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IV: Semantic Incompleteness
===========================

In this section, we will prove the following weak "semantic" version of
Gödel's First Incompleteness Theorem:

Theorem [Semantic G1T, Post formal system version]
    Arithmetical truth is not captured by any Post formal system, i.e.
    there is no Post formal system S such that for all TNT−sentences \sigma ,
    \sigma  is true in N iff \sigma  is a theorem of S.

    In particular, TNT is N−incomplete.

Idea of proof:
    Let S be a Post formal system which is sound for N, i.e. if \sigma  is an
    S−theorem then \sigma  is true in N.

    We find a sentence G which "says":
        " G is not derivable in S"
    i.e. G is true in N iff there is no derivation of G in S.

    If G is false in N, then G is an S−theorem, hence is true in N −
    contradiction.

    So G is true in N. So G is not an S−theorem.

For the rest of this section, we work with the standard interpretation of
TNT−wffs − "true" means "true in N", and variables take values in N.

Notation:
    [defining some abbreviations to make our formal language actually usable,
    making our lives much easier as we explore what can be expressed in the
    language of arithmetic]

    If n is a natural number, then \overline{n}  is an abbreviation for the TNT
    term SS...S0 with n S's.

        [ in these ascii notes, I'll miss out the overline... don't get
        confused! ]

    e.g. "Ax:(2*x) = ((1*x)+(1*x) )" is just an abbreviation for
    "Ax:(SS0*x) = ((S0*x)+(S0*x) )".

    If we denote a wff by \phi(x,y) , we are indicating that the free variables
    of the wff are precisely x  and y .

    We then write \phi(t,s) , where t  and s  are terms, as an abbreviation for
    the wff obtained by substituting t  for each free occurrence of x  and s  for
    each free occurrence of y , and adding primes to quantified variables in
    \phi  as necessary to avoid conflicts.

    e.g. let Lteq(x,y)  be the wff
        Ez:(x+z)=y .

    Then Lteq(S0,SSS0)  is the wff
        Ez:(S0+z)=SSS0
    and Lteq(y,x)  is the wff
        Ez:(y+z)=x .
    and Lteq(z,y)  is the wff
        Ez':(y+z')=z .
    and Lteq(z,(S0+z') ) is the wff
        Ez'':((S0+z')+z'')=z .

    We will write
        t <= s
    as an abbreviation for the wff
        Lteq(t,s)
    i.e. for the wff
        Ez:(t+z)=s .

    Similarly, let LessThan(x,y)  be the wff Ez: ( x+z)=y , and let " t<s "
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    abbreviate LessThan(t,s) .

Gödel numbering: coding Post formal systems in arithmetic
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Recall that a Post formal system consists of:
    An alphabet consisting of finitely many symbols;
    a finite set of axioms;
    a finite set of "pattern matching" production rules.

We will _code_ strings and derivations as natural numbers, and show that
syntactic operations are expressible by wffs. In particular,

*  given a rule R with 1 input, we will find a formula Produces_R(x,y)
    such that if x  is the code of a string X, then Produces_R(x,y)  is true
    precisely when y  is the code of a string which can be produced by R with
    input X.

*  Similarly for rules with many inputs.

*  Using this, we will find a formula ProofPair(x,y)
    true precisely when x  codes for a valid S−derivation of which y  is a line.

*  Hence the formula
        Theorem(y)  :=  Ex:Proves(x,y)
    will be true precisely when y  codes for an S−theorem.

Coding strings:
    Example − MIU system:
        Symbols coded as numbers:
            I ==> 1
            U ==> 2
            M ==> 3
        Strings coded as numbers:
            MIU ==> 123
            MUMUMU ==> 131313

            empty string ==> 0  
                (this is why I'm not following Hofstadter's choice U ==> 0 !)

    Example − (Formal)TNT:
        A ==> 626
        : ==> 636
        a ==> 262
        = ==> 111

        Aa:a=a  ==>  626262636262111262

    Generally:
        Code the symbols of the alphabet by natural numbers which are all of
        the same length when written as decimals.

