem.
For $m=1$: repeatedly applying (III) to the axiom -e-q-, we find that ${ }^{n} \mathrm{e}-\mathrm{q}^{n}$ is a theorem.

Suppose $-^{n} \mathrm{e}^{m} \mathrm{q}^{-n^{m}}$ is a theorem. By completeness of the tq-system, $-^{n} \mathrm{t}-n^{m} \mathrm{q}^{n^{m+1}}$ is a theorem. Applying (IV) to these, we deduce that $-^{n} \mathrm{e}^{-m+1} \mathrm{q}-^{n^{m+1}}$ is a theorem.
3. Determine which of the following strings are well formed. For those that are, produce their parse (formation) trees.

The first and fourth are not well-formed; the second and third are.
4. For each of the following wff's, determine whether it is true or false according to an interpretation under which P and Q are true and R is false
All but the third are true.

