MATH 3TP3 Assignment \#6 Solutions

1. (a) False in \mathbb{N}.
(b)
```
        \(\forall x:(x+x)=y\)
        \((x+x)=y\)
        \(\exists y:(x+x)=y\)
        \(\forall x: \exists y:(x+x)=y\)
]
\(\langle\forall x:(x+x)=y \supset \forall x: \exists y:(x+x)=y\rangle\)
    \(\sim \forall x: \exists y:(x+x)=y\)
    \(\langle\forall x:(x+x)=y \supset \forall x: \exists y:(x+x)=y\rangle\)
    \(\langle\sim \forall x: \exists y:(x+x) \supset \sim \forall x:(x+x)=y\rangle\)
    \(\sim \forall x:(x+x)=y\)
    \(\forall y: \sim \forall x:(x+x)=y\)
    \(\sim \exists y: \forall x:(x+x)=y\)
]
\(\langle\sim \forall x: \exists y:(x+x)=y \supset \sim \exists y: \forall x:(x+x)=y\rangle\)
\(\langle\exists y: \forall x:(x+x)=y \supset \forall x: \exists y:(x+x)=y\rangle\)
```

(c) This is false in the structure of arithmetic modulo 2.
(d) This is false in the structure obtained from \mathbb{N} by setting 0 to be interpreted as 37 .
(e) This is false in the structure obtained from \mathbb{N} by adjusting addition as follows: $n+^{\prime} m:=n+m$ if $m \neq 2$, but $n+^{\prime} 2=73$ for all n.
2. (a) TNT' can prove $\forall x:(x \cdot S 0)=(0+x)$, so if it could prove $\forall x$: $(x \cdot S 0)=x$ then it would also prove $\forall x:(0+x)=x$. But as was mentioned in lectures, it can't prove that! So there must be a structure which satisfies the axioms of TNT' but in which $\forall x:(x \cdot S 0)=x$ is false.
How can we find such a structure? There are a few possibilities, here's a cute one: we add a second copy of \mathbb{N} to \mathbb{N}, and have addition and multiplication fold everything down to one copy or the other - folding to the left with addition, and to the right with multiplication.

More explicitly: we add new elements $0^{\prime}, 1^{\prime}, 2^{\prime}, \ldots$ to \mathbb{N}, extend successor to the new elements by defining $S\left(n^{\prime}\right):=(n+1)^{\prime}$, and extend addition by taking the primedness of the result to be the primedness of the first summand, and for multiplication take it from the second multiplicand. In other words:

$$
n+m^{\prime}=n+m ; n^{\prime}+m^{\prime}=n^{\prime}+m=(n+m)^{\prime},
$$

and

$$
n^{\prime} \cdot m=n \cdot m ; n^{\prime} \cdot m^{\prime}=n \cdot m^{\prime}=(n \cdot m)^{\prime} .
$$

One can see that the axioms of TNT' hold for this structure. But e.g. $\left(0^{\prime} \cdot 0\right)=0$, so $\forall x:(x \cdot S 0)=x$ is false for this structure; similarly $\left(0+0^{\prime}\right)=0$ so $\forall x:(0+x)=x$ is false in the structure. (Remark: it's common to work with a stronger system than TNT', known as Robinson arithmetic and denoted by Q, which adds to TNT' the axiom $\forall x:\langle x=0 \vee \exists y: S y=x\rangle$ (which is a TNTtheorem). Our structure does not satisfy this last axiom. However, $\forall x:(x \cdot S 0)=x$ and $\forall x:(0+x)=x$ are also not theorems of Q. There's a reasonably pleasant example of a structure demonstrating this on page 7 of Peter Smith's Gödel Without Tears (linked to from the the course website), obtained from \mathbb{N} by adding two extra elements.)
(b) $(S S 0 \cdot S S 0)=((S S 0 \cdot S 0)+S S 0)$
$(S S 0 \cdot S 0)=((S S 0 \cdot 0)+S S 0)$
$(S S 0 \cdot 0)=0$
$((S S 0 \cdot 0)+S S 0)=(0+S S 0)$
$(S S 0 \cdot S 0)=(0+S S 0)$
$(0+S S 0)=S(0+S 0)$
$(0+S 0)=S(0+0)$
$(0+0)=0$
$S(0+0)=S 0$
$(0+S 0)=S 0$
$S(0+S 0)=S S 0$
$(0+S S 0)=S S 0$
$(S S 0 \cdot S 0)=S S 0$
$((S S 0 \cdot S 0)+S S 0)=(S S 0+S S 0)$
$(S S 0 \cdot S S 0)=(S S 0+S S 0)$

Remark: We had to prove here $(0+S S 0)=S S 0$: this is a theorem of TNT', even though $\forall x:(0+x)=x$ is not.
(c) This is false in \mathbb{N}.
(d) This is false in $\operatorname{Mat}_{2}(\mathbb{N})$.