        Then code a string S by the natural number with decimal representation
        the concatenation of the decimal representations of the codes for the
        symbols. This is the _Gödel number_ of S, written [S]

            [well actually it's written with only the top halves of '[' and
            ']', but we'll have to live with '[S]' in ASCII!]

Coding rules:
    Example − MIU system:
        (I)     XI  |−>   XIU
        (II)    MX  |−>   MXX
        (III)   XIIIY  |−>   XUY
        (IV)    XUUY   |−>   XY

        We want a formula  Produces_I(x,y)   which is true precisely when x  codes a
        string of the form "XI" and y  codes the corresponding string "XIU".
        So let Produces_I(x,y)  be
            Ez:<x = ((10*z)+1 ) /\ y = ((100*z) + 12)> .
        
        How about Produces_II ? How do we check that a number's decimal
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        representation starts with '3'? 
        
        We need exponentiation...

        Lemma:
            There is a formula Exp(x,y,z)  which is true precisely when z = x^y

        Proof:
            Later!
        
        Let HasLength(x,y)  be
            <Ez: <Exp(10,y,z) /\ <x < z /\ z <= 10*x>>
                \/ <x=0 /\ y=0>>    //  ugly special case for the empty string
        
        Now let Concat(x,y,z)  be
            Ey':<HasLength(y,y') /\ Ey'':<Exp(10,y',y'') /\ z = ((x*y'')+y)>> .
                (rewritten as normal maths: z = x*10^{length(y)}+y )

        So given strings X and Y, Concat([X],[Y],z)  is true iff z = [XY] .

        Now x  codes for a string of the form MX iff Ez:Concat(3,z,x)  holds,
        and we can define Produces_II(x,y)  to be
            Ez:< Concat(3,z,x) /\ Concat(x,z,y) >
        
        Similarly, let Produces_III(x,y)  be
            Ez:Ez':<  Ex': < Concat(z,111,x') /\ Concat(x',z',x) > /\
                       Ey':< Concat(z,3,y') /\ Concat(y',z',y) > >

        And Produces_IV  is similar.

    Generally:
        The same formula Concat works for any coding of any Post formal system, and
        arbitrary rules can be expressed by formulas similar to those above.

Coding derivations:
    A derivation is a sequence of strings ("lines"). We need something new!

    Lemma [Gödel's \beta Lemma] :
        We can code arbitrarily long lists of arbitrarily large natural
        numbers as pairs of natural numbers:

        There is a formula ListElement(x,y,z)  such that for any finite
        sequence of natural numbers a_0,a_1,...,a_n , there is a natural number
        c  such that for any i <= n ,
            ListElement(c,i,z)
        is true precisely when z = a_i .

        Notation: for terms s , t , r , we will write
            [s]_t = r
        as an abbreviation for
            ListElement(s,t,r)

    Now we can code a derivation by a number D such that the i −th line of the
    derivation is the string with Gödel number [D]_{i−1} .

    [ Technical remark: this doesn't give us the *length*  of the derivation,
    and may give us junk if we look at [D]_i  for i  greater than the length of
    the derivation. We could complicate things to handle that − but it won't
    actually matter for our definition of Theorem(x) , so we won't worry. ]

    We can also give the promised:

    Proof of expressibility of exponentiation:
        "exists a sequence 1=a_0,a_1,a_2,...,a_y=z  such that a_{i+1} = xa_i
        for all i<y ";
        Exp(x,y,z)  :=   Ex': <
                < [x']_0 = 1 /\ [x']_y = z > /\
                Ay':< y'<y =) Ez':< [x']_y' = z' /\ [x']_Sy' = (x*z') > > >
        

    
Expressing theoremhood:
    Example: MIU−system
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        ProofPair_MIU(x,y) :
            Ez:< [x]_z = y /\
                Az':< z' <= z  =)
                    <[x]_z' = [MI] \/
                        Ez'':<z'' < z' /\
                            Ey':Ey'':< <[x]_z' = y' /\ [x]_z'' = y''> /\  
                                <Produces_I(y'',y') \/
                                <Produces_II(y'',y') \/
                                <Produces_III(y'',y') \/
                                 Produces_IV(y'',y')>>>>>>>>
            True precisely when x  codes for the sequence of lines of a valid
            MIU−derivation, and y  is the Gödel number of the last line.

