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Recurrence relations

Warm-up: The Fibonacci sequence

The Fibonacci sequence is the sequence fn satisfying
f0 = 0, f1 = 1
fn+2 = fn + fn+1

so
0,1,1,2,3,5,8,13,21,34,55,...

Such an expression for a term in a sequence as a function of previous terms
is called a recurrence relation.

Other examples:
h0 = 1
hn+1 = hn + 3

h0 = 1
hn+1 = 3hn

In these cases, we can easily find an expression for hn in terms of n.

Can we do this for fn?

To do so, we should consider the more general problem where we vary the
initial values f0 and f1, and just consider sequences fn satisfying the recur-
rence relation fn+2 = fn + fn+1.

If fn and f ′n are two such sequences, then so is c1fn + c2f
′
n for any c1, c2 (i.e.

the solutions form a vector space).

So if we can find some solutions to the Fibonacci recurrence relation, we
can easily generate more - perhaps including the Fibonacci sequence itself.

(In fact, if you recall your linear algebra, you should be able to see that
we only need to find two linearly independent sequences to generate all of
them)

Let’s look for solutions of the particularly simple form
fn = qn

with q 6= 0. Then the recurrence relation becomes
qn+2 = qn + qn+1

↔ qn(q2 − q − 1) = 0
↔ (q2 − q − 1) = 0 (since q 6= 0)

This is a quadratic equation, so it has two solutions.

They are
φ = 1+

√
5

2
, φ′ = 1−

√
5

2
.

(φ is known as the Golden Ratio; it is the unique positive real satisfying
1+φ
φ

= φ)
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So for any c1 and c2,
c1φ

n + c2φ
′n

satisfies the Fibonacci recurrence relation.

Let’s find such a sequence which satisfies the initial conditions of the Fi-
bonacci sequence, f0 = f1 = 1; then it must be the Fibonacci sequence.

c1 + c2 = 0
c1φ+ c2φ

′ = 1

We can solve this system of simultaneous equations

(
1 1
φ φ′

)(
c1
c2

)
=

(
0
1

)
(
c1
c2

)
=

1

φ′ − φ

(
φ′ −1
−φ 1

)(
0
1

)
=

1√
5

(
−1
1

)
So we obtain

Theorem:
The Fibonacci numbers are

fn = φn−φ′n√
5

where
φ = 1+

√
5

2
, φ′ = 1−

√
5

2
.

Note that φ′ = 1− φ, so we could also write this as
fn = φn−(1−φ)n√

5
.

Homogeneous Linear Recurrence Relations with Con-
stant Coefficients

A homogeneous linear recurrence relation with constant coefficients is an equa-
tion

hn+k = a0hn + a1hn+1 + ...+ ak−1hn+k−1,
with ai complex numbers.

k is the order of the recurrence relation.
A number sequence hn satisfying the recurrence relation is called a solution
to the recurrence relation.

If we add initial conditions
h0 = c0, ..., hk−1 = ck−1,

this clearly uniquely determines a solution.

Examples:

(i) The Fibonacci sequence.

(ii) Geometric sequences, hn+1 = ahn.
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(iii) The life-cycle of inventioni exemplicus is as follows:
a new hatchling remains in the larval stage until its first summer,
then spends a year maturing, and in the subsequent summer lays a
clutch of 7 eggs (which quickly hatch into larvae),
then in the summer after lays a second clutch of 6 eggs, then dies.

All excemplicus are female (they reproduce parthenogenetically).

Suppose no exemplicus die except at the end of their life cycle.

If 100 exemplicus hatchlings are introduced one summer, how many
exemplicus larvae will there be at the end of the nth summer there-
after?

Solution:
At the end of the nth summer, there are 7 larvae born from each 2-
year-old exemplicus, and 6 from each 3-year-old.

So hn = 6hn−3 + 7hn−2 for n ≥ 3,
i.e. hn+3 = 6hn + 7hn+1 for n ≥ 0.

We also have the initial conditions
h0 = 100, h1 = 0, h2 = 700.

So we get
h3 = 600, h4 = 4900, h5 = 8400, h6 = 37900, ...

We proceed to generalise the solution to the Fibonacci recurrence relation
to solve general homogeneous linear recurrence relation with constant coef-
ficients.

Given a recurrence relation
hn+k = a0hn + a1hn+1 + ...+ ak−1hn+k−1,
i.e. hn+k =

∑k−1
j=0 ajhn+j,

we again look for solutions hn = qn.

Clearly hn = qn is a solution iff
qk = a0 + a1q + ...+ ak−1q

k−1,
i.e. qk − ak−1qk−1 − ...− a1q − a0 = 0.

The polynomial xk−ak−1xk−1−...−a1x−a0 is called the characteristic polynomial
of the recurrence relation.
It is a degree k polynomial, so has k roots in the complex numbers (counting
multiplicities).

Suppose that it has k distinct roots, q1, ..., qk.
(See the ”Bonus” section for what happens when we have repeated roots.)

Claim:
the k vectors ((q01, ..., q

k−1
1 ), ..., (q0k, ..., q

k−1
k )) are linearly independent in Ck,

Proof:
Otherwise, considering the columns of the k-by-k matrix whose rows are
these vectors,
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the k vectors ((q01, ..., q
0
k), ..., (q

k−1
1 , ..., qk−1k )) are linearly dependent.

i.e. there are b0, ..., bk−1 ∈ C not all 0, such that the polynomial
b0 + b1x+ ...+ bk−1x

k−1

has roots q1, ..., qk.

