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V: Introspection, and Gödel's Second Incompleteness Theorem
===========================================================

In this section, we present Gödel's Second Incompleteness Theorem (G2T). Along
the way, we state a stronger version of G1T which doesn't require the semantic
notion of N−consistency. The key idea for both of these is that TNT, like us,
is able to prove things about what it (and its strengthenings) can prove...

Notation: If S is a formal system in an alphabet including that of TNT, we say
    " S _proves_ \sigma " and write
        S |− \sigma
    to mean that \sigma  is a TNT−sentence which is also an S−theorem.

Definition:
    S is _logically adequate_ if
    whenever S proves some sentences \sigma_1,...,\sigma_n  which together
    necessitate a sentence \tau , then S also proves \tau .
    Symbolically:
        if { \sigma_1 , ..., \sigma_n } |= \tau
        and if S |− \sigma_i  for i=1 ,..., n,
        then S |− \tau .

    (So PRED is logically adequate, as is TNT)
    
    S is _a strengthening of TNT_ if S proves every TNT−sentence which TNT
    does, i.e. TNT |− \sigma  =>  S |− \sigma .

For the remainder of this section, we assume that S is a logically adequate
strengthening of TNT.

In particular, S could be (Formal)TNT itself.

Definition:
    S is _(negation−)consistent_  iff for no TNT−sentence \sigma  does it hold
        S |− \sigma      and     S |− ~\sigma .
    S is _(negation−)complete_  iff for every TNT−sentence \sigma
        S |− \sigma      or      S |− ~\sigma .

Remark:
    N−soundness => consistency
    N−completeness => completeness

    If S is inconsistent, then S |− \sigma  for all \sigma .

Fact 1:
    TNT proves all true sentences of the form
        Theorem_S(n)
Idea of proof:
    If Theorem_S(n)  is true, then ProofPair(m,n)  is true for some m;
    similarly, all the existentials involved in the (lengthy) definition of
    ProofPair have natural number witnesses, and it becomes a matter of
    checking that TNT can prove simple (quantifier−free) arithmetical truths
    about terms. It can. Induction isn't needed.

Let G := G_S  be the Gödel sentence of S.

Fact 2:
    TNT "knows what G is":
      TNT |− < <G =) ~Theorem_S(G)> /\ <~Theorem_S(G) =) G> >

[
Idea of proof (omitted in lectures):
    This is morally straightforward, but technically less so.
    Recall that G is Ex:<x=[U] /\ U>
        where U is Ey:<Arithmoquine(x,y) /\ ~Theorem_S(y)> .
    Now one can check, as in Fact 1, that
        TNT |− Arithmoquine([U],[G]) .
    Furthermore, TNT |− Ay:<Arithmoquine([U],y) =) y=[G]> ;
        i.e. it understands (case−by−case) that Arithmoquine is a function.
    This, perhaps surprisingly, is actually the most painful bit − see the
        notion of " captures* " in chapter 9 of Peter Smith's "Gödel Without
        Tears" (linked from website).
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    The rest is basic logic, which TNT can do by Gödel's completeness theorem.
]

[
    Actually, for Facts 1 and 2 we don't need much of TNT at all − just TNT'
    and the single TNT−theorem Ax:<x=0 \/ Ey:x=Sy> . This system
      Q := TNT'+{Ax:<x=0 \/ Ey:x=Sy>}
    is known as "Robinson arithmetic" (after Raphael Robinson, who isn't
    Abraham or Julia!).

    Technically, to get Fact 2 in Q you have to modify the definition of
    Arithmoquine, to Arithmoquine'(x,y) :=
        < Arithmoquine(x,y) /\ Ay':< y'<y =) ~Arithmoquine(x,y') > > .
    They're equivalent in N, and TNT proves the equivalence, but Q doesn't.
]

Lemma 1:
    If S is consistent, then S |/− G .

    i.e. N |= <Con(S) =) ~Theorem_S([G])>
Proof:
    Suppose S |− G .

    Then by Fact 1, since S strengthens TNT,
        S |− Theorem_S([G]) .

    But by Fact 2, since S strengthens TNT and is logically adequate,
        S |− ~Theorem_S([G]) .

