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Number sequences

A number sequence is simply an infinite sequence h0, h1, h2, ... of numbers.
For us, hi will typically be an integer.

Examples:
1,2,3,4,5,...
2,4,8,16,32,...
2,3,5,7,13,...
1,1,2,3,5,8,13,...
1,5,10,10,5,1,0,0,0,0,...

Generating functions

The generating function of a number sequence h0, h1, .... is the formal power
series g(x) =

∑∞
n=0 hnx

n.

Technical remark:
Despite the notation and terminology, we do not assume any convergence;
we do not need g(a) to make sense for a a real number,
so g doesn’t really have to be a function in the usual sense.
for example,

∑∞
n=0 n

nxn doesn’t converge for x 6= 0,
but it’s a perfectly good generating function.

We use the usual algebraic notation for generating functions. We can make
sense of algebraic operations as follows:

Given formal power series g(x) =
∑∞

n=0 hnx
n and g′(x) =

∑∞
n=0 h

′
nx

n, and a
number c, we define

g(x) + g′(x) :=
∑∞

n=0(hn + h′n)xn

cg(x) :=
∑∞

n=0 chnx
n

g(x)g′(x) :=
∑∞

n=0(
∑n

j=0 hjh
′
n−j)x

n.

We also write c(x) = a(x)
b(x)

to mean that a(x) = b(x)c(x) (this is well-defined).

We can often use this algebraic structure to write generating functions com-
pactly.

Example 1:
Consider the binomial coefficients

(
m
n

)
for a fixed m.

This is a finite number sequence, but we can make it infinite by appending
0s, (

m
0

)
,
(
m
1

)
, ...,

(
m
m

)
, 0, 0, 0, ....

So the generating function is(
m
0

)
+
(
m
1

)
x +

(
m
2

)
x2... +

(
m
m

)
xm

= (x + 1)m



2

Example 2:
The generating function of the number sequence

1, 1, 1, ...
is g(x) =

∑∞
n=0 x

n = 1 + x + x2 + ....

Now, multiplying out,
(1 + x + x2 + ...)(1− x) = 1 + (−1 + 1)x + (−1 + 1)x2 + ...,

so g(x) = 1/(1− x).
�

Generating functions provide an efficient notation for describing and manip-
ulating classes of combinatorial problems.

Example 3:
Given t, let hn be the number of n-combinations of a multiset with t types
and infinite multiplicity for each type.

We know hn =
(
n+t−1
t−1

)
, so the generating function is

g(x) =
∑∞

n=0 hnx
n =

∑∞
n=0

(
n+t−1
t−1

)
xn.

But note also that
g(x) = (1 + x + x2 + ...)t,

since when we multiply the right hand side out,
the coefficient of xn is precisely the number of ways of obtaining xn as
xe1xe2 ...xet ,
which is the number of solutions in non-negative integers to e1 + ...+ek = n,
which (as we’ve seen before) is hn.

So as in the previous example,
g(x) = (1 + x + x2 + ...)t =

(
1

1−x

)t
= 1

(1−x)t .
�

Note we found here the power series expansion of 1
(1−x)t , which will come in

handy later.

Lemma 1:
1

(1−x)t =
∑∞

n=0

(
n+t−1
t−1

)
xn

If we have restrictions on how many of each type we’re allowed to take in a
combination, we can incorporate these into an algebraic expression for the
generating function.

Example 4:
Find the generating function for the number hn of bags of n marbles consist-
ing of an even number of red marbles, at least 1 green marble, at most 36
blue marbles, and an odd number of yellow marbles.

Arguing as in the previous example, the generating function is
g(x) = (1+x2+x4+...)(x+x2+x3+...)(1+x+x2+...+x36)(x+x3+x5+...)
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= 1
1−x2

x
1−x

1−x37

1−x
x

1−x2 .

= x2(1−x37)
(1−x2)2(1−x)2 .

