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These are my notes for my 3TP3 "Truth and Provability" course at McMaster
university, 2012.

The course textbook is Hofstadter's "Gödel−Escher−Bach".

These notes roughly follow Hofstadter's exposition of basic logic and the
proof of Gödel's Incompleteness Theorems, adding a bit of rigour and some
further details where mandated.

The course is loosely based on notes from Matt Valeriote's version of the
course, which he taught in 2008 and 2010, and owe much to him.

The notes are written in plaintext, and should be read with a fixed−width
font.

The pdf versions have some automatic highlighting of things which look like
mathematical expressions, based on a simple regexp... this isn't very
reliable, but kind of works.

[Comments that occur in square brackets, like these, are things I don't intend
to say in class and are intended as bonus extra material for those who care to
read these notes, or as reminders to myself]

−− Martin Bays, McMaster University, 2012

I: Formal systems
=================
Definition:
    An _alphabet_ is a finite set of _symbols_ (or _letters_ or _characters_ ).
        e.g. {'a','b',...,'z'}

    A _string_ (or _word_)  in an alphabet \Sigma  is a finite sequence of
    elements of \Sigma .
        e.g. "aardvark", "word"

    A _formal system_  on \Sigma  comprises:
        *  a finite set of strings in the alphabet, called the _axioms_ ;
        *  a finite set of _production rules_ .

    A _derivation_  in a formal system is a finite sequence of strings
        (the _lines_ of the derivation) such that each line is an axiom or can
        be produced by a production rule from some preceding lines.

    A string is a _theorem_ (or _production_ ) of a formal system if it is the
        last line of a derivation.

    The _length_ of a derivation is the number of lines it has.

    Before we define what production rules are, we must define patterns.
        A _pattern_  in \Sigma  is a string in the alphabet you get by adding
        to \Sigma  some new symbols called _variables_ (as many of them as we
        need). We'll write these variables 'x', 'y', 'z', and use
        subscripts 'x_2'  and so on if we need more.

        So if the original alphabet \Sigma  is { '−', 'p', 'q' }, then
        patterns are strings like "−xyp−−x".

    A _production rule_  comprises:
        * A  finite sequence of patterns in \Sigma , called the _inputs_ ;
        * A  single pattern, called the output. Each variable appearing
            in the output pattern must appear in at least one input
            pattern.

    To define how production rules are applied, we should first define
    matching.

    To _match_ a pattern to a string in \Sigma  means to find strings in
        \Sigma  which can substitute for the variables in the pattern so as to
        produce the string. e.g. "−xyp−−x" matches "−−−qp−−−−" by substituting
        "−−" for " x" and " q" for " y".

    To match a sequence of patterns to a sequence of strings means to



GIT                                                                           Page 2

        match each pattern to the corresponding string, with the same
        substitutions being made when the same variable appears in more
        than one pattern. For example, ("−xyp−−x","xy")  matches
        ("−−−qp−−−−","−−q") .

    Finally, to apply a production rule to a sequence of strings means
        to match the input patterns to the strings, and produce as
        output the output pattern with variables substituted for strings
        according to the substitutions made in the matching. For
        example, the rule
            ("−xyp−−x","xy") |−>  "−yypx"
        could be applied to the sequence of strings ("−−−qp−−−−","−−q") .
        to produce "−qqp−−".

        Note that sometimes there will be more than one way to match the
        given strings to the input patterns, resulting in different
        outputs. For example, the simple rule
            "xxy" |−>  " y"
        when applied to the string "−−p−−pq−" could produce " p−−pq−",
        but it could also produce " q−".

Remark:
    This notion of formal system is due to Emil Post.
    We will sometimes refer to them as "Post formal systems", when we want to
    be clear that we have this precise definition in mind.
    The systems described in Hofstatder do not always fit rigidly into this
    definition; in these notes, I aim to explain how they can be tweaked so as
    to do so.

The MIU−system
−−−−−−−−−−−−−−

The MUI−system:
    Alphabet: {'M', 'I', 'U'}
    Axioms: {"MI"}
    Production rules:
        (I)     xI  |−>   xIU
        (II)    Mx  |−>   Mxx
        (III)   xIIIy  |−>   xUy
        (IV)    xUUy   |−>   xy

MU−puzzle: is "MU" a theorem?

Example: the following is a derivation in the MIU system:
    1.  MI
    2.  MIU         (produced by rule (I) from line 1)
    3.  MIUIU       (by (II) from 2)
    4.  MIUIUIUIUI  (by (II) from 3)

    so "MIUIUIUIUI" is a theorem of the MIU system.

Example: the following is a derivation in the MIU system:
    MI
    MII
    MIIII
    MUI     (by (III) with x= " M", y= "I")
    MUIU
    MUIUUIU
    MUIIU
    MUIIUUIIU
    MUIIIIU
    MUIUU

Remark:
    If we cut a derivation short, taking just the first n lines, what we have
    is also a derivation. So every line of a derivation is a theorem.

IU−puzzle: is "IU" an MIU−theorem?

Theorem: any MIU−theorem starts with 'M'
Proof by induction on the length of a derivation:
    We show that for every natural number k
        ( *)_k    every theorem with a derivation of length <=k  starts with M.
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    ( *)_0  is trivially true, as there are no theorems with derivations of
    length <=0!

    Assume ( *)_k , and consider a derivation of length k+1 .

    Each of the first k  lines have derivations of length <=k , so they all
    start with 'M'.

    The last line is an axiom or is produced from a previous line by one of
    ( I)−(IV) .

    If it is an axiom, it is "MI", which starts with 'M'.

    If it was produced by (I) xI |−>  xIU:
        "xI" starts with 'M', hence x  does, hence "xIU" does.

    Similar arguments apply for ( II)−(IV) .

    So ( *)_{k+1}  holds.

Example: The MIU+ system is formed by adding a new production rule
    ( V)     (MUx, MUy)  |−>   MUxy

    A derivation in this system:
    1. MI
    2. MII
    3. MIIII
    4. MUI
    5. MUII         (by ( V) from (4) and (4))
    6. MUIII        (by ( V) from (4) and (5))

Deciding theoremhood
−−−−−−−−−−−−−−−−−−−−

Question: which strings in {'M', 'I', 'U'} are MIU−theorems?

First answer: those for which there exist derivations.

This is unsatisfactory!

We would like a _decision procedure_ for theoremhood:
    a procedure/algorithm/program  which we can carry out on any string, and
    which will (eventually) stop and give us an answer "yes" or "no", and
    which answers "yes" iff the string is a theorem.

We have "half" of that:
    given a string, we can run through all possible derivations in order of
    length (see below), and stop with answer "yes" if the last line is equal
    to the given string.

This is a _semi−decision procedure_ for theoremhood:
    an algorithm which, given a string S, answers "yes" if S is a theorem, but
    needn't stop at all if S isn't a theorem!

Algorithm to produce all derivations of a formal system, in order of length:
    The only derivation of length 0 is the empty derivation.
    Suppose we have produced all derivations of length k . To produce all
    derivations of length k+1 :
        *  For each axiom and each length k  derivation:
            append the axiom to the derivation, giving a length k+1
            derivation.
        *  For each production rule and each length k  derivation:
            Say the production rule takes n strings as input.
            Run through each set of n lines from the derivation, and all the
            (finitely many!) ways to apply the production rule to them
            (choices for substitutions of variables). In each case, append the
            output, giving a length k+1  derivation.

Remark:
    For this argument to work, it's crucial that there be only finitely many
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    axioms and finitely many production rules.

Remark:
    If we remove rules (III) and (IV) of the MIU−system, we have an easy
    decision procedure: each rule increases the length of a string it acts on,
    so if a string S is a theorem it has a derivation of length at most the
    length of S. So just check all those derivations.

Why do we call the above procedure a "semi"−decision procedure?
    Suppose we find a formal system Anti−MIU whose theorems are precisely the
    non−theorems of the MIU−system. Then we would have a decision procedure
    for MIU−theoremhood:
        Given a string S, *simultaneously*  run our semi−decision procedures
        for MIU and for Anti−MIU.
        The first stops and says "yes" if S is an MIU−theorem;
            the second stops and says "yes" if S is an Anti−MIU−theorem, i.e.
            if S is *not*  an MIU−theorem.
        So precisely one of them will eventually stop and say "yes"!
        Then we stop, and say "yes" or "no" appropriately.

We'll come back to this idea later.

Solution to the MU−puzzle
−−−−−−−−−−−−−−−−−−−−−−−−−

Definition: For an MIU−string S, let I(S)  be the number of occurences of 'I'.

Theorem: If S is an MIU−theorem, then I(S)  is not divisible by 3
    (i.e.  I(S) != 0  mod 3)
Proof:
    By induction on length of derivations.
    Suppose  I(S') !=~ 0  mod 3  for any theorem S'  having a derivation of
        length <= k , and suppose S has a derivation of length k+1 .
    If S is an axiom, S="MI" so  1 = I(S) !=~ 0  mod 3.
    Else, S is produced by one of ( I)−(IV)  from some S'  with I(S') !=~ 0  mod 3.
        (I): I(S) = I(S') .
        (II): I(S) = 2I(S') , so I(S) =~ 2I(S') !=~ 0  mod 3.
        (III): I(S) = I(S')−3 , so I(S) =~ I(S') !=~ 0  mod 3.
        (IV) I(S) = I(S') .
    So I(S) !=~ 0  mod 3.

See assignment 1 for the converse.

Semantics
−−−−−−−−−

The pq−system:
    Alphabet: {'p', 'q', '−'}
    Axioms: {"−p−q−−"}
    Production Rules:
        (I) xpyqz |−>  xpy−qz−
        (II) xpyqz |−> x −pyqz−

Producing some theorems, it looks like every theorem is of the form
    " −^np−^mq−^{n+m} " (where " −^n " abbreviates n dashes).
So it's tempting to *read* e .g. "−−−p−−q−−−−−" as "3 plus 2 equals 5".

Is that what it "really means"?
Is "−−−p−−q−−−−−" *true* , and "−−p−−q−−−−−" *false* ?
What about "qpqpqq−"?

Definition:
    A _language_  in an alphabet is a set of strings, called the _well−formed
        strings_ (wfss).
    An _interpretation_ of a language is a way to assign a truth value (True
        or False) to each wfs.

So here, we're suggesting a language where the wfss are " −^np−^mq−^k " with
    n,m,k>=1 , and the plus−equals interpretation:
        " p"  −−>  "plus"
        " q"  −−>  "equals"
        "−"  −−>  "one"
        "−−" −−>  "two"
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        "−−−" −−> "three"
        etc;
    so e.g. we assign True to "−−p−−−q−−−−−" because "three plus two equals
        five" is true.

We were led to this interpretation by noting that all theorems appeared to be
    true according to it.

Definition: A formal system is _consistent_ (or _sound_ ) with respect to an
    interpretation if all its theorems are wfss and are true under the
    interpretation.

Theorem:
    The pq−system is sound wrt the plus−equals interpretation.
Proof:
    The axiom "−p−q−−" is true, since 1+1=2 .
    The production rule (I) preserves truth of wffs:
        if " −^np−^m−^k " is true, then k=n+m,
        so " −^np−^m−q−^k −" = "−^np−^{m+1}q−^{k+1} " is true,
            since k+1 = (n+m)+1 = n+(m+1) .
    Similarly, so does (II).
    So (by an induction on length of derivations) every theorem is true.

Caution: "two plus three plus one equals six" makes sense, but
    "−−p−−−p−q−−−−−−" is *not*  well−formed!

Remark:
    Consider
        " p" −−> "equals"
        " q" −−> "subtracted from"
        "−" −−> "one"
        etc.
    This gives wfss the same truth values as the plus−equals interpretation.
    Does that mean it's the *same*  interpretation? This question is of no
    importance to us, and we will not give an answer.

Remark:
    Consider the plus−at_least  intepretation:
        " p" −−> "plus"
        " q" −−> "at least"
        "−" −−> "one"
        etc.
    The pq−system is also consistent wrt this interpretation!
    But...

Definition:
    A system is _complete_ with respect to an interpretation if every wfs
    which is true according to the interpretation is a theorem of the system.

Example: The pq−system is *not*  complete with respect to the plus−at_least
    interpretation. Indeed, "−p−q−" is clearly not a theorem.

Theorem: The pq−system *is*  complete wrt the plus−equals interpretation.
Proof:
    We want to show that for any n,m>=1 , −^np−^mq−^{n+m}  is a theorem.
    But indeed, n−1  applications of (I) starting with the axiom yields
    " −^np−q−^{n+1} ", and then m−1 applications of (II) yields
    " −^np−^m−^{n+m} ".

So the pq−system "captures" addition of two positive numbers.

More arithmetic in formal systems
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Big question:
    Can we find a language which we can interpret as making interesting
    statements in mathematics, and a complete consistent formal system for it?

Examples of the kinds of "interesting statements" we might want to express:
    2+2 = 5   (we've got this covered, thanks to the pq−system!)
    3*7 = 21
    4^3 = 64
    2+2 != 5
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    2*3 = 7  or 2 * 3 = 6
    1337 is prime
    For any integer n, n*1 = n
    Every even number is the sum of two primes

Let's see what we can do!