    So S is inconsistent.

Historical remark:
    Lemma 1 formed half of Gödel's original proof of his First Incompleteness
    Theorem. Assuming a stronger form of consistency ("omega−consistency"), he
    proved that also S |/− ~G , showing that S is incomplete. A few years
    later, Rosser found a way to remove the assumption of omega−consistency,
    yielding:

    Gödel−Rosser First Incompleteness Theorem [G1T]:
        If S is consistent, it is incomplete.
    Proof: omitted.

Definition:
    Let Con(S)  be the sentence
        ~Theorem_S([~0=0])
    So Con(S)  is true iff S is consistent.

Fact 3: TNT is able to prove Lemma 1:
    TNT |− <Con(S) =) ~Theorem_S([G])>
Idea of proof:
    Follow the proof of Lemma 1 (and hence the proofs of Facts 1 and 2), and
    see that TNT can do them... for example, we have to prove an
    "introspective version" of Fact 1:
    TNT |− Ax:<Theorem_S(x) =) "Theorem_TNT([Theorem_S(x)])">
    (where a little work is needed even to express the bit in quotes)

[ 
    We need more of TNT for this than for the first two facts. We still don't
    need all of TNT, though: we only need induction axioms for
    " \Sigma_1 −formulae", being those formulas which start with zero or more
    existential quantifiers, then have no more quantifiers of any kind.
]

Theorem [G2T]:
    If S is consistent, S |/− Con(S)
Proof:
    Suppose S |− Con(S) .

    Then by Fact 3, S |− ~Theorem_S([G]) .

    So by Fact 2, S |− G .
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    But this contradicts Lemma 1.

Appendix A: some remarks on Hofstadter's presentation of Gödel's theorems
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

It's a bit of a mess, really.

He spends a whole chapter on the difference between primitive recursion and
recursion, so that he can say that TNT represents primitive recursive
relations. That's true − although Q also represents general recursive
relations, and since he isn't even sketching a proof it seems strange to
mention only the easier result. But more to the point, despite making a big
deal of this representability, it's never actually used in the Gödel statement
he proves! He sketches a proof of only the semantic version of G1T, for which
expressibility is enough. Of course, the representability is relevant to G2T,
or to Syntactic G1T, but he doesn't even try to prove those. Relatedly, he
seems to use soundness and consistency interchangeably.

I have great affection for the book, and on balance I don't regret using it
for this course, but it has meant that the overlap between the course and the
book is rather smaller than I'd have liked.

Appendix B: some remarks on Bays's presentation of Gödel's theorems
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(Since we're on the subject of introspection...)

I hope it isn't a mess. Really.

The approach to Gödel's theorems this course has ended up taking is fairly
idiosyncratic. To summarise: taking more seriously than he could possibly have
intended a throwaway parenthetical at the start of Hofstadter's GEB, we build
everything around the notion of a Post formal system. This makes a nice
introduction to semantics of syntax, leading to the propositional and
predicate calculi. From the point of view of Gödel, the main advantage of
using Post systems is that, given a Post system S, the formula expressing "is
an S−theorem" (i.e. S−production) is relatively simple. We were able to
describe it essentially in full detail. This not only makes it about as clear
as it could be that theoremhood is definable, but also makes it relatively
easy to believe that Q can do the proofs.

This is to be contrasted with a more conventional approach, which would
*first*  show that recursive functions f  are definable and that Q can prove
true statements of the form f(n)=k , and then argue that since theoremhood is
clearly r .e. (which is only clear once you've built up a solid appreciation
for Turing completeness!) we get the same results.

Of course, we still need to talk about computability if we want to say that
Th(N)  is undecidable, but the Turing completeness of Post systems gives us an
avenue in to that.

The main downside of avoiding talking directly about recursive functions is
that we can't extract a clear statement that Q proves all true statements of
the form \phi(n)  for \phi  an r .e. predicate, nor that r .e. corresponds to
\Sigma_1 .