But a degree k − 1 polynomial can’t have k distinct roots;
contradiction.
�

So any given initial conditions h0 = c0, ..., hk−1 = ck−1 can be written as a
linear combination

hn = b1q
n
1 + ...+ bkq

n
k =

∑k
i=1 biq

n
i .

Taking this as a definition of hn for all n,
we see that not only does it satisfy the initial conditions by choice of bi,
but it satisfies the recurrence relation; indeed

hn+k =
∑k

i=1 biq
n+k
i

=
∑k

i=1 biq
n
i q

k
i

=
∑k

i=1 biq
n
i (
∑k−1

j=0 ajq
j
i )

=
∑k−1

j=0

∑k
i=1 biq

n
i ajq

j
i

=
∑k−1

j=0 aj
∑k

i=1 biq
n+j
i

=
∑k−1

j=0 ajhn+j

Example:
Let’s solve the exemplicus example.

hn+3 = 6hn + 7hn+1,
h0 = 100, h1 = 0, h2 = 700.

The characteristic polynomial is
x3 − 7x− 6 = (x− 3)(x+ 2)(x+ 1)

so the solutions are of the form
hn = b13

n + b2(−2)n + b3(−1)n.

Solving
100 = h0 = b1 + b2 + b3
0 = h1 = 3b1 − 2b2 − b3
700 = h2 = 9b1 + 4b2 + b3

gives
b1 = 45, b2 = 80, b3 = 25.

So the solution is
hn = 45 ∗ 3n + 80 ∗ (−2)n − 25 ∗ (−1)n.

�
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Bonus: Solving recurrence relations with generating
functions

Generating functions provide a convenient device for solving recurrence re-
lations (although in theoretical terms, they only provide a different way to
package the same linear algebra).

If g(x) is the generating function for the sequence hn,
i.e. the coefficient of xn in g(x) is hn,
then the coefficient of xn+1 in xg(x) is hn.

So if hn satisfy a recurrence relation
hn+k = a0hn + a1hn+1 + ...+ ak−1hn+k−1

then in
g(x)− a0xkg(x)− a1xk−1g(x)− ...− ak−1xg(x),

xn+k has coefficient 0 for n ≥ 0,
i.e. this is a polynomial of order k − 1.

Using initial conditions, we can find this polynomial, and so express g(x) as
a rational function.

For example, consider the Fibonacci relations fn+2 = fn + fn+1, f0 = 0, f1 =
1.

If g(x) is the generating function, then
g(x)−xg(x)−x2g(x) = f0+f1x+f2x

2+f3x
3+...−f0x−f1x2−f2x3−...−

f0x
2 − f1x3 − ...

= f0 + (f1 − f0)x+ (f2 − f1 − f0)x2 + (f3 − f2 − f1)x3 + ...
= f0 + (f1 − f0)x
= 0 + (1− 0)x
= x,

so
(1− x− x2)g(x) = x

so
g(x) = x

1−x−x2 .

Furthermore, by factoring the denominator and finding partial fractions, we
can expand this as a power series and so solve the recurrence equations.
In this case, the solutions to 1−x−x2 = 0 are the reciprocals of the solutions
φ, φ′ to x2 − x− 1, so

g(x) = x
1−x−x2

= x
(x−φ−1)(x−φ′−1)

= φφ′x
(1−φx)(1−φ′x)

= a
1−φx + b

1−φ′x
where

0 = a+ b
φφ′ = −φ′a− φb
=> b = −a
=> φφ′ = a(φ− φ′)

=> a = 1√
5

(using the definitions of φ, φ′)

=> b = −1√
5

so
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g(x) = 1√
5
((1− φx)−1 − (1− φ′x)−1)

= 1√
5
((
∑∞

n=0 φ
n)− (

∑∞
n=0 φ

′n))

= 1√
5

∑∞
n=0(φ

n − φ′n)
so we reclaim the formula we found before,

fn = φn−φ′n√
5

,
and we had to do the same algebra to get there.

Bonus: abstract reformulation, and handling repeated
roots

Consider the (infinite dimensional) complex vector space of complex number
sequences h = h0, h1, .... Let σ be the downshift operator, which from a
sequence h obtains the new sequence (σh)n = hn+1. Note that this is a
linear map.

Then a linear homogeneous constant coefficient recurrence relation, which
we can write as

∑k
i=0 aihn+i = 0, with ak 6= 0, can be rewritten as

(
∑k

i=0 aiσ
i)h = 0.

The subspace of solutions to this is then the kernel of the linear operator∑k
i=0 aiσ

i. This is a finite dimensional vector space. The solution method
described above is a matter of finding a basis of eigenvectors of σ on this
space. Note that eigenvectors are precisely geometric series cqn.

In general of course, the eigenvectors of σ won’t span the space. But its
generalised eigenvectors will. One can check inductively that the kth gener-
alised q-eigenspace of σ, i.e. the kernel of (σ − q)k,
is the space of sequences f(n)qn where f is a polynomial of degree at most
k − 1. So if the characteristic polynomial factors as∑k

i=0 aiσ
i = Π(σ − qi)ki ,

the space of solutions has a basis of eigensequences
njqni where j < ki,

so any solution can be expressed as a linear combination of these.

We might as well note that this abstract formulation also applies to homo-
geneous linear differential equations over the constants: replace the space
of sequences with, say, the space of complex analytic functions in one vari-
able, and replace σ with the differentiation operator. The kth generalised
λ-eigenspace consists of f(x)eλx for f(x) a polynomial of degree at most
k − 1.