        Theorem_MIU(x) :
            Ez:ProofPair_MIU(z,x)

    Generally:
        Similar!

        See exercises!

    

Proof of \beta  lemma:
    Recall: Chinese Remainder Theorem:
        Suppose m_1,...,m_n  are pairwise coprime (i.e. gcd(m_i,m_j)=1  if i!=j ).

        Then given a_i  such that 0 <= a_i < m_i , we can find c  such that
            c == a_i  mod m_i  for all i .

        [ "Right" way to think about it: the point is that if M is the product
                M := \Pi_i m_i ,
            then the obvious map
                Z/MZ −−> \Pi_i Z/m_iZ  
                x/MZ |−> (x/m_1Z, ..., x/m_nZ)
            is a ring isomorphism. ]

    Now define, for c , d, i  in N,
        \beta(c,d,i) := rem(c, (d(i+1)+1) ))
    where rem(n,m)  is the unique natural number in [0, m) such that
        n == rem(n,m)  mod m

    Claim: given a finite sequence a_0,...,a_n , there exist c  and d such that
        for i=0 ,..., n,
            \beta(c,d,i) = a_i
    Proof:
        Let d be greater than all a_i  and divisible by 1,...,n; e.g. we could
        set d := (n+1)!*\Pi_i a_i .

        Then as i  ranges through 0,..., n, the numbers ( d(i+1)+1 ) are pairwise
        coprime.

        Indeed: suppose p is prime, p | d(i+1)+1  and p | d(j+1)+1 ,
        with i < j <= n .
        Then p does not divide d(i+1) , hence p does not divide d.
        But p | ( d(j+1)+1 − d(i+1)+1 ) = d(j−i) , so p | (j−i) .
        But 0 < (j−i) <= n , so ( j −i) | d . Contradiction.

        So by the Chinese remainder theorem, we can find a c  as required.

    It remains to code the pair (c,d)  as a single natural number...
    Here's a direct approach:
        t(x,y) = (x+y)(x+y+1)/2 + y = [(x+y)th  triangular number] + y

                                                .
                                                ..
        the graph of which, with x  increasing   ...
        to the right and y  increasing upwards,  9...
        starts off as shown to the right:       58...
                                                247...
                                                0136...
        
    So now we can let ListElement(x,y,z)  be
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        Ez':Ez'':<t(z',z'')=x /\ \beta(z',z'',y)=z>

Arithmoquining
−−−−−−−−−−−−−−

"yields falsehood when preceded by its own quotation" yields falsehood when
preceded by its own quotation.

Does it?

Abstractly:
    If we have an "incomplete" sentence − one which requires a noun to make it
    a sentence
        e.g.
            *  yields falsehood.
            *  I like x .
            *  is missing a noun.
            *  The string _ has an underscore in it.
    − we can _quine_ it: put the quotation of the incomplete sentence in for the
    missing noun
        resulting quines:
            *  "yields falsehood" yields falsehood.
            *  I like "I like x .".
            *  "is missing a noun" is missing a noun.
            *  The string "The string _ has an underscore in it." has an
                underscore in it.
    .

    Now if the incomplete sentence says something about the quine of
    the missing noun, then its quine will say that thing about itself!

    Simple example:
        Let U be the string:
            The quine of x  is a self−referential sentence.
        Then the quine of U is the string S:
            The quine of
                "The quine of x  is a self−referential sentence"
            is a self−referential sentence.
        So S says that the quine of U is self−referential.
        i.e. S says that S is self−referential!

    Referring by name to quining is arguably cheating... we can give a more
    explicit recipe, like:

        The string resulting from replacing the underscore in the string _
        with the quotation of that string is 248 characters long.

                                    |
                                    |  Quine
                                    v

        The string resulting from replacing the underscore in the string
        "The string resulting from replacing the underscore in the string _
        with the quotation of that string is 246 characters long."
        with the quotation of that string is 246 characters long.

