MATH 3TP3 Assignment #4 Solutions

- 1. Yet more truth tables.
- 2. (a) I'll give a detailed proof, although I expected and accepted much less detailed answers.

First we prove:

Claim. Given a truth assignment f, the truth value of α with respect to f is that of σ with respect to the truth assignment f' which is the same as f except that it assigns True to P iff τ is true with respect to f.

Proof. Inductively assume the claim when σ is replaced by a shorter wff

If $\sigma = P$, then $\alpha = \tau$ and the claim is clear.

If σ is a different propositional variable, then $\alpha = \sigma$ and the claim is again clear.

If $\sigma = \langle \sigma' \wedge \sigma'' \rangle$, then let α' and respectively α'' be the result of substituting all instances of P in σ' and respectively σ'' with τ ; the inductive hypothesis applies to these. Now $\alpha = \langle \alpha' \wedge \alpha'' \rangle$, and

$$\alpha$$
 is true wrt f' \iff α' is true wrt f' and α'' is true wrt f' \iff σ' is true wrt f and σ'' is true wrt f \iff σ is true wrt f .

The other cases are similar.

Now we show that α is a tautology. Given a truth assignment f, by the claim α is true wrt f iff σ is true wrt f'; but σ is a tautology, so it is true wrt f'; hence α is true wrt f.

(b) Apply part (a) to 1(i) twice, first replacing P with $\langle P \supset \langle R \land P \rangle$ and then Q with $\langle Q \supset P \rangle$.

$$\begin{array}{c} \sim \sim P \\ P \\ P \\ \sim \sim Q \\ Q \\ \langle P \wedge Q \rangle \\ \sim \sim \langle P \wedge Q \rangle \\ \end{array}$$

$$\begin{array}{c} \langle P \wedge Q \rangle \\ \langle \sim \langle \sim P \vee \sim Q \rangle \supset \sim \sim \langle P \wedge Q \rangle \rangle \\ \langle \sim \langle P \wedge Q \rangle \supset \langle \sim P \vee \sim Q \rangle \rangle \end{array}$$

(ii) Not a tautology, so by the Soundness theorem, no PROP-derivation exists.

```
(iii) [  \langle P \supset \langle Q \wedge \sim Q \rangle \rangle  [  \sim \sim P   P   \langle P \supset \langle Q \wedge \sim Q \rangle \rangle   \langle Q \wedge \sim Q \rangle  [  \sim \sim \langle P \supset P \rangle   \sim Q  ]  \langle \sim \sim \langle P \supset P \rangle \supset \sim Q \rangle   \langle Q \supset \sim \langle P \supset P \rangle \rangle   Q   \sim \langle P \supset P \rangle  ]  \sim \sim P \supset \sim \langle P \supset P \rangle   \langle P \supset P \rangle \supset \sim P  [  P  ]  \langle P \supset P \rangle > \sim P  [  P  ]  \langle P \supset P \rangle > \sim P  [  P  ]  \langle P \supset P \rangle > \sim P  [  P \supset P \rangle > \sim P  ]  \langle P \supset P \rangle > \sim P \rangle
```

4. (i) [
$$P \\ \sim \sim P$$
]
$$\langle P \supset \sim \sim P \rangle$$

- (ii) trivial
- (iii) trivial

(iv) [
$$\langle \sim P \wedge \sim Q \rangle$$

$$\sim P$$
 [
$$\langle P \wedge Q \rangle$$

$$P$$
]
$$\langle \langle P \wedge Q \rangle \supset P \rangle$$

$$\langle \sim P \supset \sim \langle P \wedge Q \rangle \rangle$$

$$\sim \langle P \wedge Q \rangle$$
]
$$\langle \langle \sim P \wedge \sim Q \rangle \supset \sim \langle P \wedge Q \rangle \rangle$$

$$(v) \ [\\ \langle P \wedge Q \rangle \\ Q \\ [\\ P \\ Q \\] \\ \langle P \supset Q \rangle \\] \\ \langle \langle P \wedge Q \rangle \supset \langle P \supset Q \rangle \rangle$$

(vi) $\vdash \langle \langle \sim P \land \sim Q \rangle \supset \sim \langle \sim P \lor Q \rangle \rangle$ by a substitution instance of (iv). So it suffices to find a derivation using this as an axiom:

```
 \begin{array}{l} \langle P \wedge \sim Q \rangle \\ P \end{array} 
                                                 \sim \sim P
                                                 \begin{array}{l} \sim Q \\ \langle \sim \sim P \supset \sim Q \rangle \\ \langle \langle \sim \sim P \wedge \sim Q \rangle \supset \sim \langle \sim P \vee Q \rangle \rangle (axiom) \end{array}
                                                \sim \langle \sim P \vee Q \rangle
                                                      \langle P \supset Q \rangle
[
\sim P
P
\langle P \supset Q \rangle
Q
                                                              \langle \sim \sim P \supset Q \rangle 
 \langle \sim P \lor Q \rangle 
                                              \begin{array}{l} \left| \langle \langle P \supset Q \rangle \supset \langle \sim P \lor Q \rangle \rangle \right| \\ \left| \langle \sim \langle \sim P \lor Q \rangle \supset \sim \langle P \supset Q \rangle \rangle \right| \\ \sim \langle P \supset Q \rangle \end{array}
                          \langle \langle P \wedge \sim Q \rangle \supset \sim \langle P \supset Q \rangle \rangle
(vii) [
                                               \langle \sim P \land \sim Q \rangle 
 \sim P 
 [ 
 \sim Q 
 \sim P 
                                           \begin{array}{c} [ \\ \langle \sim Q \supset \sim P \rangle \\ \langle P \supset Q \rangle \end{array} 
                         \label{eq:continuity} \left| \begin{array}{l} \langle \langle \sim P \wedge \sim Q \rangle \supset \langle P \supset Q \rangle \rangle \end{array} \right.
```

$$(\text{viii}) \ [\\ \langle P \wedge Q \rangle \\ Q \\ [\\ \sim P \\ Q \\] \\ \langle \sim P \supset Q \rangle \\ \langle P \vee Q \rangle \\] \\ \langle \langle P \wedge Q \rangle \supset \langle P \vee Q \rangle \rangle$$

- (ix) Essentially the same as the last one.
- (x) Easy.