So in retrospect, I think the Post−approach works quite well. I consider it a
happy medium between (a) the truly fluffy approach of just asserting that
computability is something Q can do, and syntactic stuff is obviously
computable so duh, and ( b) the fully Proper approach going via (primitive)
recursive functions and properly demonstrating that the relevant syntactic
operations are recursive (for which you might well want to go via some more
appropriate Turing complete system, such as... Post systems, say?).

One regret I have regarding the use of Post systems, however, is the
terminology, which I lifted from Hofstadter and kept unchanged throughout the
course. Calling productions "theorems", and initial strings "axioms", is cute
but not really appropriate in general. Better would be to have made a
distinction at the stage when we defined 'well−formed' strings as the
interpreted ones to which we assign meaning. " S−theorem" should have been
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defined as "well−formed S−production", explicitly leaving open the possibility
of going via non−well−formed strings, perhaps using auxiliary symbols, to
arrive at our theorems. This would nicely foreshadow the statement of Turing
completeness of Post systems, and would be appropriately suggestive when we
considering extending TNT by going outside of number theory, e.g. to ZFC;
making use of auxiliary symbols (which we *could*  optionally also interpret,
yielding a consistency argument analogous to that for TNT (and a proof of
Con(ZFC)  from existence of inaccessible cardinals...)).

Appendix C: Idiosyncrasies
==========================
*  TNT is usually known as PA.
*  TNT' is almost Robinson's Q; more precisely, Q is TNT' along with an axiom
    saying that every non−zero number is a successor, Ax:<~x=0 =)  Ey: x=Sy> .
    The point of Q is that it's enough for the syntactic Gödel−Rosser version
    of G1T we mentioned to go through: no strengthening of Q is both
    consistent and complete.
*  PRED is one of numerous possible proof systems for
    "first−order predicate logic" in the language of arithmetic (and would not
    have to be changed much to accomodate other languages)
*  The particular system PROP for propositional calculus was, as I hope was
    clear, not standard. But it's as good as any other. 'Detachment' is
    normally called 'Modus Ponens'. 'Switcheroo' doesn't have a common name to
    my knowledge, though it ought to.
*  "formal system" is not normally synonymous with "Post system" as it was for
    us. There is no very precise definition of "formal system" in general
    currency, but the key idea is that the set of theorems provable in a
    formal system should be recursively enumerable. So by the Turing
    completeness of Post systems I stated, any formal system can be turned
    into a Post formal system.
*  Relatedly, our terminology for Post systems, borrowed from Hofstadter, is
    non−standard, since they're not normally thought of as proof systems.
    What we called an 'axiom' would normally be called something like an
    'initial word', and what we called a 'theorem' would normally be a
    'production'. Also, they should really be called "Post canonical systems",
    or just "Post systems". They aren't actually particularly well−known,
    other theoretically simpler but less intuitive string−rewriting systems
    being more common, but they suited our purposes.
*  "Semantic G1T" isn't common terminology; I nabbed it from Peter Smith.
    Normally when people (who know what they're talking about) talk about
    Gödel's First Theorem they're referring to a version I never even
    mentioned, because it was superceded by Gödel−Rosser. The basic version,
    due mainly to Gödel, is this: no logically adequate strengthening of Q is
    both complete and \omega −consistent. Recall that 'complete' means
    'negation−complete' means that for any \sigma  it proves \sigma  or proves
    ~\sigma . We didn't define \omega −consistent, I'll do so now: it means that
    if for each n the system proves \phi(n) (where that n has a bar on it) ,
    then the system doesn't prove ~Ax:\phi(x) . Of course this implies that the
    system is consistent, because an inconsistent system proves everything, so
    this version is weaker than the Gödel−Rosser version which drops the
    " \omega ". But people still sometimes talk about this original version
    anyway, essentially just for historical reasons.
*  Also, it isn't normal to state G2T in terms of formal systems as we did; but
    doing so loses nothing. A more standard statement with the same power (I
    won't explain what all the terminology means, though... avoiding having to
    do so was why I only gave the Postal version!): let T be a recursively
    axiomatised theory in some language L, suppose T interprets a structure N
    in the language of arithmetic, and suppose the induced theory extends Q.
    Then if T is consistent, T does not include Con(T) , where the latter is
    considered as a sentence in N.