[ Etymology: Willard Quine, philosopher; via Hofstadter ]

Implementing this trick in arithmetic ("arithmoquining"):
    Given a wff \phi  whose only free variable is x , the _arithmoquine_ of \phi
    is the formula AQ_\phi :
        Ex:<x = [\phi] /\ \phi>
    
    So this is a sentence which claims of [\phi]  whatever \phi  claims of x .

    ( analogy:
        incomplete sentence <==> wff with a free variable
        sentence <==> sentence
        noun <==> numeral
        quotation <==> Gödel number )

    [ why the trick with Ex:? Why not just use substitution, letting
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    AQ_\phi(x)  be \phi([\phi]) ? Answer: because the following claim would then
    be much harder to prove. ]

    Claim: Arithmoquining is expressible:
        There is a formula Arithmoquine(x,y)  such that if \phi  is a formula
        whose only free variable is x , then Arithmoquine([\phi],z)  holds iff
        z = [AQ_\phi] .
    Proof:
        [AQ_\phi] = [ Ex:<x = [\phi] /\ \phi> ]

        So AQ_\phi  is the concatenation of " Ex:<x= ", the numeral of [\phi] ,
        " /\ ", \phi , and " >".
        
        So the only tricky part is getting the Gödel number of the numeral
        \overline{[\phi]} ...

        Let GödelNumeral(x,y)  say that there exists z  such that [z]_0 = [0] ,
        [z]_x = y , and for all x' , [z]_Sx'  is the Gödel number of the
        concatenation of " S" and the string coded by [z]_x' .

        [ In gory detail:
            GödelNumeral(x,y) :=
                Ez:<<[z]_x = y /\ [z]_0 = [0]> /\ Ax'< x'<x =)
                    Ez':Ez'':<< [z]_x' = z' /\ [z]_Sx' = z''> /\
                        Concat([S],z',z'')>>>
        ]

        Then Arithmoquine(x,y) :=
            Ez:<GödelNumeral(x,z) /\ Concat( [Ex:<x=], z, [/\], x, [>], y)>

            (where Concat(x,x',x'',x''',x'''',y)  says that y  codes the
            concatenation of the five strings coded by x−x''''; we can define
            Concat(x,x',x'',x''',x'''',y)  to be

                Ez':Ez'':Ez''':<Concat(x,x',z')
                    /\ <Concat(z',x'',z'')
                    /\ <Concat(z'',x''',z''')
                    /\ Concat(z''',x'''',y) >>>>
            )

    Now let S be a Post formal system, and let U be the wff
        Ey:<Arithmoquine(x,y) /\ ~Theorem_S(y)>

        "The arithmoquine of x  is not a S theorem"

    Let G := AQ_U  be the arithmoquine of U:
        Ex:<x=[U] /\ U>
    in full:
        Ex:<x=[Ey:<Arithmoquine(x,y) /\ ~Theorem_S(y)>]
            /\ Ey:<Arithmoquine(x,y) /\ ~Theorem_S(y)>

    So G is true iff the arithmoquine of U is not a S theorem.

    But G is the arithmoquine of U.

    So G is true iff G is not a S theorem.

Now, the argument at the start of the section applies to G:

Theorem [Semantic G1T, Post formal system version]:
    No Post formal system is both sound and complete for N.
Proof:
    Suppose S is N−sound.

    If G is false in N, then G is an S−theorem.
    So G is true in N − contradiction.

    So G is true in N. So G is not an S−theorem.

    So S is N−incomplete!
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Incompletability
−−−−−−−−−−−−−−−−

So, TNT is not N−complete. It fails to prove the true sentence G_TNT.

But we know that G_TNT is true, so we can just add it as an axiom!

Let TNT_2 :=  TNT \cup { G_TNT } .

Problem: if we add the axiom G_TNT to our Post formal system, we get another Post fo
rmal
system! So again, we can find a sentence G_{TNT_2}  which is true, but not a
theorem of TNT_2.

Fine... let's add that too!

Let TNT_3 :=  TNT \cup { G_TNT , G_{TNT_2} } .

But... again, the theorem applies, and we get G_{TNT_3}  which is true but not
provable in TNT_3.

But! This procedure defines TNT_n for all n, so we can define

TNT_\omega :=  TNT \cup { G_TNT , G_{TNT_2} , G_{TNT_3} , ... }.

