
MATH 3TP3 Assignment #8 Solutions

1. A PROP derivation would read like this:

[
P (push)
[
〈P ⊃ P ′〉 (push)
P (carryover)
P ′ (detachment)

]
〈〈P ⊃ P ′〉 ⊃ P ′〉 (pop)
]

〈P ⊃ 〈〈P ⊃ P ′〉 ⊃ P ′〉〉 (pop)

We translate this into a derivation in this system S:

WFF : P
WFF : P ′

WFF : 〈P ⊃ P ′〉
?P ` P (push)
?P?〈P ⊃ P ′〉 ` 〈P ⊃ P ′〉 (push)
?P?〈P ⊃ P ′〉 ` P (carryover)
?P?〈P ⊃ P ′〉 ` P ′ (detachment)
?P ` 〈〈P ⊃ P ′〉 ⊃ P ′〉 (pop)
` 〈P ⊃ 〈〈P ⊃ P ′〉 ⊃ P ′〉〉 (pop)

So we can think of a string “WFF : φ” as having the meaning that φ
is a propositional wff, and “?φ?ψ ` θ” as corresponding to our mathe-
matical notation {φ, ψ} ` θ, meaning that from premises φ and ψ we
can deduce θ, corresponding to a line PROP derivation which reads “θ”
and is in two fantasies, the outer with premise φ and the inner with
premise ψ. Of course we can have more than two premises.

The production rules parallel the rules of PROP. If we added the other
rules of PROP (joining, de Morgan etc) rather than just detachment,

1



we would arrive at the Post formal system version of PROP described
in the lecture notes. Doing “the same thing” for TNT, which involves
some extra work since we have to handle the RESTRICTIONs in the
quantifier manipulation rules, we obtain the system FormalTNT.

2. Let’s take a boring Gödel numbering:

P 7→ 10
’ 7→ 11
⊃ 7→ 12
〈 7→ 13
〉 7→ 14
` 7→ 15
? 7→ 16
W 7→ 17
F 7→ 18
F 7→ 19
: 7→ 20

(the only important point is that all numbers have the same length
when written in base 10 (that’s why we started with 10 rather than
1); this is needed so we know how to read numbers as strings (here we
write the number in base 10, then take pairs of numbers to correspond
to symbols; if we’d had a symbol with Gödel number 1 but another
with Gödel number 11, then we wouldn’t know whether 11 was coding
one symbol or two))

We will show that there are formulas

ProducesI(x, z),ProducesII(x, y, z),ProducesIII(x, y, z), . . . ,ProducesV I(x, y, z)

which express that a string can be produced by the production rules
from given inputs, i.e. which are such that for N = II, ..., V I, if x
and y are Gödel numbers of strings S1 and S2, then ProducesN(x, y, z)
is true (in N) precisely when z is the Gödel number of a string which
can be produced by rule N from inputs S1 and S2 (in that order); and
similarly for ProducesI(x, z).

Given this, we can define TheoremS(x) to be

∃y : ProofPair(y, x),

2



where ProofPair(y, x) is the following formula expressing that y codes
for a derivation of x:

∃z : 〈[y]z = x∧
∀z′ : 〈z′ ≤ z ⊃
〈〈[y]z′ = pWFF:Pq ∨ [y]z′ = p`q〉∨
∃z′′ : ∃z′′′ : 〈z′′〈z′ ∧ z′′′ < z′〉∧
∃x′ : ∃x′′ : ∃x′′′ : 〈〈[y]z′ = x′ ∧ 〈[y]z′′ = x′′ ∧ [y]z′′′ = x′′′〉〉∧
〈ProducesI(x

′′, x′)∨
〈ProducesII(x

′′, x′′′, x′)∨
〈ProducesIII(x

′′, x′′′, x′)∨
〈ProducesIV (x′′, x′′′, x′)∨
〈ProducesV (x′′, x′′′, x′)∨
ProducesV I(x

′′, x′′′, x′)〉〉〉〉〉〉〉〉〉〉

(Yow!)

Here we’re using the notation [x]y = z for ListElement(x, y, z), which
recall was defined in terms of Gödel’s β function.

It remains to see that there are the promised formulas ProducesN . I’ll
give them for III and V I; the others are similar but simpler.

First, it will reduce pain if we define some auxiliary formulas to handle
concatenating many strings together. So define Concat3(x, x

′, x′′, y) to
be

∃z : 〈Concat(x, x′, z) ∧ Concat(z, x′′, y)〉,

and define Concat4(x, x
′, x′′, x′′′, y) to be

∃z : 〈Concat3(x, x
′, x′′, z) ∧ Concat(z, x′′′, y)〉,

and so on.

Now let ProducesIII(x, y, z) be

∃x′ : ∃y′ : ∃z′ : 〈〈Concat3(x
′, p`q, y′, x)∧

Concat(pWFF:q, z′, y)〉 ∧ Concat5(x
′, p?q, z′, p`q, z′, z)〉〉

and let ProducesV I(x, y, z) be

3



∃x′ : ∃y′ : ∃z′ : 〈〈Concat6(x
′, p` 〈q, y′, p⊃q, z′, p〉q, x)∧

Concat3(x
′, p`q, y′, y)〉 ∧ Concat3(x

′, p`q, z′, z)〉〉.

That’s it! Painful, but essentially straightforward.

4