The tq−system:
    Alphabet: {t,q}
    Axiom: −t−q−
    Rules:
        (I)     xt−qz  |−>   −xt−qz−
        (II)    xtyqz  |−>   xty−qzx

    Language: −^nt−^mq−^k
    Interpretation: −^nt^mq−^k  −−>  n*t=k
    
    Soundness:
        The axiom is true ( 1*1=1 )
        (I) and (II) preserve truth:
            (I):  n*1 = m  =>  (n+1)*1 = m+1
            (II): n*m = k  =>  n*(m+1) = k+n
    Completeness:
        If n*m=k , we derive −^nt−^mq−^k  from −^nt−q−^n  by applying (II) m−1
        times, and we derive −^nt−q−^n  from the axiom −t−q− by applying (I)
        n−1  times.

    So the tq−system "captures" multiplication of two positive integers.

Compositeness:
    Add to the tq system a character 'C' and a rule of inference
            xqy |−>  Cy
        and interpret C−^n as " n is composite".

    Completeness and soundness are easily checked.

Primeness:
    Can we find a system where P−^n  is a theorem iff n is prime,
        i.e. iff n is *not*  composite?
    The system for compositeness is no use to us here!
        (cf trying to find an anti−MIU system given only the MIU system...)
    We have to develop a new system.

    First, we capture " n does not divide m":
        Axioms: −−DND−
        Rules:
            xDND−   |−>  x −DND−
            xyDNDx  |−>   xy−DNDx−
            xDNDy   |−>   xDNDxy
        Interpretation:
            −^nDND−^m  −−−>  n  does not divide m
                (i.e. m !=~ 0  mod n)
        
        (the first two rules give −^nDND−^m as a theorem whenever n>m)

    Secondly, we capture " n has no divisors among 2,3,..., m", which we can
        phrase as " n is Divisor Free up to m". Add the rules
            −−DNDx  |−>   xDF−−
            (yDFx, x−DNDy)  |−>  yDFx−
    
    Finally, add a rule:
            x−DFx  |−>   Px−
        and an axiom:
            P−−

II: Propositional logic
=======================

Examples:
    Socrates is a man or Socrates is a woman.
    Socrates is not a woman.
    Therefore: Socrates is a man.
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    If Socrates is a vampire and vampires are immortal, then Socrates is
        alive.
    Socrates is not alive.
    Therefore: Either Socrates is not a vampire, or vampires are not immortal.

We will develop a formal system, the _propositional calculus_ , implementing
this kind of logic.

Our system *won't*  have strings interpreted as "Socrates" or "is a vampire"
(we'll have to wait for the predicate calculus for that!). Rather, we use
_propositional variables_ to stand in for whole propositions − e.g. P could
stand for "Socrates is a vampire". For our purposes, a _proposition_ is
just something which is true or false.

The language of propositional logic
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Alphabet: <, >, P, Q, R, ', /\ , \/ , =) , ~
    (Note: I'm using " =) " as an ascii representation of the horseshoe
    character)

Well−formedness:
    Well−formed strings in propositional logic are called _well−formed
    formulas_ (wffs).

    Rules to determine well−formedness:
        *  " P", " Q" and " R" are well−formed, as are " P' ", " R'' " and so on.
            These are the _propositional variables_ . We also refer to them as
            _atoms_ .
        *  If x  is a wff, then ~x  is a wff
        *  If x  and y  are wffs, then <x /\ y> , <x \/ y>  and <x =) y>  are wffs.
        *  Nothing else is a wff!

Unique readability:
    A wff is of _precisely one_ of the forms given above, so we can tell
    exactly how it was built up from variables. This is called _parsing_ the
    wff, and we can draw the result as a _parse tree_ .

    For example, the wff \sigma = "<<P /\ ~Q> =) ~<<P \/ R> /\ P'>> " has the
    following parse tree:

                      \sigma
                       / \
                     /     \
                   /    =)   \
              <P /\ ~Q>      ~<<P \/ R> /\ P'>>
                 / \                  |
               /     \                | ~
             /    /\   \              |
            P          ~Q     <<P \/ R> /\ P'>>
                        |              / \
                        | ~          /     \
                        |          /    /\   \
                        Q      <P \/ R>       P'
                                 / \
                               /     \
                             /    \/   \
                           P             R

Digression:
    Contrast with natural languages, where parses are often not unique −
    sentences are often syntactically _ambiguous_ .
    e.g. "pretty little girls' school" has many parses (a school for girls
    which is quite little? A school owned by girls who are small and pretty?
    etc)

Interpretations
−−−−−−−−−−−−−−−
Suppose we have an interpretation of the propositional variables
(e.g. P −−>  "Socrates is a vampire" etc). We extend the interpretation to
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determine truth of arbitrary wffs by requiring, for x  and y  wffs:
    * ~x  is true iff x  is false;
    * <x /\ y>  is true iff x  and y  are both true;
    * <x \/ y>  is true iff at least one of x  and y  are true;
    * <x =) y>  is *false*  iff x  is true and y  is false.

Since every wff has a unique parse, these rules decide the truth of every
wff.

Example:
    According to an interpretation in which P and Q are true but Q and P'  is
    false, determine from the parse tree whether \sigma  is true.

So
    ~   −−>  "not"
    /\  −−>  "and"
    \/  −−>  "or"
    =)  −−>  "implies", "if [...] then [...]"

Regarding "or":
    In English, "or" is sometimes _inclusive_
        ("Don't touch anything which is hot or which has sharp points!"
            applies to things which are hot _and_ have sharp points)
    and sometimes _exclusive_
        (e.g. "a person is either male or female"
            makes the (contentious!) claim that no−one can be both or neither)
        ("either" is mostly needed to clearly signal an exclusive or in
        english);
    <x \/ y> −−>  " x  or y" in the *inclusive*  sense.

Regarding "if":
    It seems we are declaring that "if P then Q" is false iff P is true and Q
    is false.
    
    e.g. "If 4 is prime then there is a god" is true!

    Consider:
        "For every natural number n, if n is prime then n=2  or n is odd."  ( * )

    This is true, precisely because:
        for those n for which " n is prime" is true, " n=2  or n is odd" is true.

    For n for which n is *not*  prime, " n=2  or n is odd" is sometimes true and
    sometimes false.
    
    So in other words, ( * ) is true precisely because
        for all n, <" n is prime" =) <"n=2 \/  " n is odd" >> is true.

    Digression:
        What about natural language conditionals?
            "If I had a million dollars, then I would be guilty of theft."
        
        We can analyse this as
            "For all imaginable situations s : if I have a million dollars in
            s , then I am guilty of theft in s"

        So is "if 4 were prime, then there would be a god" true? Not if it's
        imaginable that 4 is prime and there is no god!

Tautologies, contradictions and satisfiability
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Definition:
    A _truth assignment_  is an assignment of a _truth value_ , True or False,
    to each propositional variable.

As above, a truth assignment determines truth values for all wffs.

//  Truth assignments are the austere cousins of interpretations − we
//  explicitly don't care about giving any "meaning" to the variables, we just
//  give them truth values.

Definition:
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    A wff is a _tautology_ if it is True for every truth assignment.

    A wff is a _contradiction_ if it is False for every truth assignment.

    A wff is _satisfiable_ if it is not a contradiction, i.e. if it is True
    for some truth assignment.

Examples:
    <P \/ ~P>  is a tautology
    <P /\ ~P>  is a contradiction
    <P =) ~P>  is satisfiable, but not a tautology

Remark:
    x  is a contradiction iff ~x  is a tautology.
    x  is satisfiable iff ~x  is not a tautology.

Remark:
    There is a decision procedure for being a tautology:
        Given a wff \sigma , only finitely many propositional variables occur in \sig
ma.
        For each possible assignment of True and False to those propositional
            variables, follow the parse tree of \sigma  to determine whether \sigma  i
s
            assigned True or False.
        \sigma  is a tautology iff it is True for all such truth assignments.

    Similarly, we can decide being a contradiction and being satisfiable.

    Note that if n different propositional variables occur in \sigma , we must check
    2^n  assignments.

Truth tables
−−−−−−−−−−−−

//  Truth tables give a neat way to write down the above algorithm.

Truth table for the basic logical operators:

    P  |  Q  |  <P /\ Q>  |  <P \/ Q>  |  <P =) Q>  |  ~P
  −−−−−+−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−+ −−−−−−
    T  |  T  |     T      |     T      |     T      |  F
    T  |  F  |     F      |     T      |     F      |  F
    F  |  T  |     F      |     T      |     T      |  T
    F  |  F  |     F      |     F      |     T      |  T

Truth table for \sigma := <<~P =) <Q /\ R>> =) <<~R \/ ~Q> =) P>>

P|Q|R|~P|~Q|~R|<Q/\R>|<~P=)<Q/\R>>|<~R\/~Q>|<<~R\/~Q>=)P>|\sigma|
−+−+−+−−+−−+−−+−−−−−−+−−−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−−+−−−−−−|
T|T|T|F |F |F |  T   |      T     |   F    |      T      |   T  |
T|T|F|F |F |T |  F   |      T     |   T    |      T      |   T  |
T|F|T|F |T |F |  F   |      T     |   T    |      T      |   T  |
T|F|F|F |T |T |  F   |      T     |   T    |      T      |   T  |
F|T|T|T |F |F |  F   |      F     |   T    |      F      |   T  |
F|T|F|T |F |T |  F   |      F     |   T    |      F      |   T  |
F|F|T|T |T |F |  F   |      F     |   T    |      F      |   T  |
F|F|F|T |T |T |  F   |      F     |   T    |      F      |   T  |

So \sigma  is a tautology.

Example Zen interpretation (after Hofstadter):
    P −−>  "You are close to the way"
    Q −−>  "This mind is Buddha"
    R −−>  "The flax weighs three pounds"
    \sigma −−>  "If your not being close to the way implies that this mind is
        Buddha and this flax weighs three pounds, then you are close to the
        way if this mind is not Buddha or this flax does not weigh three
        pounds".
    \sigma  has truth−nature.

Notation:
    We write |=\sigma  to mean that \sigma  is a tautology.
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Remark:
    Tautologies of the form <\tau =) \theta>  express _valid reasoning_ :
    whatever propositions the variables stand for, if \tau  is true then \theta
    is true.

Exercise:
    The decision procedure for tautologicalness of a wff \sigma  described
    above requires us to check each of 2^n  truth assignments, where n is the
    number of variables appearing in \sigma .

    Find a more efficient algorithm − one which, for some c  and k , takes at
    most cn^k  cpu cycles to run. Alternatively, prove that no such algorithm
    exists.

    Note that you've determined whether P=NP, solving the most important
    problem in computer science. Claim plaudits, prizes, fame, and 7 RPs.

Example:
    Using truth tables to solve a Smullyan−style knight−knave puzzle.

    You are lost in a maze on Smullyan Island. Each inhabitant of this strange
    island is either a _knight_ or a _knave_ . Everything a knight says is
    true, while everything a knave says is false.

    Walking along a corridor while trying to find the way out, you come across
    an inhabitant of the island. You ask him for directions, and he says "If I
    am a knight, then the exit lies behind me".

    Should you continue past him?

    Solution:
      Write P for the proposition "The inhabitant is a knight".
      Write Q for the proposition "The exit is past the knight".
      So the inhabitant is claiming
          \sigma := <P =) Q>  .
      So \sigma  is true iff the inhabitant is a knight; i.e. we know that
          <<P =) \sigma> /\ <\sigma =) P>>  is true.
      Now write a truth table, and see what this being true tells us about
      Q's truth value.

A formal system for propositional logic
=======================================

We develop a formal system, PROP, to capture tautologies:
    \sigma  will be a theorem of PROP iff |=\sigma .

[We follow Hofstatder, Ch. VII. It's a Fitchish natural deduction system]

Alphabet:
    The alphabet of propositional logic, with two new symbols '[' and ']'.
Axioms:
    None!
Production Rules:
    Joining:
        ( x , y ) |−> <x /\ y>
    Separation:
        <x /\ y> |−> x
        <x /\ y> |−> y
    Double−Tilde:
        ~~x |−> x
        x |−> ~~x
    Detachment:
        ( x , <x =) y> ) |−> y
    Contrapositive:
        <x =) y> |−> <~y =) ~x>
        <~x =) ~y> |−> <y =) x>
    De Morgan:
        <~x /\ ~y> |−> ~<x \/ y>
        ~<x \/ y> |−> <~x /\ ~y>
    Switcheroo:
        <x \/ y> |−> <~x =) y>
        <~x =) y> |−> <x \/ y>
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//  No axioms so no theorems!
//  That's because we're missing the informal rule!

Fantasy rule
−−−−−−−−−−−−
At any point during a derivation, we may "push into a fantasy":
    we write "[" on a line, and then *any*  wff x  on the next line.
    We then proceed as if this is an entirely new derivation. Say we derive y .
    We may then "pop out of the fantasy":
         we write "]" on the line after y , and then " <x =) y> " on the line
         after that, and proceed as if the fantasy never happened
         (no lines from a popped fantasy may be used in production rules).

Example:
    [
        P       (pushing in to a fantasy)
        ~~P     (double−tilde)
    ]
    <P =) ~~P>  (fantasy rule)

So the fantasy rule implements the reasoning
    "if from x  we can prove y , then <x =) y>  must be true".

Note we may push into a new fantasy within a fantasy, and we must pop out of
the inner fantasy before popping out of the outer fantasy (indentation helps
to keep track!).

Example:
    [
        <<P =) P> =) Q>
        [
            P
        ]
        <P =) P>            (fantasy)
        Q                   (detachment)
    ]
    <<<P =) P> =) Q> =) Q>  (fantasy)

Carry−over rule: inside a fantasy, we may write any line which appeared in the
    "reality one level up".

Example:
    [
        P
        [
            Q
            P               (carry−over)
            <Q /\ P>        (joining)
        ]
        <Q =) <Q /\ P>>     (fantasy)
    ]
    <P =) <Q =) <Q /\ P>>>  (fantasy)

Whee!

Remark:
    Please note that by introducing this rule, we've broken the feature of our
    previous systems that every line of a derivation is a theorem. With the
    fantasy rule, *any*  wff can appear as a line! The theorems are the wffs on
    lines which aren't part of any fantasy (i.e. the unindented lines, if we
    indent as above).

Notation:
    We write " |− \sigma " to mean that \sigma  is a PROP−theorem.

Waiter, waiter, there's an informal rule in my formal system!
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Don't worry!

Fact: We can find a Post formal system, in the strict sense we've been using,
    which has the same theorems as the system described above.
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How to do that (omitted in class):
    Actually, there are two sensible ways to do this. The traditional approach
    would be to scrap the natural deduction scheme described above, and
    instead use a Hilbert−style deduction system. In these, the only rule of
    inference is detachment ("modus ponens"), and we have some well−chosen
    axiom schemes. You can look this up if you're interested.

    But we don't need to do that. We can implement the fantasy rule directly
    in syntax. Here's a way to do that; the basic idea is just to keep track
    of the premises of the fantasies we're inside:

    Alphabet: as above, but add new symbols |−  ? W F :
    Axioms: |− , WFF:P, WFF:Q, WFF:R
    Production rules:
        ( x|−y , WFF:z)  |−>  x?z|−z      (pushing into a fantasy)
        ( x|−y , WFF:z)  |−>  x?z|−y      (carry−over)
        ( x?y|−z , WFF:y) |−>  x|−<y=)z>  (popping out of a fantasy)

        x|−<y/\z> |−> x|−y
        x|−<y/\z> |−> x|−z
        ( x|−y , x|−z ) |−> x|−<y/\z>
            and so on for the other rules in the original system
        
        WFF:Px  |−>   WFF:P'x
        WFF:Qx  |−>   WFF:Q'x
        WFF:Rx  |−>   WFF:R'x            (variables are well−formed)

        WFF:x   |−>  WFF:~x
        (WFF:x, WFF:y) |−> WFF:<x/\y>
        (WFF:x, WFF:y) |−> WFF:<x\/y>
        (WFF:x, WFF:y) |−> WFF:<x=)y>   (formation rules for wffs)

        |−x  |−>  x                     (deriving wffs)

    The last example of the previous section, derived in this system:
        |−
        WFF:P
        ?P|−P
        WFF:Q
        ?P?Q|−Q
        ?P?Q|−P
        ?P?Q|−<Q/\P>
        ?P|−<Q=)<Q/\P>>
        |−<P=)<Q=)<Q/\P>>>
        <P=)<Q=)<Q/\P>>>

Examples
−−−−−−−−
    Give derivations of the following tautologies.
        <<P =) Q> =) <~Q =) ~P>>
            (contraposition)
        <P \/ ~P>
            ("excluded middle")
        <<P /\ ~P> =) Q>
            (you can prove anything from a contradiction!)
        ~<P /\ ~P>
            Hint: first prove <<P /\ ~P> =) ~<P \/ ~P>>
        <<P =) <Q /\ ~Q>> =) ~P>
            (proof by contradiction)
        <<<P \/ Q> /\ <<P =) R> /\ <Q =) R>>> =) R>
            (cases)
        <~<P /\ Q> =) <~P \/ ~Q>>
            (more De Morgan)
        <<<P =) <P =) Q>> /\ <<P =) Q> =) P>> =) <P /\ Q>>
            (cf knight−knave example above)

Substitution
−−−−−−−−−−−−
Definition:
    Let \sigma  be a wff, and let p_1 , ..., p_n  be propositional variables
    appearing in \sigma . Let \phi_1 , ..., \phi_n  be wffs. Then if we replace
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    each occurence of p_i  in \sigma  with \phi_i , we get a new wff. Such a wff
    is called a _substitution instance_ of \sigma .
Lemma: Suppose \tau  is a substitution instance of \sigma . Then
    (a) if |= \sigma  then |= \tau
    ( b) if |− \sigma  then |− \tau
Proof:
    (a) Exercise
    ( b) Make the substitution throughout a derivation of \sigma ; the result is
        also a derivation.

Example:
    We saw that
        |− <P \/ ~P> .
    So by substituting <P =) Q>  for P, it follows that
        |− <<P =) Q> \/ ~<P =) Q>> .
    Similarly for |= .

Soundness
−−−−−−−−−
Theorem [Soundness]:
    For any wff \tau , if |− \tau  then |= \tau .

Lemma:
    The production rules correspond to tautologies:
        |= <<P/\Q> =) P>            (separation)
        |= <<P /\ <P =) Q>> =) Q>   (detachment)
        |= <<P /\ Q> =) <P /\ Q>>   (joining)
        |= <~~P =) P>               (double−tilde)
        etc
Proof:
    Check truth tables. Exercise.

We would like now to prove the theorem by induction on the length of a
derivation − but the induction hypothesis tells us nothing about lines which
occur within fantasies...

Definition:
    A set of wffs \Sigma _necessitates_  a wff \tau , written
        \Sigma |= \tau ,
    if \tau  is true for all truth assignments for which every \sigma  in \Sigma
    is true.

    |= \tau   abbreviates  \emptyset |= \tau .

[ Hoping to avoid giving this, as it just seems obfuscatory
Notation:
    (just to clarify)
    Recall that a truth assignment is a map
        f : {propositional variables} −> {T,F}  .
    Write f*  for the unique extension
        f* : {wffs} −> {T,F}
    such that for all wffs \sigma,\tau :
        f*(~\sigma)=T  iff f*(\sigma)=F ,
        f*(<\sigma /\ \tau>)=T  iff f*(\sigma)=T=f*(\tau) ,
        f*(<\sigma \/ \tau>)=F  iff f*(\sigma)=F=f*(\tau) ,
        and f*(<\sigma =) \tau>)=F  iff f*(\sigma)=T  and f*(\tau)=F .

    (so " \sigma  is true for f " means f*(\sigma)=T ).

    Then we can write the definition of \Sigma |= \tau  more formally as:
        for all f , if f*(\sigma)=T  for all \sigma \in \Sigma  then f*(\tau)=T .
]

Definition:
    The _premise_ of a fantasy is its first line.

    The _premises of a line_ of a PROP−derivation are the premises of the
    fantasies the line appears within.

Claim:
    Let \tau  be a wff occuring as a line of a PROP−derivation.
    Let \Sigma  be the set of premises of the line.
    Then \Sigma |= \tau .
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Proof:
    Assume the claim holds for the first k  lines of any derivation, we show it
    holds for the first k+1 . So suppose the ( k+1 )th line of a derivation is a
    wff \tau  with premises \Sigma .

    If \tau  is the premise of a fantasy, then \tau \in \Sigma , so clearly
    \Sigma |= \tau .

    If \tau  is a carry−over, then \tau  appears as a previous line with
    premises \Sigma'  a subset of \Sigma ; by the inductive hypothesis,
    \Sigma' |= \tau , so also \Sigma |= \tau .

    If \tau  is the result of the fantasy rule, then \tau = <\phi =) \psi> , and 
    \psi  appears on a previous line with premises \Sigma \union {\phi} , so by
    the inductive hypothesis
        \Sigma \union {\phi} |= \psi .
    Now for any truth assignment for which all \sigma\in\Sigma  are true:
        if \phi  is true then \psi  is true since \Sigma \union {\phi} |= \psi ;
        hence \tau = <\phi =) \psi>  is true.
    So \Sigma |= \tau .

    [Phrasing that argument with the fs:
        Now let f  be a truth assignment, and suppose f*(\sigma)=T  for all
        \sigma \in \Sigma . Suppose f*(<\phi =) \psi>)=F . Then f*(\phi)=T  and
        f*(\psi)=F , contradicting \Sigma \union {\phi} |= \psi . So f*(<\phi =)
        \psi>)=T . So \Sigma |= \tau .
    ]

    Else, \tau  is the result of a production rule. Say it has two inputs, \phi
    and \psi . Each appears as a previous line in the derivation with the same
    premises \Sigma , so by the inductive hypothesis,
        \Sigma |= \phi  and \Sigma |= \psi .
    By the Lemma,
        |= <<\phi /\ \psi> =) \tau> .
    It follows easily that \Sigma |= \tau .

    (if the production rule has only one input, the argument is similar)

Completeness
−−−−−−−−−−−−

Definition:
    For a set \Sigma , write
        \Sigma |− \tau   ("\Sigma proves \tau")
    to mean \tau  is a theorem of the system PROP+\Sigma we get by adding
    \Sigma  as axioms to PROP.

Lemma ["strong soundness"]:
    If \Sigma |− \tau  then \Sigma |= \tau
Proof:
    Suppose \Sigma |− \tau . So there is a derivation of \tau  using \Sigma  as
    axioms. The derivation can use only finitely many of the axioms, say
    \sigma_1 , ..., \sigma_n . Let \phi  be the conjunction
        \phi := <\sigma_1 /\ <\sigma_2 /\  ... /\ \sigma_n>...>>

    Then by separation and the fantasy rule,
        |− <\phi =) \tau> .

    By soundness,
        |= <\phi =) \tau> .

    It follows easily that
        \Sigma |= \tau .

Lemma 1:
    For each of ~, /\ , \/ , =) , the tautologies corresponding to its truth
    table are theorems; i.e.
        <P/\Q> :
            |− <<P/\Q> =) <P/\Q>>
            |− <<~P/\Q> =) ~<P/\Q>>
            |− <<P/\~Q> =) ~<P/\Q>>
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            |− <<~P/\~Q> =) ~<P/\Q>>
        ~P:
            |− <P =) ~~P>
            |− <~P =) ~P>
    and similarly for \/  and =) .
Proof:
    All fairly straightforward. See exercises.

Lemma 2:
    |− <<<P =) Q> /\ <~P =) Q>> =) Q>
Proof:
    Here's a PROP−derivation:
    [
        <<P =) Q> /\ <~P =) Q>>
        <P =) Q>
        <~P =) Q>
        [
            ~Q
            <P =) Q>
            <~Q =) ~P>
            ~P
            <~P =) Q>
            Q
        ]
        <~Q =) Q>
        <Q \/ Q>
        [
            ~Q
            <~Q /\ ~Q>
            ~<Q \/ Q>
        ]
        <~Q =) ~<Q \/ Q>>
        <<Q \/ Q> =) Q>
        Q
    ]
    <<<P =) Q> /\ <~P =) Q>> =) Q>

Theorem [completeness of PROP]:
    For any wff \tau , if |= \tau  then |− \tau .

Proof:
    Notation:
        If PV = {p_1 , ..., p_n}  is a set of propositional variables and
        f : PV −> {T,F} , write
            \Sigma^f := { +/− p_i | 1 <= i <= n }
        where +/− p_i = p_i  if f(p_i)=T , and +/− p_i = ~p_i  if f(p_i)=F .
    Claim:
        If \sigma  is a wff and all propositional variables occuring in \sigma
        are in PV, then for any f ,
            \Sigma^f |− \sigma   or  \Sigma^f |− ~\sigma  (*)
    Proof:
        By induction on depth of \sigma's  parse tree.

        If \sigma  is a propositional variable, ( * ) is clear.

        Else, clear by Lemma 1 and the inductive hypothesis.

    Now let PV = {p_1 , ..., p_n}  be the set of propositional variables
    occuring in \tau .

    So by the claim, "strong soundness" and the fact that \tau  is a tautology,
    for any f : PV −> {T,F} ,
        \Sigma^f |− \tau  .

    For k<=n , let PV_k := {p_i | i > k} = {p_{k+1} , ..., p_n} , so PV_0 =  PV
    and PV_n = \emptyset . We show inductively that for any k<=n :
        ( *)_k : for any f : PV_k −> {T,F} ,
                \Sigma^f |− \tau  .

    We've seen ( *)_0 . Suppose ( *)_{r−1} , 0<r<=n ; we show ( *)_r .
    Let f : PV_r −> {T,F} . Then we know
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        {p_r} \union \Sigma^f |− \tau
    and
        {~p_r} \union \Sigma^f |− \tau .

    So by the fantasy rule,
        \Sigma^f |− <p_r =) \tau>
    and
        \Sigma^f |− <~p_r =) \tau> ,
    so
        \Sigma^f |− <<p_r =) \tau> /\ <~p_r =) \tau>>  .
    But then, by Lemma 2,
        \Sigma^f |− \tau  .

    So ( *)_n  holds, i.e.
        |− \tau  .
    QED

So we have proven

Theorem [soundness and completeness of PROP]:
    For any wff \tau , |= \tau  iff |− \tau .

Digression:
    The strong version of completeness
        \Sigma |= \tau  implies \Sigma |− \tau
    is true. For *finite* \Sigma , this follows by a similar argument to that
    for strong soundness.

    To show it for infinite \Sigma , the only difficulty is to see that if
    \Sigma |= \tau , then actually there's some _finite_ \Sigma' (= \Sigma  such
    that \Sigma' |= \tau . That takes a little thought; it's equivalent to
    compactness of Cantor space 2^\omega .

III: Typographical Number Theory
================================

In this section, we define Hofstadter's TNT [with some subtle modifications].

[TNT is PA]

Language of TNT
−−−−−−−−−−−−−−−

Alphabet:
    0 S + * ( ) =
    ~ /\ \/ =)
    a b c d e x y z  '
    A E

(We no longer have propositional variables.)

Variables:
    a, b, c , d, e, x , y , z  are variables
    If v  is a variable, so is v' .

Terms:
    any variable is a term;
    0 is a term;
    if t  and s  are terms, then so are
        St,  ( t+s ),  ( t*s );
    nothing else is a term.

wffs:
    if t  and s  are terms, then t=s  is a wff (an _atomic formula_ );
    if \phi  and \psi  are wffs, so are
        ~\phi ,  <\phi /\ \psi> ,  <\phi \/ \psi> ,  <\phi =) \psi> ;
    if \phi  is a wff and v  is a variable, then
        Av:\phi   and  Ev:\phi
    are wffs;
    nothing else is a wff.

Remark:



GIT                                                                          Page 17

    We have unique parse trees.

Bound and free variables:
    An _occurrence of a variable_ v  in a wff is a location in the wff where
    the variable appears, where appearances in substrings of the form "Av:" or
    "Ev:" do not count.
        (e.g. there are *no*  occurrences of y  in " Ay:y'=y' ", but two of y' )

    An occurrence of a variable v  in a wff is _bound_ if it occurs within a
    substring of the form " Av:\phi " or " Ev:\phi " ( \phi  a wff). Else, the
    occurrence is _free_ .

    The _free variables_ of a wff are those variables which occur free in the
    wff.

The standard interpretation:
    Variables stand for natural numbers.

    Call a choice of natural number for each variable, i.e. a map
    f : [variables] −> N , a "variable assignment".

    Given a variable assignment f , we evaluate terms as natural numbers:
        eval_f(v) = f(v)
        eval_f(0) = 0
        eval_f(St) = eval_f(t) + 1          ("Successor")
        eval_f((t+s) ) = eval_f(t) + eval_f(s)
        eval_f((t*s) ) = eval_f(t) * eval_f(s)

    Now we determine truth of a wff wrt a variable assignment f :

    *  An atomic formula " t=s " is true wrt f  iff eval_f(t) = eval_f(s) .
    * "<\phi /\ \psi> " is true wrt f  iff \phi  and \psi  are both true wrt f .
    *  Similarly for ~, \/ , =) , as in propositional logic.
    * Av:\phi  is true wrt f  iff \phi  is true for any
        variable assignment f'  which is the same as f  except possibly on v .
            (i.e. f'(w)=f(w)  if w!=v )
        [ with notation:
            Av:\phi ^ f = T   iff  \forall f' . \forall w\in  Variables.
                                (( w!=v −> f'(w) = f(w) ) −> \phi ^ f' = T )
        ]
    * Ev:\phi  is true wrt f  iff \phi  is true for some
        variable assignment f'  which is the same as f  except possibly on v .

    Clearly, whether a wff \phi  is true wrt a variable assignment f  depends
    only on the values of f  at the free variables of \phi .

    A wff with no free variables is a _sentence_ , and is just true or false.

    A wff with 1 free variable expresses a _property_ of a natural number
        (e.g. primeness, oddness...).
    
    A wff with n free variables expresses an _n−ary relation_ (aka _predicate_ )
        (1−ary == unary, 2−ary == binary etc)
        (e.g. " x  is less than y"; " x  is between y  and z").

Examples:
    Ax: Ey: Sx=y
        (first think what Ey: Sx=y  says about x
            (first think what Sx=y says about x,y) )
    Ex: Ay: Sx=y
        (remark: cf ambiguity of english
            "every number is the predecessor of some number")
    Ax: Ey: x=Sy
    Ax: <Ey: x=Sy \/ x=0>

    Ey: ( y+y)=x
    Ey: S(y+y)=x
    <Ey: ( y+y)=x \/ S(y+y)=x>
    Ax: <Ey: ( y+y)=x \/ S(y+y)=x>

    Ax: <Ey: ( y+y)=x =) ~(x*x)=x>
    Ax: Ey: <(y+y)=x =) ~(x*x)=x>
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    Ez: x=(y+z)
    Ax: Ez: ( x*x)=(x+z)
    Ez: x=(y+Sz)
    Ax: Ez: ( x*x)=(x+Sz)

    <~x=0 /\ <~x=S0 /\ Ay:Az:<(y*z)=x −> <y=x \/ z=x>>>>
    <Ey:x=SSy /\ ~Ey:Ez:x=(SSy*SSz)>

    Euclid:
        Ax: Ey: Ez: <y=(x+Sz) /\ ~Ey:Ez:x=(SSy*SSz)>
    
    Fermat ( n=3 ):
        ~Ex:Ey:Ez:(x*(x*x))+(y*(y*y))=(z*(z*z))

    Goldbach:
        Ax:Ey:Ez:<<~Ey':Ez':y=(SSy'*SSz') /\ ~Ey':Ez':z=(SSy'*SSz')> /\ (y+z)=(x+x)>

Non−standard interpretations:
    A _structure  in the language of arithmetic_ consists of
        a set N';
        an element 0' \in N' ;
        a unary function S' : N' −> N' ;
        binary functions +' , *' : N'^2 −> N' .
        We denote the structure by <N';0',S',+',*'> , or just N' .

    The _standard_ arithmetic structure is <N;0,S,+,*> , i.e. the set of
        natural numbers N, with usual 0, successor, addition and
        multiplication.

    An assignment of variables for N'  assigns an element _of N'_ to each
    variable; terms evaluate to elements of N'  using 0', S' , +' , and *' ;
    wffs evaluate, wrt a variable assignment, to True/False  as above (so "Ax:"
    now means "for all x  in N' ").

    For a sentence \sigma , we write
        N' |= \sigma
    to mean that \sigma  is true when interpreted in N' .

    Example: the integers Z with usual zero, successor, addition, and
    multiplication is a structure in the language of arithmetic.
    " Ex:Sx=0 " is true in Z but not in N.
        ( Z |= Ex:Sx=0 , but N |/= Ex:Sx=0 )

PRED
−−−−

Axioms:
    Axiom 0: Ax:x=x
Rules:
    Rules of the propositional calculus; premises of fantasies may now be
    arbitrary *TNT* −wffs.

    Generalisation: \phi |−> Av:\phi  
        where v  is a variable.
        RESTRICTION: v  must not occur free in any premise of \phi .

    Specification: Av:\phi |−> \phi[t/v]
        where \phi[t/v]  is the result of replacing each free occurrence of the
        variable v  in \phi  with the term t .
        RESTRICTION: any new occurrences of variables resulting from the
            substitution must be free.
        
    Interchange: XAv:~Y <−|−> X~Ev :Y
                 X~Av:Y <−|−> XEv:~Y
        where v  is a variable;
        i.e. whenever " Av:~ " occurs within a wff, it may be rewritten as
        " ~Ev:", and vice−versa.

    Existence: \phi[t/v] |−> Ev:\phi
        where \phi  is a wff, v  is a variable, t  is a term, and \phi[t/v]  is
        the result of replacing each free occurrence of v  in \phi  with t .



GIT                                                                          Page 19

        RESTRICTION: the substitution must meet the restriction imposed in the
            specification rule: any occurrences of variables created in
            passing from \phi  to \phi[t/v]  must be free.

    Symmetry: t = s |−> s = t
    Transitivity: ( t = s , s = r ) |−> t = r
    Congruence:
        t=s |−>  St = Ss
        ( t_1=s_1 , t_2=s_2 ) |−> (t_1+t_2) = (s_1+s_2)
        ( t_1=s_1 , t_2=s_2 ) |−> (t_1*t_2) = (s_1*s_2)

        where t,s,r,t_i,s_i  are terms.

Notation:
    |− \phi   means \phi  is a PRED−theorem
        (note \phi  can have free variables)

Examples:
    |− <Ax:Ay:x=y =) Ay:Sy=y> :
    [
        Ax:Ay:x=y
        Ay:Sy=y
    ]

    |− <Ax:Ay:x=y =) Ax:Sx=x> :
    [
        Ax:Ay:x=y
        Ay:Sy=y
        Sx=x
        Ax:Sx=x
    ]

    |− Ax:<Ey:<y=Sx /\ x=Sy> =) x=SSx> :
    [
        ~x=SSx
        [
            <y=Sx /\ x=Sy>
            x=Sy
            y=Sx
            Sy=SSx
            x=SSx
        ]
        <<y=Sx /\ x=Sy> =) x=SSx>
        <~x=SSx =) ~<y=Sx /\ x=Sy>>
        ~<y=Sx /\ x=Sy>
        Ay:~<y=Sx /\ x=Sy>
        ~Ey:<y=Sx /\ x=Sy>
    ]
    <~x=SSx =) ~Ey:<y=Sx /\ x=Sy>>
    <Ey:<y=Sx /\ x=Sy> =) x=SSx>
    Ax:<Ey:<y=Sx /\ x=Sy> =) x=SSx>

Non−examples (demonstrating necessity of the restrictions):
    [
        x=0
        Ax:x=0
    ]
    <x=0 =) Ax:x=0>
    Ax:<x=0 =) Ax:x=0>
    Uhoh!

    [
        Ax:Ey:~x=y
        Ey:~y=y
    ]
    <Ax:Ey:~x=y =) Ey:~y=y>
    Uhoh!

    Ax:x=x
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    Ey:Ax:y=x
    Uhoh!

    [
        Ax:x=(x*S0)
        Ex:Ax:x=(x*x)
    ]
    Uhoh!

    [
        Ax:~x=Sx
        ~x=Sx
        Ex:~x=x     (existence, t:=Sx)
    ]
    Uhoh!

Definition:
    A _TNT−tautology_  is a substitution instance of a propositional tautology,
    obtained by replacing propositional variables with TNT−wffs.
Remark:
    By completeness of PROP, any TNT−tautology is a PRED−theorem.
    (Make the substitution in a PROP−derivation, yielding a PRED−derivation)

Example:
    |− <Ex:~x=x =) (SS0+SS0)=SSSSS0> :
    [
        Ex:~x=x
        ~Ax:x=x         (interchange)
        Ax:x=x          (axiom 0)
        <Ax:x=x /\ ~Ax:x=x>     (joining)
        [...lines proving following tautology omitted...]
        <<Ax:x=x /\ ~Ax:x=x> =) (SS0+SS0)=SSSSS0>
        ( SS0+SS0)=SSSSS0        (detachment)
    ]
    <Ex:~x=x =) (SS0+SS0)=SSSSS0>   (fantasy rule)

For convenience, we add all TNT−tautologies to PRED as axioms.

[ omitting this for now; might put it in later if it surviving without it is
too annoying:
Lemma:
    Suppose |− <<\phi =) \phi'> /\ <\phi' =) \phi>> ,
    and suppose \theta  is a formula in which \phi  occurs as a subformula, and
    \theta'  is the result of replacing that subformula with \phi' .
    Then |− <<\theta =) \theta'> /\ <\theta' =) \theta>> .
Proof:
    [omitted, but straightforward by induction on length of \theta , and using
    the previous remark]

For convenience, we add as a rule to PRED:
    Substitution: \theta |−> \theta'
        whenever \theta  and \theta'  are as in the previous lemma.
]

Remark:
    The existence rule can be deduced from the specification rule and
    interchange:
    [
        ~Ev:\phi
        Av:~\phi
        ~\phi[t/v]
    ]
    <~Ev:\phi =) ~\phi[t/v]>
    <\phi[t/v] =) Ev:\phi>

Soundness and completeness
−−−−−−−−−−−−−−−−−−−−−−−−−−
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Notation:
    For \Sigma  a set of sentences and \tau  a sentence, write
        \Sigma |− \tau
    if \tau  is a theorem of the system PRED+\Sigma  obtained by adding \Sigma
    as axioms to PRED, and
        \Sigma |= \tau
    if \tau  is satisfied by every structure in the language of arithmetic
    which satisfies all the sentences in \Sigma ; i.e.
        \Sigma |= \tau  <=>   for all N' : N'|=\Sigma => N'|=\tau

Fact (Soundness):
    If \Sigma |− \tau , then \Sigma |= \tau

Fact (Gödel's Completeness Theorem):
    If \Sigma |= \tau , then \Sigma |− \tau

(So \Sigma |= \tau <=> \Sigma |− \tau )

//  Allaying possible confusion concerning the term 'complete':
Definition:
    A system in the language of TNT is _complete for the standard
    interpretation_ , abbreviated " N−complete" or "complete for N", if every
    TNT−sentence which is true in the standard interpretation is a theorem.

    It is _negation complete_ if for every TNT−sentence \sigma , at least one
    of \sigma  and ~\sigma  is a theorem.

Remark:
    N−complete => negation complete.

    PRED is not negation complete!
    e.g. neither 0+0=0  nor ~0+0=0  is a theorem!

    GIT1 proves negation incompleteness, hence N−incompleteness.
    