A Post formal system is only allowed to have finitely many axioms, so we appear to
have broken free of the incompleteness theorem!

This is a slightly ugly set to have as axioms, but it isn't too bad − we can
tell whether or not a sentence is one of the axioms, because there's a
definite pattern to the sentences G_{TNT_n} . So if TNT_\omega  were complete,
we'd be happy!

But. Precisely because there is this pattern, we could find a Post−formal
system which produces { G_TNT, G_{TNT_2}  ... } as theorems (and no other
TNT−wffs). If we add this to FormalTNT, we'll have a Post formal system which
proves precisely the TNT−sentences which TNT_\omega  does... and hence by G1T,
TNT_\omega  isn't complete either!

That's a bit of an ad−hoc argument. We can be much more general:

Computability
−−−−−−−−−−−−−

The question arises: how strong is this theorem? Our notion of a Post formal
system looked pretty restrictive, after all. So should we be surprised or
worried that arithmetic truth is not captured by one?

To explore this issue, we will need to consider the concept of an algorithm.

"Definition": an _algorithm_ is an explicit, deterministic, step−by−step
    procedure for performing a calculation on some input data.
    Given input, it may _return_ a result, or it may never return anything
    (because the procedure keeps going forever, or because it fails at some
    point).

Definition:
    A partial function f : N −> N  is _computable_ (synonyms: _effective_ ,
    _recursive_ ) if there is an algorithm which takes a natural number n as
    input, and
        *  if f  is defined at n, it returns f(n) .
        *  if f  is not defined at n, it never returns anything.

    A subset X of N is _computable_ (synonyms: _decidable_ , _recursive_ ) if
    there is an algorithm which takes a natural number n as input and
        *  if n is in X, returns True
        *  if n is not in X, returns False

    A subset X of N is _computably enumerable_ (synonyms: _semidecidable_ ,
    _recursively enumerable_ ) if there is an algorithm which takes a natural
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    number n as input and
        *  if n is in X, returns True
        *  if n is not in X, never returns anything.

    Similarly for functions N^n −> N  and subsets of N^n, using algorithms
    which take n inputs (or using a coding function N^n −−> N ).

Lemma:
    ( i ) X (= N  is computable iff X and its complement N\X  are c .e.
    (ii) a nonempty set X (= N  is c .e. iff it is the range of a total
        computable f : N −> N .
    (iii) f : N −> N  is computable iff its graph \Gamma_f  is c .e.
Proof:
    ( i ) =>: clear
        <=: given n, simultaneously run the algorithms which semidecide X and
            N\X ; one will eventually return, telling you whether n\in X .

    (ii)
        <=: given n, compute f(0) , f(1) , ...; if ever f(i)=n , return True.
        =>: First, suppose X is infinite. Consider the following procedure for
            producing a list of elements of X:
                do the following with i=0 , then with i=1 , then 2,3,...:
                    1) start the semidecision procedure for testing if i\in X .
                    2) for each currently running semidecision procedure:
                        run it for one step; if it returns True, meaning
                        that j\in X , add j  to our output list.
            Every element of X will eventually appear on the output list, with
            no repetitions.

            Now to compute f : given n, run the above listing algorithm until
            it has output n numbers. Return the nth.

            In the case that X is finite (which is an uninteresting degenerate
            case), say X = {a_0,...,a_k} , define f(n) := a_n  if n <= k , and
            for n > k  define f(n) := a_0 . This is clearly computable.
    
    (iii) =>: easy
          <=: given n, enumerate \Gamma_f  as in (ii); if ever (n,m)  is
              produced, return m.
        

Fact:
    Many precise definitions of "algorithm" have been given;
    they are all equivalent: whichever notion of "algorithm" you use to define
    which functions and sets are computable, you get the same collection of
    functions and sets.

    Moreover, they are precisely those which are "intuitively computable"!
    
    A system for computation which computes precisely these functions and sets
    is called _Turing complete_ .

    "computable" means "computable by some (any) Turing complete system".
    (sim c .e.)