Example 5:
Find the generating function for the number hn of bags of n marbles con-
sisting of an even number of red marbles, a multiple of 3 of green marbles,
at most 2 blue marbles, and at most one yellow marble. Hence explicitly
determine hn.

g(x) = (1 + x2 + x4 + ...)(1 + x3 + x6 + ...)(1 + x + x2)(1 + x)
= 1

1−x2
1

1−x3
1−x3

1−x (1 + x)

= 1+x
(1−x2)(1−x)

= 1+x
(1+x)(1−x)(1−x)

= 1
(1−x)2

=
∑∞

n=0

(
n+2−1
2−1

)
xn (by Lemma 1)

=
∑∞

n=0(n + 1)xn.

So there are n + 1 such bags of n marbles!

(Exercise: find a direct proof of this, without going via generating functions.)

Example 6:
Find the generating function for the number hn of ways of making n cents
out of Canadian coins.

The coins in current circulation are worth 5,10,25,100, and 200 cents each.

So hn is the number of solutions in non-negative integers to
5N + 10D + 25Q + 100L + 200T = n.

Equivalently, hn is the number of solutions to
e1 + e2 + e3 + e4 + e5 = n

where e1 is a multiple of 5, e2 is a multiple of 10, etc.

So as above,
g(x) = (x5 + x10 + x15 + ...)(x10 + x20 + ...)...(x200 + x400 + ...)

= 1
(1−x5)(1−x10)...(1−x200)

.

Exponential Generating Functions

The exponential generating function of a number sequence h0, h1, ... is the
formal power series

g(e)(x) =
∑∞

n=0 hn
xn

n!
.

While ordinary generating functions are useful for counting combinations,
exponential generating functions are useful for counting permutations.

Example 7:
The exponential generating function of
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(m, 0), P (m, 1), ..., P (m,m), 0, 0, 0, ...
is

g(e) =
∑m

n=0
m!

(m−n)!
xn

n!

=
∑m

n=0

(
m
n

)
xn

= (1 + x)m

Example 8:
Let hn be the number of n-permutations of a multiset with k different types,
each with infinite multiplicity,
{∞ · a1, ...,∞ · ak}.

So hn = kn.
Then the exponential generating function is : g(e)(x) =

∑∞
n=0

knxn

n!
= ekx.

(remark for anyone who might worry what exactly we mean by this last
equality: we can just define eax to be the formal power series

∑∞
n=0

an

n!
xn.

This obeys the usual law eaxebx = e(a+b)x. We could define more, but this
will suffice for our purposes.)

Theorem:
Let hn be the number of n-permutations of the multiset

S := {n1 · a1, ..., nk · ak},
with ni ∈ N ∪ {∞}.

Then the exponential generating function is
g(e) = fn1(x)fn2(x)...fnk

(x)
where

fn(x) =
∑n

i=0
xi

i!

and in particular, f∞(x) = ex.

Proof:
hn =

∑
S′ an n-combination of S(number of permutations of S ′)

=
∑
{(m1,...,mk) | m1+...+mk=n, 0≤mi≤ni}

(number of permutations of {m1 ∗ a1, ...,mk ∗ ak}
=
∑
{(m1,...,mk) | m1+...+mk=n, 0≤mi≤ni}

n!
m1!...mk!

= n!
∑
{(m1,...,mk) | m1+...+mk=n, 0≤mi≤ni}

1
m1!...mk!

Meanwhile, if we multiply out fn1(x)fn2(x)...fnk
(x), we find the coefficient

of xn is
=
∑
{(m1,...,mk) | m1+...+mk=n, 0≤mi≤ni}

1
m1!...mk!

.

So this is indeed the exponential generating function.
�

Just as we saw with ordinary generating functions, if we have restrictions on
how many of each type we are allowed in a permutation, we can incorporate
these restrictions into the factors in the above expression for the exponential
generating function, by only including the appropriate powers of x.

Often, expanding out the resulting power series will give us a solution to the
combinatorial problem, as the following example demonstrates.
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Example 9:
How many n-digit numbers can be written using only the digits ’1’,’2’, and
’3’, using an even number of ’2’s and at least 1 ’3’?

The exponential generating function is
g(e)(x) = (

∑∞
n=0

xn

n!
)(
∑∞

n=0
x2n

(2n)!
)(
∑∞

n=1
xn

n!
)

= (ex)( e
x+e−x

2
)(ex − 1)

= 1
2
(e3x + ex − e2x − 1)

=
∑∞

n=1
3n+1−2n

2n!

So the answer is 3n+1−2n
2