TNT'
−−−−

Definition:
    TNT' is the system obtained by adding the following axioms to
    PRED:
        Axiom 1:  Ax:~Sx=0
        Axiom 2:  Ax:(x+0)=x
        Axiom 3:  Ax:Ay:(x+Sy)=S(x+y)
        Axiom 4:  Ax:(x*0)=0
        Axiom 5:  Ax:Ay:(x*Sy)=((x*y)+x )
        Axiom 6:  Ax:Ay:<Sx=Sy =) x=y>

    We will also write "TNT'" to refer to the set of these 6 axioms, so
        TNT' |− \sigma
    means that \sigma  is a TNT'−theorem.

Remark:
    Hofstadter has the rule
        Drop S:  Sx=Sy  |−>  x=y
    in place of Axiom 6; this makes no real difference − the two systems prove
    the same theorems.

    [ Remark for the initiated: TNT' is basically Robinson's Q, although we're
    missing the axiom that only 0 has no predecessor (which is ok for our
    purposes, as this is implied by the induction axioms)]

Note N |=  TNT', so by soundness if TNT' |− \sigma  then N |= \sigma .

Example:
    TNT' |− S0+S0=SS0 :

        Ax:Ay:(x+Sy)=S(x+y)
        Ay:(S0+Sy)=S(S0+y)
        ( S0+S0)=S(S0+0)
        Ax:(x+0)=x
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        S0+0=S0
        S(S0+0)=SS0
        ( S0+S0)=SS0

Fact:
    TNT' can prove every sentence which is true in N of the form t=s ,
    where t  and s  are terms.

Example:
    TNT' |− Ax:(x*(S0+S0))=((x*S0)+x ):

        ( S0+S0)=SS0 (shown above)
        Ax:x=x
        x=x
        ( x*(S0+S0))=(x*SS0)
        Ax:Ay:(x*Sy)=((x*y)+x )
        Ay:(x*Sy)=((x*y)+x )
        ( x*SS0)=((x*S0)+x )
        ( x*(S0+S0))=((x*S0)+x )
        Ax:(x*(S0+S0))=((x*S0)+x )

TNT' is still not N−complete!

In other words, there are "non−standard" structures in the language of
arithmetic which satisfy axioms 1−6, but satisfy sentences N does not.

Example:
    Let Mat_2(N)  be the structure in the language of arithmetic
    consisting of 2x2 matrices with natural number entries, with matrix
    addition and matrix multiplication and with S(M) := M+I , where I is the
    identity matrix.

    Then Mat_2(N) |=  TNT'.

    Now let \sigma  be the sentence Ax:<x*x=0 =) x=0> .

    Clearly N |= \sigma .

    But M |= ~\sigma , since

            2
        (01)   =  (00)
        (00)      (00)

    So by soundness of PRED, {Ax 1−6} |/− \sigma .

However, by the Fact above, whenever t  is a numeral
(i.e. one of 0, S0, SS0, ...),
    <(t*t)=0 =) t=0>   
*is*  a TNT'−theorem!

Similarly, the following are *not*  TNT'−theorems:
    Ax:(0+x)=x  
    Ax:Ay:(x+y)=(y+x)
    Ax:Ay:(x*y)=(y*x) .

[ Remark: Mat_2(\N) |/= Q , though ]

TNT
===

What's missing?

In N, if \phi[0/v]  and \phi[S0/v]  and \phi[SS0/v]  and so on
all hold, then so does Av:\phi .

But e.g. if \phi := <(x*x)=0 =) x=0> , then \phi[0/x]  and \phi[S0/x]  and
\phi[SS0/x]  and so on are all theorems, but Av:\phi  is not. Similarly with
\phi := (0+x)=x .

Proposed "Rule of All":
    ( \phi[0/v] , \phi[S0/v] , \phi[SS0/v] , ...) |−> Av:\phi
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BUT rules of formal systems have *finitely*  many inputs, this has *infinitely*
many. You could never use this rule as part of a finite derivation!

Consider how we prove statements of the form "for all n" in everyday
mathematics...

Induction rule:
        ( \phi[0/v] ,  Av:<\phi =) \phi[Sv/v]>  )  |−>  Av:\phi
    where v  is a variable and \phi  is a wff, and \phi[t/v]  is the result
    of replacing each free occurence of v  in \phi  with the term t ).

//  But let's use axioms rather than a rule, so we have access to soundness and
//  completeness.

Definition:
    TNT is the system obtained by adding to TNT' the following infinite set of
    axioms:
        Induction axioms: for each wff \phi  with one free variable v , the axiom
            <<\phi[0/v] /\ Av:<\phi =) \phi[Sv/v]>> =) Av:\phi>  .
    
    (Again, we will also use "TNT" to refer to the set of axioms)

Remark:
    TNT is more commonly known as PA ( "(first−order)  Peano arithmetic")

Example:  Ax:(0+x)=x  is a TNT−theorem:
    1.  Ax:(x+0)=0
    2.  ( 0+0)=0
    3.  [
    4.      ( 0+x)=x
    5.      Ax:Ay:(x+Sy)=S(x+y)
    5.      Ay:(0+Sy)=S(0+y)        (spec x−>0)
    6.      ( 0+Sx)=S(0+x)           (spec y−>x)
    7.      S(0+x)=Sx
    8.      ( 0+Sx)=Sx
    9.  ]
    10. <(0+x)=x =) (0+Sx)=Sx>
    11. Ax:<(0+x)=x =) (0+Sx)=Sx>   (gen)
    12. Ax:(0+x)=x                  (induction: lines 2, 11)

Remark:
    N |=  TNT, so any TNT−theorem is true in N (i.e. TNT is sound for N) .

Question:
    Does the converse hold? i.e. is TNT complete for N?

    We will answer this presently!

Related question:
    If a structure N'=<N';S',+',*'>  satisfies TNT, must every element of N'  be
    one of 0', S'0', S'S'0', ...?

    Answer: no! However, there aren't any easily described examples like
    Mat_2(N) . [See Tennenbaum's theorem]

Fact:
    There is a Post formal system, FormalTNT, such that a wff is a theorem of
    TNT iff it is a theorem of FormalTNT.

Appendices:
===========

A: deviations from Hofstadter
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
PRED is set up so as to satisfy Gödel's completeness theorem − this meant
adding Ax:x=x  as an axiom, and inserting the congruence rules. I also added
the other form of interchange, because surviving without it is painful (though
possible).

The existence rule got rewritten. Here's an equivalent version which looks
more like Hofstadter's:
    Existence: \phi |−> Ev:\phi'
        where \phi  is a wff, v  is a variable, t  is a term, and \phi'  is the
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        result of replacing one or more occurrences of t  in \phi  with v .
        RESTRICTION: no bound occurrences of variables may be created or
            destroyed in passing from \phi  to \phi' , and there may be no
            occurrences of v  in \phi'  other than those introduced through
            replacing occurrences of t  in \phi  with v .

"Drop S" became Axiom 6, and the induction rule became a set of axioms, to
ensure that TNT is of the form PRED+\Sigma .

B: FormalTNT
−−−−−−−−−−−−
We can implement TNT in a Post formal system.

It's more than a little ugly! But conceptually it's straight−forward.

[Again, I'm omitting this from the lectures, but including it here for the
curious.]

(note that 'x', 'y' and 'z' are now in our alphabet, so we use 'X', 'Y', 'Z',
'X1', 'Z37' and so on for variables when giving production rules.

Let's simplify things by removing E from our formal system, considering "Ev:"
to be just an abbreviation for " ~Av:~ ".

Alphabet: as above, but add new symbols |−  ? | , and all the roman alphabet in
    lower case and in upper case, except X Y  and Z.
Axioms and Production rules:
    Var|x
    Var|y
    Var|z
    Var|X |−> Var|X'
    Var|X |−> Term|X

    VarNeq|x|y
    VarNeq|y|z
    VarNeq|z|x
    VarNeq|X|Y |−> VarNeq|Y|X
    ( Var|X , Var|XY' ) |−> VarNeq|X|XY'

    Term:0
    Term|X |−> Term|SX
    ( Term|X , Term|Y ) |−> Term|(X+Y)
    ( Term|X , Term|Y ) |−> Term|(X*Y)

    ( Term|X , Term|Y ) |−> WFF|X=Y

    WFF|X   |−>  WFF|~X
    ( WFF|X, WFF|Y) |−> WFF|<X/\Y>
    ( WFF|X, WFF|Y) |−> WFF|<X\/Y>
    ( WFF|X, WFF|Y) |−> WFF|<X=)Y>

    // NoFree|Z|Y : variable Z  doesn't appear free in wff Y
    // NoFreeT|Z|Y : variable Z  doesn't appear in term Y
    VarNeq|Z|Y |−> NoFreeT|Z|Y
    NoFreeT|Z|0
    NoFreeT|Z|X |−> NoFreeT|Z|SX
    ( NoFreeT|Z|X , NoFreeT|Z|Y ) |−> NoFreeT|Z|(X+Y)
    ( NoFreeT|Z|X , NoFreeT|Z|Y ) |−> NoFreeT|Z|(X*Y)
    ( NoFreeT|Z|X , NoFreeT|Z|Y ) |−> NoFree|Z|X=Y
    ( NoFree|Z|X , NoFree|Z|Y ) |−> NoFree|Z|<X/\Y>
    ( NoFree|Z|X , NoFree|Z|Y ) |−> NoFree|Z|<X\/Y>
    ( NoFree|Z|X , NoFree|Z|Y ) |−> NoFree|Z|<X=)Y>
    NoFree|Z|X |−> NoFree|Z|~X
    ( Var|Y , NoFree|Z|X ) |−> NoFree|Z|AY :X
    WFF|X |−> NoFree|Z|AZ :X

    // NoFreePrems|Z|X : variable Z  doesn't appear in any of the wffs in the
    //  ?−separated list X
    Var|Z |−> NoFreePrems|Z|
    ( NoFree|Z|X , NoFreePrems|Z|Y ) |−> NoFreePrems|Z|Y ?X

    ( X|−Y , NoFreePrems|Z|X ) |−> X|−AZ :Y     // (generalisation)
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    // Sub|X|Z|Z1|Y : Y  is the result of validly substituting all free
    //  occurrences of the variable Z in the wff X with the term Z1, where
    //  "valid" means that no variable occurring in Z1 gets put in somewhere it
    //  gets bound.
    // SubT|X|Z|Z1|Y : same , but X is a term.
    ( Var|Z , Term|Z1 ) |−> SubT|Z|Z|Z1|Z1
    ( Var|Z , Term|Z1 ) |−> SubT|0|Z|Z1|0
    SubT|X|Z|Z1|Y |−> SubT|SX|Z|Z1|SY
    ( SubT|X|Z|Z1|Y , SubT|X1|Z|Z1|Y1 ) |−> SubT|(X+X1)|Z|Z1|(Y+Y1)
    ( SubT|X|Z|Z1|Y , SubT|X1|Z|Z1|Y1 ) |−> SubT|(X*X1)|Z|Z1|(Y*Y1)
    ( SubT|X|Z|Z1|Y , SubT|X1|Z|Z1|Y1 ) |−> Sub|X=X1|Z|Z1|Y=Y1
    ( Sub|X|Z|Z1|Y , Sub|X1|Z|Z1|Y1 ) |−> Sub|<X/\X1>|Z|Z1|<Y/\Y1>
    ( Sub|X|Z|Z1|Y , Sub|X1|Z|Z1|Y1 ) |−> Sub|<X\/X1>|Z|Z1|<Y\/Y1>
    ( Sub|X|Z|Z1|Y , Sub|X1|Z|Z1|Y1 ) |−> Sub|<X=)X1>|Z|Z1|<Y=)Y1>
    Sub|X|Z|Z1|Y |−> Sub|~X|Z|Z1|~Y
    ( VarNeq|Z|Z2 , NoFreeT|Z2|Z1 , Sub|X|Z|Z1|Y ) |−> Sub|AZ2:X|Z|Z1|AZ2 :Y
    ( VarNeq|Z|Z2 , Sub|X|Z|Z1|X ) |−> Sub|AZ2:X|Z|Z1|AZ2 :X
    (Var:Z, WFF:X) |−> Sub|AZ:X|Z|Z1|AZ :X

    ( X|−AZ :Y, Term|Z1 , Sub|Y|Z|Z1|Y1 ) |−> X|−>Y1    // (specification)

    ( Term|X , Term|Y , Z|−X=Y ) |−> Z|−Y=X (symmetry)
    //  other equality rules similar and omitted

    // (the following is the same as for PROP)

    |−
    ( X|−Y , WFF:Z)  |−>  X?Z|−Z      // (pushing into a fantasy)
    ( X|−Y , WFF:Z)  |−>  X?Z|−Y      // (carry−over)
    ( X?Y|−Z , WFF:Y) |−>  X|−<Y=)Z>  // (popping out of a fantasy)

    X|−<Y/\Z> |−> X|−Y
    X|−<Y/\Z> |−> X|−Z
    ( X|−Y , X|−Z ) |−> X|−<Y/\Z>
        //  and so on for the other deduction rules of PROP

    |−Ax:x=x
        //  and similarly for axioms 1−6

    //  Induction axiom scheme:
    ( Sub|X|Z|0|Y , Sub|X|Z|SZ|Y1 ) |−> |−<<Y/\AZ:<X=)Y1>>=)AZ:X>
    
    |−X  |−>  X                     // (deriving wffs)

IV: Semantic Incompleteness
===========================

In this section, we will prove the following weak "semantic" version of
Gödel's First Incompleteness Theorem:

Theorem [Semantic G1T, Post formal system version]
    Arithmetical truth is not captured by any Post formal system, i.e.
    there is no Post formal system S such that for all TNT−sentences \sigma ,
    \sigma  is true in N iff \sigma  is a theorem of S.

    In particular, TNT is N−incomplete.

Idea of proof:
    Let S be a Post formal system which is sound for N, i.e. if \sigma  is an
    S−theorem then \sigma  is true in N.

    We find a sentence G which "says":
        " G is not derivable in S"
    i.e. G is true in N iff there is no derivation of G in S.

    If G is false in N, then G is an S−theorem, hence is true in N −
    contradiction.

    So G is true in N. So G is not an S−theorem.
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For the rest of this section, we work with the standard interpretation of
TNT−wffs − "true" means "true in N", and variables take values in N.

Notation:
    [defining some abbreviations to make our formal language actually usable,
    making our lives much easier as we explore what can be expressed in the
    language of arithmetic]

    If n is a natural number, then \overline{n}  is an abbreviation for the TNT
    term SS...S0 with n S's.

        [ in these ascii notes, I'll miss out the overline... don't get
        confused! ]

    e.g. "Ax:(2*x) = ((1*x)+(1*x) )" is just an abbreviation for
    "Ax:(SS0*x) = ((S0*x)+(S0*x) )".

    If we denote a wff by \phi(x,y) , we are indicating that the free variables
    of the wff are precisely x  and y .

    We then write \phi(t,s) , where t  and s  are terms, as an abbreviation for
    the wff obtained by substituting t  for each free occurrence of x  and s  for
    each free occurrence of y , and adding primes to quantified variables in
    \phi  as necessary to avoid conflicts.

    e.g. let Lteq(x,y)  be the wff
        Ez:(x+z)=y .

    Then Lteq(S0,SSS0)  is the wff
        Ez:(S0+z)=SSS0
    and Lteq(y,x)  is the wff
        Ez:(y+z)=x .
    and Lteq(z,y)  is the wff
        Ez':(y+z')=z .
    and Lteq(z,(S0+z') ) is the wff
        Ez'':((S0+z')+z'')=z .

    We will write
        t <= s
    as an abbreviation for the wff
        Lteq(t,s)
    i.e. for the wff
        Ez:(t+z)=s .

    Similarly, let LessThan(x,y)  be the wff Ez: ( x+z)=y , and let " t<s "
    abbreviate LessThan(t,s) .

Gödel numbering: coding Post formal systems in arithmetic
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Recall that a Post formal system consists of:
    An alphabet consisting of finitely many symbols;
    a finite set of axioms;
    a finite set of "pattern matching" production rules.

We will _code_ strings and derivations as natural numbers, and show that
syntactic operations are expressible by wffs. In particular,

*  given a rule R with 1 input, we will find a formula Produces_R(x,y)
    such that if x  is the code of a string X, then Produces_R(x,y)  is true
    precisely when y  is the code of a string which can be produced by R with
    input X.

*  Similarly for rules with many inputs.

*  Using this, we will find a formula ProofPair(x,y)
    true precisely when x  codes for a valid S−derivation of which y  is a line.

*  Hence the formula
        Theorem(y)  :=  Ex:Proves(x,y)
    will be true precisely when y  codes for an S−theorem.
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Coding strings:
    Example − MIU system:
        Symbols coded as numbers:
            I ==> 1
            U ==> 2
            M ==> 3
        Strings coded as numbers:
            MIU ==> 123
            MUMUMU ==> 131313

            empty string ==> 0  
                (this is why I'm not following Hofstadter's choice U ==> 0 !)

    Example − (Formal)TNT:
        A ==> 626
        : ==> 636
        a ==> 262
        = ==> 111

        Aa:a=a  ==>  626262636262111262

    Generally:
        Code the symbols of the alphabet by natural numbers which are all of
        the same length when written as decimals.

        Then code a string S by the natural number with decimal representation
        the concatenation of the decimal representations of the codes for the
        symbols. This is the _Gödel number_ of S, written [S]

            [well actually it's written with only the top halves of '[' and
            ']', but we'll have to live with '[S]' in ASCII!]

Coding rules:
    Example − MIU system:
        (I)     XI  |−>   XIU
        (II)    MX  |−>   MXX
        (III)   XIIIY  |−>   XUY
        (IV)    XUUY   |−>   XY

        We want a formula  Produces_I(x,y)   which is true precisely when x  codes a
        string of the form "XI" and y  codes the corresponding string "XIU".
        So let Produces_I(x,y)  be
            Ez:<x = ((10*z)+1 ) /\ y = ((100*z) + 12)> .
        
        How about Produces_II ? How do we check that a number's decimal
        representation starts with '3'? 
        
        We need exponentiation...

        Lemma:
            There is a formula Exp(x,y,z)  which is true precisely when z = x^y

        Proof:
            Later!
        
        Let HasLength(x,y)  be
            <Ez: <Exp(10,y,z) /\ <x < z /\ z <= 10*x>>
                \/ <x=0 /\ y=0>>    //  ugly special case for the empty string
        
        Now let Concat(x,y,z)  be
            Ey':<HasLength(y,y') /\ Ey'':<Exp(10,y',y'') /\ z = ((x*y'')+y)>> .
                (rewritten as normal maths: z = x*10^{length(y)}+y )

        So given strings X and Y, Concat([X],[Y],z)  is true iff z = [XY] .

        Now x  codes for a string of the form MX iff Ez:Concat(3,z,x)  holds,
        and we can define Produces_II(x,y)  to be
            Ez:< Concat(3,z,x) /\ Concat(x,z,y) >
        
        Similarly, let Produces_III(x,y)  be
            Ez:Ez':<  Ex': < Concat(z,111,x') /\ Concat(x',z',x) > /\
                       Ey':< Concat(z,3,y') /\ Concat(y',z',y) > >
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        And Produces_IV  is similar.

    Generally:
        The same formula Concat works for any coding of any Post formal system, and
        arbitrary rules can be expressed by formulas similar to those above.

Coding derivations:
    A derivation is a sequence of strings ("lines"). We need something new!

    Lemma [Gödel's \beta Lemma] :
        We can code arbitrarily long lists of arbitrarily large natural
        numbers as pairs of natural numbers:

        There is a formula ListElement(x,y,z)  such that for any finite
        sequence of natural numbers a_0,a_1,...,a_n , there is a natural number
        c  such that for any i <= n ,
            ListElement(c,i,z)
        is true precisely when z = a_i .

        Notation: for terms s , t , r , we will write
            [s]_t = r
        as an abbreviation for
            ListElement(s,t,r)

    Now we can code a derivation by a number D such that the i −th line of the
    derivation is the string with Gödel number [D]_{i−1} .

    [ Technical remark: this doesn't give us the *length*  of the derivation,
    and may give us junk if we look at [D]_i  for i  greater than the length of
    the derivation. We could complicate things to handle that − but it won't
    actually matter for our definition of Theorem(x) , so we won't worry. ]

    We can also give the promised:

    Proof of expressibility of exponentiation:
        "exists a sequence 1=a_0,a_1,a_2,...,a_y=z  such that a_{i+1} = xa_i
        for all i<y ";
        Exp(x,y,z)  :=   Ex': <
                < [x']_0 = 1 /\ [x']_y = z > /\
                Ay':< y'<y =) Ez':< [x']_y' = z' /\ [x']_Sy' = (x*z') > > >
        

    
Expressing theoremhood:
    Example: MIU−system
        ProofPair_MIU(x,y) :
            Ez:< [x]_z = y /\
                Az':< z' <= z  =)
                    <[x]_z' = [MI] \/
                        Ez'':<z'' < z' /\
                            Ey':Ey'':< <[x]_z' = y' /\ [x]_z'' = y''> /\  
                                <Produces_I(y'',y') \/
                                <Produces_II(y'',y') \/
                                <Produces_III(y'',y') \/
                                 Produces_IV(y'',y')>>>>>>>>
            True precisely when x  codes for the sequence of lines of a valid
            MIU−derivation, and y  is the Gödel number of the last line.

        Theorem_MIU(x) :
            Ez:ProofPair_MIU(z,x)

    Generally:
        Similar!

        See exercises!

    

Proof of \beta  lemma:
    Recall: Chinese Remainder Theorem:
        Suppose m_1,...,m_n  are pairwise coprime (i.e. gcd(m_i,m_j)=1  if i!=j ).
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        Then given a_i  such that 0 <= a_i < m_i , we can find c  such that
            c == a_i  mod m_i  for all i .

        [ "Right" way to think about it: the point is that if M is the product
                M := \Pi_i m_i ,
            then the obvious map
                Z/MZ −−> \Pi_i Z/m_iZ  
                x/MZ |−> (x/m_1Z, ..., x/m_nZ)
            is a ring isomorphism. ]

    Now define, for c , d, i  in N,
        \beta(c,d,i) := rem(c, (d(i+1)+1) ))
    where rem(n,m)  is the unique natural number in [0, m) such that
        n == rem(n,m)  mod m

    Claim: given a finite sequence a_0,...,a_n , there exist c  and d such that
        for i=0 ,..., n,
            \beta(c,d,i) = a_i
    Proof:
        Let d be greater than all a_i  and divisible by 1,...,n; e.g. we could
        set d := (n+1)!*\Pi_i a_i .

        Then as i  ranges through 0,..., n, the numbers ( d(i+1)+1 ) are pairwise
        coprime.

        Indeed: suppose p is prime, p | d(i+1)+1  and p | d(j+1)+1 ,
        with i < j <= n .
        Then p does not divide d(i+1) , hence p does not divide d.
        But p | ( d(j+1)+1 − d(i+1)+1 ) = d(j−i) , so p | (j−i) .
        But 0 < (j−i) <= n , so ( j −i) | d . Contradiction.

        So by the Chinese remainder theorem, we can find a c  as required.

    It remains to code the pair (c,d)  as a single natural number...
    Here's a direct approach:
        t(x,y) = (x+y)(x+y+1)/2 + y = [(x+y)th  triangular number] + y

                                                .
                                                ..
        the graph of which, with x  increasing   ...
        to the right and y  increasing upwards,  9...
        starts off as shown to the right:       58...
                                                247...
                                                0136...
        
    So now we can let ListElement(x,y,z)  be
        Ez':Ez'':<t(z',z'')=x /\ \beta(z',z'',y)=z>

Arithmoquining
−−−−−−−−−−−−−−

"yields falsehood when preceded by its own quotation" yields falsehood when
preceded by its own quotation.

Does it?

Abstractly:
    If we have an "incomplete" sentence − one which requires a noun to make it
    a sentence
        e.g.
            *  yields falsehood.
            *  I like x .
            *  is missing a noun.
            *  The string _ has an underscore in it.
    − we can _quine_ it: put the quotation of the incomplete sentence in for the
    missing noun
        resulting quines:
            *  "yields falsehood" yields falsehood.
            *  I like "I like x .".
            *  "is missing a noun" is missing a noun.
            *  The string "The string _ has an underscore in it." has an
                underscore in it.
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    .

    Now if the incomplete sentence says something about the quine of
    the missing noun, then its quine will say that thing about itself!

    Simple example:
        Let U be the string:
            The quine of x  is a self−referential sentence.
        Then the quine of U is the string S:
            The quine of
                "The quine of x  is a self−referential sentence"
            is a self−referential sentence.
        So S says that the quine of U is self−referential.
        i.e. S says that S is self−referential!

    Referring by name to quining is arguably cheating... we can give a more
    explicit recipe, like:

        The string resulting from replacing the underscore in the string _
        with the quotation of that string is 248 characters long.

                                    |
                                    |  Quine
                                    v

        The string resulting from replacing the underscore in the string
        "The string resulting from replacing the underscore in the string _
        with the quotation of that string is 246 characters long."
        with the quotation of that string is 246 characters long.

[ Etymology: Willard Quine, philosopher; via Hofstadter ]

Implementing this trick in arithmetic ("arithmoquining"):
    Given a wff \phi  whose only free variable is x , the _arithmoquine_ of \phi
    is the formula AQ_\phi :
        Ex:<x = [\phi] /\ \phi>
    
    So this is a sentence which claims of [\phi]  whatever \phi  claims of x .

    ( analogy:
        incomplete sentence <==> wff with a free variable
        sentence <==> sentence
        noun <==> numeral
        quotation <==> Gödel number )

    [ why the trick with Ex:? Why not just use substitution, letting
    AQ_\phi(x)  be \phi([\phi]) ? Answer: because the following claim would then
    be much harder to prove. ]

    Claim: Arithmoquining is expressible:
        There is a formula Arithmoquine(x,y)  such that if \phi  is a formula
        whose only free variable is x , then Arithmoquine([\phi],z)  holds iff
        z = [AQ_\phi] .
    Proof:
        [AQ_\phi] = [ Ex:<x = [\phi] /\ \phi> ]

        So AQ_\phi  is the concatenation of " Ex:<x= ", the numeral of [\phi] ,
        " /\ ", \phi , and " >".
        
        So the only tricky part is getting the Gödel number of the numeral
        \overline{[\phi]} ...

        Let GödelNumeral(x,y)  say that there exists z  such that [z]_0 = [0] ,
        [z]_x = y , and for all x' , [z]_Sx'  is the Gödel number of the
        concatenation of " S" and the string coded by [z]_x' .

        [ In gory detail:
            GödelNumeral(x,y) :=
                Ez:<<[z]_x = y /\ [z]_0 = [0]> /\ Ax'< x'<x =)
                    Ez':Ez'':<< [z]_x' = z' /\ [z]_Sx' = z''> /\
                        Concat([S],z',z'')>>>
        ]
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        Then Arithmoquine(x,y) :=
            Ez:<GödelNumeral(x,z) /\ Concat( [Ex:<x=], z, [/\], x, [>], y)>

            (where Concat(x,x',x'',x''',x'''',y)  says that y  codes the
            concatenation of the five strings coded by x−x''''; we can define
            Concat(x,x',x'',x''',x'''',y)  to be

                Ez':Ez'':Ez''':<Concat(x,x',z')
                    /\ <Concat(z',x'',z'')
                    /\ <Concat(z'',x''',z''')
                    /\ Concat(z''',x'''',y) >>>>
            )

    Now let S be a Post formal system, and let U be the wff
        Ey:<Arithmoquine(x,y) /\ ~Theorem_S(y)>

        "The arithmoquine of x  is not a S theorem"

    Let G := AQ_U  be the arithmoquine of U:
        Ex:<x=[U] /\ U>
    in full:
        Ex:<x=[Ey:<Arithmoquine(x,y) /\ ~Theorem_S(y)>]
            /\ Ey:<Arithmoquine(x,y) /\ ~Theorem_S(y)>

    So G is true iff the arithmoquine of U is not a S theorem.

    But G is the arithmoquine of U.

    So G is true iff G is not a S theorem.

Now, the argument at the start of the section applies to G:

Theorem [Semantic G1T, Post formal system version]:
    No Post formal system is both sound and complete for N.
Proof:
    Suppose S is N−sound.

    If G is false in N, then G is an S−theorem.
    So G is true in N − contradiction.

    So G is true in N. So G is not an S−theorem.

    So S is N−incomplete!

    
Incompletability
−−−−−−−−−−−−−−−−

So, TNT is not N−complete. It fails to prove the true sentence G_TNT.

But we know that G_TNT is true, so we can just add it as an axiom!

Let TNT_2 :=  TNT \cup { G_TNT } .

Problem: if we add the axiom G_TNT to our Post formal system, we get another Post fo
rmal
system! So again, we can find a sentence G_{TNT_2}  which is true, but not a
theorem of TNT_2.

Fine... let's add that too!

Let TNT_3 :=  TNT \cup { G_TNT , G_{TNT_2} } .

But... again, the theorem applies, and we get G_{TNT_3}  which is true but not
provable in TNT_3.

But! This procedure defines TNT_n for all n, so we can define

TNT_\omega :=  TNT \cup { G_TNT , G_{TNT_2} , G_{TNT_3} , ... }.

A Post formal system is only allowed to have finitely many axioms, so we appear to
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have broken free of the incompleteness theorem!

This is a slightly ugly set to have as axioms, but it isn't too bad − we can
tell whether or not a sentence is one of the axioms, because there's a
definite pattern to the sentences G_{TNT_n} . So if TNT_\omega  were complete,
we'd be happy!

But. Precisely because there is this pattern, we could find a Post−formal
system which produces { G_TNT, G_{TNT_2}  ... } as theorems (and no other
TNT−wffs). If we add this to FormalTNT, we'll have a Post formal system which
proves precisely the TNT−sentences which TNT_\omega  does... and hence by G1T,
TNT_\omega  isn't complete either!

That's a bit of an ad−hoc argument. We can be much more general:

Computability
−−−−−−−−−−−−−

The question arises: how strong is this theorem? Our notion of a Post formal
system looked pretty restrictive, after all. So should we be surprised or
worried that arithmetic truth is not captured by one?

To explore this issue, we will need to consider the concept of an algorithm.

"Definition": an _algorithm_ is an explicit, deterministic, step−by−step
    procedure for performing a calculation on some input data.
    Given input, it may _return_ a result, or it may never return anything
    (because the procedure keeps going forever, or because it fails at some
    point).

Definition:
    A partial function f : N −> N  is _computable_ (synonyms: _effective_ ,
    _recursive_ ) if there is an algorithm which takes a natural number n as
    input, and
        *  if f  is defined at n, it returns f(n) .
        *  if f  is not defined at n, it never returns anything.

    A subset X of N is _computable_ (synonyms: _decidable_ , _recursive_ ) if
    there is an algorithm which takes a natural number n as input and
        *  if n is in X, returns True
        *  if n is not in X, returns False

    A subset X of N is _computably enumerable_ (synonyms: _semidecidable_ ,
    _recursively enumerable_ ) if there is an algorithm which takes a natural
    number n as input and
        *  if n is in X, returns True
        *  if n is not in X, never returns anything.

    Similarly for functions N^n −> N  and subsets of N^n, using algorithms
    which take n inputs (or using a coding function N^n −−> N ).

Lemma:
    ( i ) X (= N  is computable iff X and its complement N\X  are c .e.
    (ii) a nonempty set X (= N  is c .e. iff it is the range of a total
        computable f : N −> N .
    (iii) f : N −> N  is computable iff its graph \Gamma_f  is c .e.
Proof:
    ( i ) =>: clear
        <=: given n, simultaneously run the algorithms which semidecide X and
            N\X ; one will eventually return, telling you whether n\in X .

    (ii)
        <=: given n, compute f(0) , f(1) , ...; if ever f(i)=n , return True.
        =>: First, suppose X is infinite. Consider the following procedure for
            producing a list of elements of X:
                do the following with i=0 , then with i=1 , then 2,3,...:
                    1) start the semidecision procedure for testing if i\in X .
                    2) for each currently running semidecision procedure:
                        run it for one step; if it returns True, meaning
                        that j\in X , add j  to our output list.
            Every element of X will eventually appear on the output list, with



GIT                                                                          Page 33

            no repetitions.

            Now to compute f : given n, run the above listing algorithm until
            it has output n numbers. Return the nth.

            In the case that X is finite (which is an uninteresting degenerate
            case), say X = {a_0,...,a_k} , define f(n) := a_n  if n <= k , and
            for n > k  define f(n) := a_0 . This is clearly computable.
    
    (iii) =>: easy
          <=: given n, enumerate \Gamma_f  as in (ii); if ever (n,m)  is
              produced, return m.
        

Fact:
    Many precise definitions of "algorithm" have been given;
    they are all equivalent: whichever notion of "algorithm" you use to define
    which functions and sets are computable, you get the same collection of
    functions and sets.

    Moreover, they are precisely those which are "intuitively computable"!
    
    A system for computation which computes precisely these functions and sets
    is called _Turing complete_ .

    "computable" means "computable by some (any) Turing complete system".
    (sim c .e.)

Examples of Turing complete systems:
    mathematical abstractions: \mu−recursive functions, \lambda −calculus,
        Turing machines, register machines, string rewriting systems;
    physical systems: digital computers (with infinite RAM),
        Babbage's Analytical Engine (never built);
    programming languages (FLooP, C, Scheme, Prolog, etc);
    cellular automata: Conway's game of life, Rule 110;
    esoteric programming languages (befunge, brainf*ck  etc);
    surprising places: molecular biology, MtG(?) , asciiportal...

Example of a Turing complete system:
    Register machines (see below)

Church−Turing Thesis:
    "There is nothing beyond Turing completeness"

    Any function which can be calculated, in any reasonable sense of the word,
    is computable by any Turing complete system.

Fact: Post formal systems are Turing complete:

    Let A be a finite alphabet. Fix a Gödel numbering of A−strings.

    Let \Sigma  be a set of A−strings.

    Then the set of Gödel numbers of elements of \Sigma  is c .e.
    iff there exists a Post formal system S in an alphabet A'  containing A
    such that \Sigma  is the set of A−strings which are S−theorems.
    

So we obtain:

Theorem [Semantic G1T]:
    The set of true TNT−sentences is not decidable, or even c .e..
Proof:
    If it were c .e., there would be a Post formal system S such that a string
    in the alphabet of TNT is an S−theorem iff it is a true sentence.
    But this contradicts the Post formal systems version of Semantic G1T.

Remark:
    If the set Th(N)  of true sentences *were* c .e., then it would be
    computable. Indeed: \sigma  is false iff ~\sigma  is true, so the complement
    of Th(N)  would also be c .e.
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[ Decided to omit this... it's a more conventional statement, but giving it as
  well as the above statements would I think be obfuscatory. It's also a bit
  limiting, since it restricts us to the language of arithmetic (whereas we
  might want to consider e.g. ZF). The notion of a "logically adequate" formal
  system in section 5 substitutes for this.

  Definition:
      A _recursive axiomatisation_  for a structure N'  in the language of
      arithmetic is a computable set of sentences \Sigma  such that
      for any sentence \sigma ,
          N' |= \sigma  iff \Sigma |= \sigma

  Theorem [Semantic G1T, axiomatisability version]:
      N does not have a recursive axiomatisation.
  Proof:
      By Gödel's completeness theorem,
          \Sigma |= \sigma  <=>  \Sigma |− \sigma ,
      where recall the latter means that \sigma  is a theorem of PRED+\Sigma .

      But the set of theorems of PRED+\Sigma  is computably enumerable, by
      enumerating derivations.
]

In particular, adding a c .e. set of true axioms to TNT will not yield
completeness. In this sense, TNT is "incompletable".

See Figure 18 in Hofstadter.

For contrast, let me mention:

Fact [Tarski]:
    The set of true sentences in the real field <R;0,+,\cdot> *is*  decidable!

    Same for the complex field <C;0,+,\cdot> .

Register machines
−−−−−−−−−−−−−−−−−

Theoretical computer, comprising infinitely many "registers" R_0, R_1, ...
each containing a natural number.

A register machine program is a finite string in the alphabet
    + − ( ) ; . 0 1 2 3 4 5 6 7 8 9,
interpreted as instructions to alter the contents of the registers:
" n+" means "increment the contents of R_n by 1"
" n−" means "decrement the contents of R_n by 1 (or leave it at 0)"
"x;y" means "do x  then do y"
"n(x) " means "do x  while R_n does not contain 0"
"." means "stop".

A (well−formed)  program implements a partial function f:N−>N  as follows:
    to determine f(n) , first set R_0 to n and all other R_i  to 0. Then run
    the program. If the program stops, then f(n)  is the contents of R_0
    when it stops; else, f(n)  is undefined.

(Similarly, it implements partial functions N^n −> N  for any n, using
R_0,...,R_{n−1}  for the inputs.)

Example − a program computing f(n) := 2*n
    0(1+; 0−) ; 1(1−; 0+; 0+) .
Example − a program computing f(n) := n*n
    0(1+; 2+; 0−) ;
    1( 1−;
       2(0+; 3+; 2−) ;
       3(2+; 3−)
     ).

Example − a program computing f(n) := 1  if n is prime, 0 else
    0(1+; 2+; 0−) ; 2(0+; 2−) ;
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    1( 1−;
        0(2+; 3+; 0−) ; 3(0+; 3−) ;
        2( 2−;
            2( 2−; 3+; 4+ ) ; 4(4−; 2+) ;
            3( 3−;
               1(4+; 5+; 1−) ;
               5(1+; 5−) ;
             );
            //  we've set R_4 := R_1*R_2 ; now check if R_4 == R_0 :
            4(4−; 5+; 6+) ;
            0(0−; 7+; 8+; 9+) ; 9(9−; 0+) ;
            5(5−; 7−) ;
            8(8−; 6−) ;
            7(6(.) ); //  return 0 if composite
         )
     );
    0(0−) ; 0+.

Fact: register machine programs are Turing complete − any computable function
    is computed by a register machine program.

[So one way to prove that Post formal systems are Turing complete would be to
show that any register machine program can be simulated by a Post formal
system, or equivalently that we can find a "universal" Post system which
produces a string of the form " n, m, k" iff the nth register machine program
(according to some Gödel numbering; see below) returns k  on input m. Emil Post
did something similar, but for the lambda calculus (which is also known to be
Turing complete) rather than register machine programs]

The Halting problem
−−−−−−−−−−−−−−−−−−−

Fix a Turing complete system, e.g. register machine programs.

Via Gödel numbering, we can code the programs by natural numbers such that
each number codes a program and
    Run(n,m) := f_n(m)  where f_n  is the function computed by the program
                with code n (undefined iff f_n(m) is)
is itself computable.

["computation is computable!"]

Theorem [Turing]:
    ( i ) The Halting Problem is undecidable:

        Define Halts : N^2 −> N  by
            Halts(n,m)=1  if the program with code n ever returns anything
                when given input m (i.e. Run(n,m) is defined) , and
            Halts(n,m)=0  otherwise.

        Then Halts is not computable.

    (ii) There exists a c .e. subset H of N which is not computable.
Proof:
    ( i ) Suppose Halts is computable. Then so is h : N −> N  defined by
            h(n) := 1  if Halts(n,n)=0 ; undefined else.
        But then h is computed by some program, say with Gödel number n.
        Then h(n) = 1  iff Halts(n,n)=0  iff h(n)  is undefined. Contradiction.

    (ii) Let H := { n | Halts(n,n)=1 } . Then H is c .e. since Halts is, but
        if H were computable then h would be computable.

Remark:
    We can use this to give an alternative proof of Semantic G1T:
        since H is c .e., there is a formula \phi(x)  such that \phi(n)  is true
        iff n\in H
            (this follows from Turing completeness of Post systems and the
            existence of formulas Theorem_S(x) ; there are some technical
            details to fill in; see Assignment 10)

        So if arithmetic truth is computable, then so is H − contradiction!

    (Note: this proof has the same "ingredients" as our original proof −
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    showing that arithmetic is sufficiently expressive, then using a
    diagonalisation trick (which in this version, is in the proof of
    undecidability of H))

Analogue of the Halting problem for Post formal systems
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[turns out to be not so satisfactory... I won't present this in lectures]

Fix a countably infinite alphabet s_0,s_1 ,...; code strings as natural numbers
(using the \beta  lemma).

Also code Post systems in this alphabet as natural numbers.

Then the binary relation " \sigma  is produced by S_n" (written e.g. as
s_0^[\sigma]s_1s_0^n ) is c .e., so is itself implemented by a Post system U in
this alphabet
(analogue of a universal Turing machine).

Claim: the set of productions of U is not computable.
Proof: Suppose it is computable, and let
        X := { s_0^n | s_0^n  is not a production of S_n }
    (where s_0^n  is the string s_0s_0...s_0 ).
    Then X is computable, so is the set of productions of some S_n.
    But then s_0^n \in X  iff s_0^n  is a production of S_n iff s_0^n \not\in X .

Remark: we could probably get away with a finite alphabet (2 symbols might be
    enough?), but we'd need a better version of the lemma that Post systems
    are Turing complete.

V: Introspection, and Gödel's Second Incompleteness Theorem
===========================================================

In this section, we present Gödel's Second Incompleteness Theorem (G2T). Along
the way, we state a stronger version of G1T which doesn't require the semantic
notion of N−consistency. The key idea for both of these is that TNT, like us,
is able to prove things about what it (and its strengthenings) can prove...

Notation: If S is a formal system in an alphabet including that of TNT, we say
    " S _proves_ \sigma " and write
        S |− \sigma
    to mean that \sigma  is a TNT−sentence which is also an S−theorem.

Definition:
    S is _logically adequate_ if
    whenever S proves some sentences \sigma_1,...,\sigma_n  which together
    necessitate a sentence \tau , then S also proves \tau .
    Symbolically:
        if { \sigma_1 , ..., \sigma_n } |= \tau
        and if S |− \sigma_i  for i=1 ,..., n,
        then S |− \tau .

    (So PRED is logically adequate, as is TNT)
    
    S is _a strengthening of TNT_ if S proves every TNT−sentence which TNT
    does, i.e. TNT |− \sigma  =>  S |− \sigma .

For the remainder of this section, we assume that S is a logically adequate
strengthening of TNT.

In particular, S could be (Formal)TNT itself.

Definition:
    S is _(negation−)consistent_  iff for no TNT−sentence \sigma  does it hold
        S |− \sigma      and     S |− ~\sigma .
    S is _(negation−)complete_  iff for every TNT−sentence \sigma
        S |− \sigma      or      S |− ~\sigma .

Remark:
    N−soundness => consistency
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    N−completeness => completeness

    If S is inconsistent, then S |− \sigma  for all \sigma .

Fact 1:
    TNT proves all true sentences of the form
        Theorem_S(n)
Idea of proof:
    If Theorem_S(n)  is true, then ProofPair(m,n)  is true for some m;
    similarly, all the existentials involved in the (lengthy) definition of
    ProofPair have natural number witnesses, and it becomes a matter of
    checking that TNT can prove simple (quantifier−free) arithmetical truths
    about terms. It can. Induction isn't needed.

Let G := G_S  be the Gödel sentence of S.

Fact 2:
    TNT "knows what G is":
      TNT |− < <G =) ~Theorem_S(G)> /\ <~Theorem_S(G) =) G> >

[
Idea of proof (omitted in lectures):
    This is morally straightforward, but technically less so.
    Recall that G is Ex:<x=[U] /\ U>
        where U is Ey:<Arithmoquine(x,y) /\ ~Theorem_S(y)> .
    Now one can check, as in Fact 1, that
        TNT |− Arithmoquine([U],[G]) .
    Furthermore, TNT |− Ay:<Arithmoquine([U],y) =) y=[G]> ;
        i.e. it understands (case−by−case) that Arithmoquine is a function.
    This, perhaps surprisingly, is actually the most painful bit − see the
        notion of " captures* " in chapter 9 of Peter Smith's "Gödel Without
        Tears" (linked from website).
    The rest is basic logic, which TNT can do by Gödel's completeness theorem.
]

[
    Actually, for Facts 1 and 2 we don't need much of TNT at all − just TNT'
    and the single TNT−theorem Ax:<x=0 \/ Ey:x=Sy> . This system
      Q := TNT'+{Ax:<x=0 \/ Ey:x=Sy>}
    is known as "Robinson arithmetic" (after Raphael Robinson, who isn't
    Abraham or Julia!).

    Technically, to get Fact 2 in Q you have to modify the definition of
    Arithmoquine, to Arithmoquine'(x,y) :=
        < Arithmoquine(x,y) /\ Ay':< y'<y =) ~Arithmoquine(x,y') > > .
    They're equivalent in N, and TNT proves the equivalence, but Q doesn't.
]

Lemma 1:
    If S is consistent, then S |/− G .

    i.e. N |= <Con(S) =) ~Theorem_S([G])>
Proof:
    Suppose S |− G .

    Then by Fact 1, since S strengthens TNT,
        S |− Theorem_S([G]) .

    But by Fact 2, since S strengthens TNT and is logically adequate,
        S |− ~Theorem_S([G]) .

    So S is inconsistent.

Historical remark:
    Lemma 1 formed half of Gödel's original proof of his First Incompleteness
    Theorem. Assuming a stronger form of consistency ("omega−consistency"), he
    proved that also S |/− ~G , showing that S is incomplete. A few years
    later, Rosser found a way to remove the assumption of omega−consistency,
    yielding:

    Gödel−Rosser First Incompleteness Theorem [G1T]:
        If S is consistent, it is incomplete.
    Proof: omitted.
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Definition:
    Let Con(S)  be the sentence
        ~Theorem_S([~0=0])
    So Con(S)  is true iff S is consistent.

Fact 3: TNT is able to prove Lemma 1:
    TNT |− <Con(S) =) ~Theorem_S([G])>
Idea of proof:
    Follow the proof of Lemma 1 (and hence the proofs of Facts 1 and 2), and
    see that TNT can do them... for example, we have to prove an
    "introspective version" of Fact 1:
    TNT |− Ax:<Theorem_S(x) =) "Theorem_TNT([Theorem_S(x)])">
    (where a little work is needed even to express the bit in quotes)

[ 
    We need more of TNT for this than for the first two facts. We still don't
    need all of TNT, though: we only need induction axioms for
    " \Sigma_1 −formulae", being those formulas which start with zero or more
    existential quantifiers, then have no more quantifiers of any kind.
]

Theorem [G2T]:
    If S is consistent, S |/− Con(S)
Proof:
    Suppose S |− Con(S) .

    Then by Fact 3, S |− ~Theorem_S([G]) .

    So by Fact 2, S |− G .

    But this contradicts Lemma 1.

Appendix A: some remarks on Hofstadter's presentation of Gödel's theorems
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

It's a bit of a mess, really.

He spends a whole chapter on the difference between primitive recursion and
recursion, so that he can say that TNT represents primitive recursive
relations. That's true − although Q also represents general recursive
relations, and since he isn't even sketching a proof it seems strange to
mention only the easier result. But more to the point, despite making a big
deal of this representability, it's never actually used in the Gödel statement
he proves! He sketches a proof of only the semantic version of G1T, for which
expressibility is enough. Of course, the representability is relevant to G2T,
or to Syntactic G1T, but he doesn't even try to prove those. Relatedly, he
seems to use soundness and consistency interchangeably.

I have great affection for the book, and on balance I don't regret using it
for this course, but it has meant that the overlap between the course and the
book is rather smaller than I'd have liked.

Appendix B: some remarks on Bays's presentation of Gödel's theorems
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(Since we're on the subject of introspection...)

I hope it isn't a mess. Really.

The approach to Gödel's theorems this course has ended up taking is fairly
idiosyncratic. To summarise: taking more seriously than he could possibly have
intended a throwaway parenthetical at the start of Hofstadter's GEB, we build
everything around the notion of a Post formal system. This makes a nice
introduction to semantics of syntax, leading to the propositional and
predicate calculi. From the point of view of Gödel, the main advantage of
using Post systems is that, given a Post system S, the formula expressing "is
an S−theorem" (i.e. S−production) is relatively simple. We were able to
describe it essentially in full detail. This not only makes it about as clear
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as it could be that theoremhood is definable, but also makes it relatively
easy to believe that Q can do the proofs.

This is to be contrasted with a more conventional approach, which would
*first*  show that recursive functions f  are definable and that Q can prove
true statements of the form f(n)=k , and then argue that since theoremhood is
clearly r .e. (which is only clear once you've built up a solid appreciation
for Turing completeness!) we get the same results.

Of course, we still need to talk about computability if we want to say that
Th(N)  is undecidable, but the Turing completeness of Post systems gives us an
avenue in to that.

The main downside of avoiding talking directly about recursive functions is
that we can't extract a clear statement that Q proves all true statements of
the form \phi(n)  for \phi  an r .e. predicate, nor that r .e. corresponds to
\Sigma_1 .

So in retrospect, I think the Post−approach works quite well. I consider it a
happy medium between (a) the truly fluffy approach of just asserting that
computability is something Q can do, and syntactic stuff is obviously
computable so duh, and ( b) the fully Proper approach going via (primitive)
recursive functions and properly demonstrating that the relevant syntactic
operations are recursive (for which you might well want to go via some more
appropriate Turing complete system, such as... Post systems, say?).

One regret I have regarding the use of Post systems, however, is the
terminology, which I lifted from Hofstadter and kept unchanged throughout the
course. Calling productions "theorems", and initial strings "axioms", is cute
but not really appropriate in general. Better would be to have made a
distinction at the stage when we defined 'well−formed' strings as the
interpreted ones to which we assign meaning. " S−theorem" should have been
defined as "well−formed S−production", explicitly leaving open the possibility
of going via non−well−formed strings, perhaps using auxiliary symbols, to
arrive at our theorems. This would nicely foreshadow the statement of Turing
completeness of Post systems, and would be appropriately suggestive when we
considering extending TNT by going outside of number theory, e.g. to ZFC;
making use of auxiliary symbols (which we *could*  optionally also interpret,
yielding a consistency argument analogous to that for TNT (and a proof of
Con(ZFC)  from existence of inaccessible cardinals...)).

Appendix C: Idiosyncrasies
==========================
*  TNT is usually known as PA.
*  TNT' is almost Robinson's Q; more precisely, Q is TNT' along with an axiom
    saying that every non−zero number is a successor, Ax:<~x=0 =)  Ey: x=Sy> .
    The point of Q is that it's enough for the syntactic Gödel−Rosser version
    of G1T we mentioned to go through: no strengthening of Q is both
    consistent and complete.
*  PRED is one of numerous possible proof systems for
    "first−order predicate logic" in the language of arithmetic (and would not
    have to be changed much to accomodate other languages)
*  The particular system PROP for propositional calculus was, as I hope was
    clear, not standard. But it's as good as any other. 'Detachment' is
    normally called 'Modus Ponens'. 'Switcheroo' doesn't have a common name to
    my knowledge, though it ought to.
*  "formal system" is not normally synonymous with "Post system" as it was for
    us. There is no very precise definition of "formal system" in general
    currency, but the key idea is that the set of theorems provable in a
    formal system should be recursively enumerable. So by the Turing
    completeness of Post systems I stated, any formal system can be turned
    into a Post formal system.
*  Relatedly, our terminology for Post systems, borrowed from Hofstadter, is
    non−standard, since they're not normally thought of as proof systems.
    What we called an 'axiom' would normally be called something like an
    'initial word', and what we called a 'theorem' would normally be a
    'production'. Also, they should really be called "Post canonical systems",
    or just "Post systems". They aren't actually particularly well−known,
    other theoretically simpler but less intuitive string−rewriting systems
    being more common, but they suited our purposes.
*  "Semantic G1T" isn't common terminology; I nabbed it from Peter Smith.
    Normally when people (who know what they're talking about) talk about
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    Gödel's First Theorem they're referring to a version I never even
    mentioned, because it was superceded by Gödel−Rosser. The basic version,
    due mainly to Gödel, is this: no logically adequate strengthening of Q is
    both complete and \omega −consistent. Recall that 'complete' means
    'negation−complete' means that for any \sigma  it proves \sigma  or proves
    ~\sigma . We didn't define \omega −consistent, I'll do so now: it means that
    if for each n the system proves \phi(n) (where that n has a bar on it) ,
    then the system doesn't prove ~Ax:\phi(x) . Of course this implies that the
    system is consistent, because an inconsistent system proves everything, so
    this version is weaker than the Gödel−Rosser version which drops the
    " \omega ". But people still sometimes talk about this original version
    anyway, essentially just for historical reasons.
*  Also, it isn't normal to state G2T in terms of formal systems as we did; but
    doing so loses nothing. A more standard statement with the same power (I
    won't explain what all the terminology means, though... avoiding having to
    do so was why I only gave the Postal version!): let T be a recursively
    axiomatised theory in some language L, suppose T interprets a structure N
    in the language of arithmetic, and suppose the induced theory extends Q.
    Then if T is consistent, T does not include Con(T) , where the latter is
    considered as a sentence in N.