Examples of Turing complete systems:
    mathematical abstractions: \mu−recursive functions, \lambda −calculus,
        Turing machines, register machines, string rewriting systems;
    physical systems: digital computers (with infinite RAM),
        Babbage's Analytical Engine (never built);
    programming languages (FLooP, C, Scheme, Prolog, etc);
    cellular automata: Conway's game of life, Rule 110;
    esoteric programming languages (befunge, brainf*ck  etc);
    surprising places: molecular biology, MtG(?) , asciiportal...

Example of a Turing complete system:
    Register machines (see below)

Church−Turing Thesis:
    "There is nothing beyond Turing completeness"

    Any function which can be calculated, in any reasonable sense of the word,
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    is computable by any Turing complete system.

Fact: Post formal systems are Turing complete:

    Let A be a finite alphabet. Fix a Gödel numbering of A−strings.

    Let \Sigma  be a set of A−strings.

    Then the set of Gödel numbers of elements of \Sigma  is c .e.
    iff there exists a Post formal system S in an alphabet A'  containing A
    such that \Sigma  is the set of A−strings which are S−theorems.
    

So we obtain:

Theorem [Semantic G1T]:
    The set of true TNT−sentences is not decidable, or even c .e..
Proof:
    If it were c .e., there would be a Post formal system S such that a string
    in the alphabet of TNT is an S−theorem iff it is a true sentence.
    But this contradicts the Post formal systems version of Semantic G1T.

Remark:
    If the set Th(N)  of true sentences *were* c .e., then it would be
    computable. Indeed: \sigma  is false iff ~\sigma  is true, so the complement
    of Th(N)  would also be c .e.

[ Decided to omit this... it's a more conventional statement, but giving it as
  well as the above statements would I think be obfuscatory. It's also a bit
  limiting, since it restricts us to the language of arithmetic (whereas we
  might want to consider e.g. ZF). The notion of a "logically adequate" formal
  system in section 5 substitutes for this.

  Definition:
      A _recursive axiomatisation_  for a structure N'  in the language of
      arithmetic is a computable set of sentences \Sigma  such that
      for any sentence \sigma ,
          N' |= \sigma  iff \Sigma |= \sigma

  Theorem [Semantic G1T, axiomatisability version]:
      N does not have a recursive axiomatisation.
  Proof:
      By Gödel's completeness theorem,
          \Sigma |= \sigma  <=>  \Sigma |− \sigma ,
      where recall the latter means that \sigma  is a theorem of PRED+\Sigma .

      But the set of theorems of PRED+\Sigma  is computably enumerable, by
      enumerating derivations.
]

In particular, adding a c .e. set of true axioms to TNT will not yield
completeness. In this sense, TNT is "incompletable".

See Figure 18 in Hofstadter.

For contrast, let me mention:

Fact [Tarski]:
    The set of true sentences in the real field <R;0,+,\cdot> *is*  decidable!

    Same for the complex field <C;0,+,\cdot> .

Register machines
−−−−−−−−−−−−−−−−−

Theoretical computer, comprising infinitely many "registers" R_0, R_1, ...
each containing a natural number.

A register machine program is a finite string in the alphabet



4−semanticIncompleteness                                                     Page 10

    + − ( ) ; . 0 1 2 3 4 5 6 7 8 9,
interpreted as instructions to alter the contents of the registers:
" n+" means "increment the contents of R_n by 1"
" n−" means "decrement the contents of R_n by 1 (or leave it at 0)"
"x;y" means "do x  then do y"
"n(x) " means "do x  while R_n does not contain 0"
"." means "stop".

A (well−formed)  program implements a partial function f:N−>N  as follows:
    to determine f(n) , first set R_0 to n and all other R_i  to 0. Then run
    the program. If the program stops, then f(n)  is the contents of R_0
    when it stops; else, f(n)  is undefined.

(Similarly, it implements partial functions N^n −> N  for any n, using
R_0,...,R_{n−1}  for the inputs.)

Example − a program computing f(n) := 2*n
    0(1+; 0−) ; 1(1−; 0+; 0+) .
Example − a program computing f(n) := n*n
    0(1+; 2+; 0−) ;
    1( 1−;
       2(0+; 3+; 2−) ;
       3(2+; 3−)
     ).

Example − a program computing f(n) := 1  if n is prime, 0 else
    0(1+; 2+; 0−) ; 2(0+; 2−) ;
    1( 1−;
        0(2+; 3+; 0−) ; 3(0+; 3−) ;
        2( 2−;
            2( 2−; 3+; 4+ ) ; 4(4−; 2+) ;
            3( 3−;
               1(4+; 5+; 1−) ;
               5(1+; 5−) ;
             );
            //  we've set R_4 := R_1*R_2 ; now check if R_4 == R_0 :
            4(4−; 5+; 6+) ;
            0(0−; 7+; 8+; 9+) ; 9(9−; 0+) ;
            5(5−; 7−) ;
            8(8−; 6−) ;
            7(6(.) ); //  return 0 if composite
         )
     );
    0(0−) ; 0+.

Fact: register machine programs are Turing complete − any computable function
    is computed by a register machine program.

[So one way to prove that Post formal systems are Turing complete would be to
show that any register machine program can be simulated by a Post formal
system, or equivalently that we can find a "universal" Post system which
produces a string of the form " n, m, k" iff the nth register machine program
(according to some Gödel numbering; see below) returns k  on input m. Emil Post
did something similar, but for the lambda calculus (which is also known to be
Turing complete) rather than register machine programs]

The Halting problem
−−−−−−−−−−−−−−−−−−−

Fix a Turing complete system, e.g. register machine programs.

Via Gödel numbering, we can code the programs by natural numbers such that
each number codes a program and
    Run(n,m) := f_n(m)  where f_n  is the function computed by the program
                with code n (undefined iff f_n(m) is)
is itself computable.

["computation is computable!"]

Theorem [Turing]:
    ( i ) The Halting Problem is undecidable:

        Define Halts : N^2 −> N  by
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            Halts(n,m)=1  if the program with code n ever returns anything
                when given input m (i.e. Run(n,m) is defined) , and
            Halts(n,m)=0  otherwise.

        Then Halts is not computable.

    (ii) There exists a c .e. subset H of N which is not computable.
Proof:
    ( i ) Suppose Halts is computable. Then so is h : N −> N  defined by
            h(n) := 1  if Halts(n,n)=0 ; undefined else.
        But then h is computed by some program, say with Gödel number n.
        Then h(n) = 1  iff Halts(n,n)=0  iff h(n)  is undefined. Contradiction.

    (ii) Let H := { n | Halts(n,n)=1 } . Then H is c .e. since Halts is, but
        if H were computable then h would be computable.

Remark:
    We can use this to give an alternative proof of Semantic G1T:
        since H is c .e., there is a formula \phi(x)  such that \phi(n)  is true
        iff n\in H
            (this follows from Turing completeness of Post systems and the
            existence of formulas Theorem_S(x) ; there are some technical
            details to fill in; see Assignment 10)

        So if arithmetic truth is computable, then so is H − contradiction!

    (Note: this proof has the same "ingredients" as our original proof −
    showing that arithmetic is sufficiently expressive, then using a
    diagonalisation trick (which in this version, is in the proof of
    undecidability of H))

Analogue of the Halting problem for Post formal systems
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[turns out to be not so satisfactory... I won't present this in lectures]

Fix a countably infinite alphabet s_0,s_1 ,...; code strings as natural numbers
(using the \beta  lemma).

Also code Post systems in this alphabet as natural numbers.

Then the binary relation " \sigma  is produced by S_n" (written e.g. as
s_0^[\sigma]s_1s_0^n ) is c .e., so is itself implemented by a Post system U in
this alphabet
(analogue of a universal Turing machine).

Claim: the set of productions of U is not computable.
Proof: Suppose it is computable, and let
        X := { s_0^n | s_0^n  is not a production of S_n }
    (where s_0^n  is the string s_0s_0...s_0 ).
    Then X is computable, so is the set of productions of some S_n.
    But then s_0^n \in X  iff s_0^n  is a production of S_n iff s_0^n \not\in X .

Remark: we could probably get away with a finite alphabet (2 symbols might be
    enough?), but we'd need a better version of the lemma that Post systems
    are Turing complete.


