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Difference sequences, sums of powers, and Stir-

ling numbers

Difference sequences

Notation:
If h0, h1, ... is a number sequence, we will sometimes refer to the sequence
just as h.

Definition:
∆ is the operator on number sequences of taking successive differences;
for a number sequence h, the number sequence ∆h is defined by

∆hn = hn+1 − hn.

∆2hn = ∆∆hn, etc.

We write out a sequence and its iterated differences as an infinite triangle;
e.g. if hn = n2, the iterated differences are as follows:

1 4 9 16 25 ...

3 5 7 9 ...

2 2 2 ...

0 0 ...

0 ...

Remark:
∆ is a linear operator, i.e. for sequences h and h′ and numbers c and c′,

∆(ch + c′h′)n = c∆hn + c′∆h′n.

Hence the powers ∆k are also linear.

Lemma:
Let f be a polynomial of degree at most d, and let hn = f(n) be the sequence
of its values on natural numbers.

Then ∆d+1hn = 0 for all n.

Proof:
By linearity, it suffices to show this for monomials f(x) = xd.

So let hn = nd, and suppose inductively that the lemma holds for polyno-
mials of degree less than d.

Then
∆hn = hn+1 − hn = (n + 1)d − nd

= nd + dnd−1 +
(
d
2

)
nd−2 + ... + 1− nd
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=
(
d
1

)
nd−1 +

(
d
2

)
nd−2 + ... + 1

which has degree d− 1.

So by the inductive hypothesis,
0 = ∆d∆hn = ∆d+1hn. �

Now suppose hn = f(n) with f a polynomial of degree d.
By the above lemma, the numbers h0,∆h0, ...,∆

dh0 determine the whole
sequence h,
since we can generate the whole triangle from the initial diagonal h0,∆h0, ...,∆

dh0, 0, 0, ....

Let’s find a formula for hn in terms of h0,∆h0, ...,∆
dh0.

Generating the triangle is a linear process,
so if we can find a formula for hn generated from an initial diagonal 0, 0, ..., 0, 1, 0, 0, ...,
with ∆kh0 = 1 and all other ∆ih0 = 0,
we can then take a linear combination.

We get a ”twisted Pascal’s triangle”, e.g.:

0 0 0 0 1 5 15 35 70 ...

0 0 0 1 4 10 20 35 ...

0 0 1 3 6 10 15 ...

0 1 2 3 4 5 ...

1 1 1 1 1 ...

0 0 0 0 ...

and so we see that hn =
(
n
k

)
.

To prove this: let f(x) := x(x−1)(x−2)...(x−(k−1))
k!

;
then f(0) = f(1) = ... = f(k − 1) = 0 and f(k) = 1,
so the difference triangle of f(n) also starts with

0 0 0 0 1

0 0 0 1

0 0 1

0 1

1

, and since by the lemma it also has 0s thereafter,
we must have hn = f(n).

Then we directly calculate that f(n) =
(
n
k

)
.

So, taking linear combinations, we conclude :

Theorem:
If the initial diagonal of the difference triangle of hn is c0, c1, ..., cd, 0, 0, ...
(i.e. if ∆kh0 = ci for k ≤ d, and ∆kh0 = 0 for k > d),
then

hn =
∑d

k=0 ck
(
n
k

)
.
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Sums of powers

We can use this theorem to give neat formulae for sums of powers
∑k

n=0 n
d,

generalising the formulae you know and love for d = 1 and d = 2 (and maybe
even d = 3, if you’re that generous with your affections),
and more generally to give formulae for

∑k
n=0 f(n) where f is any polyno-

mial.

First recall the formula (from the section on Binomial Coefficients)(
k+1
r+1

)
=
∑k

n=0

(
n
r

)
.

So to find
∑k

n=0 f(n), we can first use the above theorem to find an expres-
sion for f(n) in terms of binomial coefficients, then use this formula to sum
them.

Example:
Let’s find a formula for

∑k
n=0 n

4.

Drawing the start of the difference triangle,

0 1 16 81 256

1 15 65 175

14 50 110

36 60

24

, and recalling that all further rows are 0 since n4 has degree 4,
we see that the initial diagonal is 0, 1, 14, 36, 24, 0, 0, ....

So by the above theorem,
n4 =

(
n
1

)
+ 14

(
n
2

)
+ 36

(
n
3

)
+ 24

(
n
4

)
.

So using the formula(
k+1
r+1

)
=
∑k

n=0

(
n
r

)
,

we find∑k
n=0 n

4

=
∑k

n=0

((
n
1

)
+ 14

(
n
2

)
+ 36

(
n
3

)
+ 24

(
n
4

))
=
(
k+1
2

)
+ 14

(
k+1
3

)
+ 36

(
k+1
4

)
+ 24

(
k+1
5

)
Exercise:
Repeat this procedure for n1, n2 and n3, and check that the answers you get
agree with the standard formulae.

Stirling numbers

We would like to understand the mysterious numbers which appear in the
formula for

∑k
n=0 n

p,
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i.e the numbers c(p, k) defined by
c(p, k) := ∆kh0 where hn = np.

