MATH 3TP3 Assignment \#5 Solutions

1. (a) Neither: missing brackets.
(b) Neither: - is not in our alphabet.
(c) Neither: what goes after \sim has to be a wff, not a term.
(d) A sentence.
(e) A wff with free variables a^{\prime} and b.
(f) Neither: < is not in our alphabet.
2. (a) $\exists y:(y \cdot(y \cdot y))=x$
(b) $\sim \exists x: \exists y: \exists z:\langle\sim z=0 \wedge((x \cdot(x \cdot x))+(y \cdot(y \cdot y)))=(z \cdot(z \cdot z))\rangle$ (without the assumption that $z \neq 0$, there is the solution $0^{3}+0^{3}=$ 0...)
(c) $\forall x: A y\left\langle\left\langle E x^{\prime}: x=S\left(x^{\prime}+x^{\prime}\right) \wedge E y^{\prime}: y=S\left(y^{\prime}+y^{\prime}\right)\right\rangle \supset \exists z:(x+y)=\right.$ $(z+z)\rangle$
(d) Let make the more interesting (and true) statement that there are infinitely many coprime Pythagorean triples (noting that if two of the three are coprime, then they're all coprime): $\forall z: E z^{\prime}: \exists x$: $\exists y:\left\langle((x \cdot x)+(y \cdot y))=\left(\left(z+z^{\prime}\right) \cdot\left(z+z^{\prime}\right)\right) \wedge A z^{\prime \prime}\left\langle\left\langle\left\langle E x^{\prime}: x=\right.\right.\right.\right.$ $\left.\left.\left.\left(x^{\prime} \cdot z^{\prime \prime}\right) \wedge E y^{\prime}: y=\left(y^{\prime} \cdot z^{\prime \prime}\right)\right\rangle \supset x^{\prime}=S 0\right\rangle\right\rangle$
3. (a) There exists a solution to $x^{2}=x+1 \bmod 2$. False.
(b) Every natural number is the sum of three squares. False - e.g. 7 is a counterexample. (Something to think about: what if we allowed four squares?)
(c) 16 is a square. True.
(d) c is a common divisor of a and b.
(e) c is the greatest common divisor of a and b.
