MATH 3TP3 Assignment #4 Solutions - 1. Yet more truth tables. - 2. (a) I'll give a detailed proof, although I expected and accepted much less detailed answers. First we prove: **Claim.** Given a truth assignment f, the truth value of α with respect to f is that of σ with respect to the truth assignment f' which is the same as f except that it assigns True to P iff τ is true with respect to f. *Proof.* Inductively assume the claim when σ is replaced by a shorter wff If $\sigma = P$, then $\alpha = \tau$ and the claim is clear. If σ is a different propositional variable, then $\alpha = \sigma$ and the claim is again clear. If $\sigma = \langle \sigma' \wedge \sigma'' \rangle$, then let α' and respectively α'' be the result of substituting all instances of P in σ' and respectively σ'' with τ ; the inductive hypothesis applies to these. Now $\alpha = \langle \alpha' \wedge \alpha'' \rangle$, and $$\alpha$$ is true wrt f' \iff α' is true wrt f' and α'' is true wrt f' \iff σ' is true wrt f and σ'' is true wrt f \iff σ is true wrt f . The other cases are similar. Now we show that α is a tautology. Given a truth assignment f, by the claim α is true wrt f iff σ is true wrt f'; but σ is a tautology, so it is true wrt f'; hence α is true wrt f. (b) Apply part (a) to 1(i) twice, first replacing P with $\langle P \supset \langle R \land P \rangle$ and then Q with $\langle Q \supset P \rangle$. $$\begin{array}{c} \sim \sim P \\ P \\ P \\ \sim \sim Q \\ Q \\ \langle P \wedge Q \rangle \\ \sim \sim \langle P \wedge Q \rangle \\ \end{array}$$ $$\begin{array}{c} \langle P \wedge Q \rangle \\ \langle \sim \langle \sim P \vee \sim Q \rangle \supset \sim \sim \langle P \wedge Q \rangle \rangle \\ \langle \sim \langle P \wedge Q \rangle \supset \langle \sim P \vee \sim Q \rangle \rangle \end{array}$$ (ii) Not a tautology, so by the Soundness theorem, no PROP-derivation exists. ``` (iii) [\langle P \supset \langle Q \wedge \sim Q \rangle \rangle [\sim \sim P P \langle P \supset \langle Q \wedge \sim Q \rangle \rangle \langle Q \wedge \sim Q \rangle [\sim \sim \langle P \supset P \rangle \sim Q] \langle \sim \sim \langle P \supset P \rangle \supset \sim Q \rangle \langle Q \supset \sim \langle P \supset P \rangle \rangle Q \sim \langle P \supset P \rangle] \sim \sim P \supset \sim \langle P \supset P \rangle \langle P \supset P \rangle \supset \sim P [P] \langle P \supset P \rangle > \sim P [P] \langle P \supset P \rangle > \sim P [P] \langle P \supset P \rangle > \sim P [P \supset P \rangle > \sim P] \langle P \supset P \rangle > \sim P \rangle ``` 4. (i) [$$P \\ \sim \sim P$$] $$\langle P \supset \sim \sim P \rangle$$ - (ii) trivial - (iii) trivial (iv) [$$\langle \sim P \wedge \sim Q \rangle$$ $$\sim P$$ [$$\langle P \wedge Q \rangle$$ $$P$$] $$\langle \langle P \wedge Q \rangle \supset P \rangle$$ $$\langle \sim P \supset \sim \langle P \wedge Q \rangle \rangle$$ $$\sim \langle P \wedge Q \rangle$$] $$\langle \langle \sim P \wedge \sim Q \rangle \supset \sim \langle P \wedge Q \rangle \rangle$$ $$(v) \ [\\ \langle P \wedge Q \rangle \\ Q \\ [\\ P \\ Q \\] \\ \langle P \supset Q \rangle \\] \\ \langle \langle P \wedge Q \rangle \supset \langle P \supset Q \rangle \rangle$$ (vi) $\vdash \langle \langle \sim P \land \sim Q \rangle \supset \sim \langle \sim P \lor Q \rangle \rangle$ by a substitution instance of (iv). So it suffices to find a derivation using this as an axiom: ``` \begin{array}{l} \langle P \wedge \sim Q \rangle \\ P \end{array} \sim \sim P \begin{array}{l} \sim Q \\ \langle \sim \sim P \supset \sim Q \rangle \\ \langle \langle \sim \sim P \wedge \sim Q \rangle \supset \sim \langle \sim P \vee Q \rangle \rangle (axiom) \end{array} \sim \langle \sim P \vee Q \rangle \langle P \supset Q \rangle [\sim P P \langle P \supset Q \rangle Q \langle \sim \sim P \supset Q \rangle \langle \sim P \lor Q \rangle \begin{array}{l} \left| \langle \langle P \supset Q \rangle \supset \langle \sim P \lor Q \rangle \rangle \right| \\ \left| \langle \sim \langle \sim P \lor Q \rangle \supset \sim \langle P \supset Q \rangle \rangle \right| \\ \sim \langle P \supset Q \rangle \end{array} \langle \langle P \wedge \sim Q \rangle \supset \sim \langle P \supset Q \rangle \rangle (vii) [\langle \sim P \land \sim Q \rangle \sim P [\sim Q \sim P \begin{array}{c} [\\ \langle \sim Q \supset \sim P \rangle \\ \langle P \supset Q \rangle \end{array} \label{eq:continuity} \left| \begin{array}{l} \langle \langle \sim P \wedge \sim Q \rangle \supset \langle P \supset Q \rangle \rangle \end{array} \right. ``` $$(\text{viii}) \ [\\ \langle P \wedge Q \rangle \\ Q \\ [\\ \sim P \\ Q \\] \\ \langle \sim P \supset Q \rangle \\ \langle P \vee Q \rangle \\] \\ \langle \langle P \wedge Q \rangle \supset \langle P \vee Q \rangle \rangle$$ - (ix) Essentially the same as the last one. - (x) Easy.