So as we saw, these are the numbers c(p, k) such that
np =

∑p
k=0 c(p, k)

(
n
k

)
.

We observe (and will eventually prove) that c(p, k) seems to be divisible by
k!, so set

S(p, k) := c(p, k)/k!.

So, introducing the notation [n]k := P (n, k) = k!
(
n
k

)
,

np =
∑p

k=0 S(p, k)[n]k.

These numbers S(p, k) are the Stirling numbers of the second kind.

Here’s a table, written in Pascal triangle format with k going across and p
going down, and starting with S(1, 1) = 1:

1

1 1

1 3 1

1 7 6 1

1 15 25 10 1

1 31 90 65 15 1

This corresponds to the formulae
n1 = [n]1
n2 = [n]1 + [n]2
n3 = [n]1 + 3[n]2 + [n]1
...

All values of S(p, k) not shown in the triangle are 0, except S(0, 0) = 1.

Lemma:
For all p > 0, and all k,

S(p, k) = S(p− 1, k − 1) + kS(p− 1, k).

Proof:
First, note that S(p, k) = 0 when k > p, by considering degrees of polyno-
mials.
Also S(p, k) = 0 when k < 0, by definition.

Now
np = nnp−1 = n

∑p−1
k=0 S(p− 1, k)[n]k

=
∑p−1

k=0 S(p− 1, k)((n− k) + k)[n]k
=
∑p−1

k=0 S(p− 1, k)[n]k+1 +
∑p−1

k=0 kS(p− 1, k)[n]k
=
∑p

k=1 S(p− 1, k − 1)[n]k +
∑p−1

k=0 kS(p− 1, k)[n]k
=
∑p

k=0 S(p− 1, k − 1)[n]k +
∑p

k=0 kS(p− 1, k)[n]k
(using S(p− 1,−1) = 0 = S(p− 1, p))

=
∑p

k=0(S(p− 1, k − 1) + kS(p− 1, k))[n]k,
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so we conclude by comparing coefficients with
np =

∑p
k=0 S(p, k)[n]k. �

Theorem:
S(p, k) is the number of partitions of a set of p objects into k indistinguish-
able boxes in which no box is empty,
i.e. the number of partitions of a set of size p into a set of k non-empty
subsets,
i.e. the number of sets of non-empty subsets of {1, ..., p} which are disjoint
and have union {1, ..., p}.

Proof:
Write S ′(p, k) for this number.

Suppose p ≥ 1 and 1 ≤ k ≤ p.
Consider a partition of {1, ..., p} into a set of k non-empty subsets,
and consider removing p.
First, suppose the set in the partition which contains p is just {p}.
Then on removing p, we obtain a partition of {1, ..., p−1} into k−1 subsets.
Otherwise, on removing p we obtain a partition of {1, ..., p−1} into k subsets.
In the first case, the map is bijective, but in the second case there are k
ways of obtaining the same partition of {1, ..., p − 1}, since p could have
been removed from any of the k sets in that partition.

So
S ′(p, k) = S ′(p− 1, k − 1) + kS ′(p− 1, k).

Clearly S ′(p, k) = 0 for k < 0 or k > p or p < 0, and S(0, 0) = 1.
So by induction on p, S(p, k) = S ′(p, k) for all p and k.
�

So now we know that S(p, k) is an integer.

Moreover, we can now reason combinatorially to find a formula for S(p, k):

Theorem:
For p ≥ 0 and 0 ≤ k ≤ p,

S(p, k) =
k∑

i=0

(−1)i
(k − i)p

i!(k − i)!

Proof:
Fix p and k.

Let P be the number of partitions of {1, ..., p} into an ordered sequence
of k non-empty subsets.
So P = k!S(p, k).

A partition of {1, ..., p} into an ordered sequence of k subsets,
with no restrictions on the subsets being non-empty,
just corresponds to a k-colouring of {1, ..., p},
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i.e. a choice of which of the k sets in the partition each element should go
in,
so there are kp such partitions.

Let Ai be the partitions of {1, ..., p} into an ordered sequence of k subsets,
where the ith is empty.

Such a partition corresponds to a partition into k−1 possibly empty subsets,
by ignoring the one which is required to be empty.
So |Ai| = (k − 1)p.

Similarly, |Ai∩Aj| = (k−2)p for i 6= j, and generally |
⋂

i∈I Ai| = (k−|I|)p.

So by inclusion-exclusion,

S(p, k) = 1
k!
P

= 1
k!

(kp − |
⋃

i Ai|)
= 1

k!
(kp −

∑
∅6=I⊆{1,...,k}(−1)|I|−1|

⋂
i∈I Ai|)

= 1
k!

(kp −
∑k

i=1(−1)i−1
(
k
i

)
(k − i)p)

= 1
k!

(
∑k

i=0(−1)i
(
k
i

)
(k − i)p)

=
∑k

i=0(−1)i (k−i)p
i!(k−i)!) �


