Difference sequences, sums of powers, and Stirling numbers

Difference sequences

Notation:

If h_{0}, h_{1}, \ldots is a number sequence, we will sometimes refer to the sequence just as h.

Definition:

Δ is the operator on number sequences of taking successive differences; for a number sequence h, the number sequence Δh is defined by

$$
\Delta h_{n}=h_{n+1}-h_{n} .
$$

$\Delta^{2} h_{n}=\Delta \Delta h_{n}$, etc.
We write out a sequence and its iterated differences as an infinite triangle; e.g. if $h_{n}=n^{2}$, the iterated differences are as follows:

Remark:

Δ is a linear operator, i.e. for sequences h and h^{\prime} and numbers c and c^{\prime},

$$
\Delta\left(c h+c^{\prime} h^{\prime}\right)_{n}=c \Delta h_{n}+c^{\prime} \Delta h_{n}^{\prime} .
$$

Hence the powers Δ^{k} are also linear.

Lemma:

Let f be a polynomial of degree at most d, and let $h_{n}=f(n)$ be the sequence of its values on natural numbers.

Then $\Delta^{d+1} h_{n}=0$ for all n.

Proof:

By linearity, it suffices to show this for monomials $f(x)=x^{d}$.
So let $h_{n}=n^{d}$, and suppose inductively that the lemma holds for polynomials of degree less than d.

Then

$$
\begin{aligned}
\Delta h_{n} & =h_{n+1}-h_{n}=(n+1)^{d}-n^{d} \\
& =n^{d}+d n^{d-1}+\binom{d}{2} n^{d-2}+\ldots+1-n^{d}
\end{aligned}
$$

$$
=\binom{d}{1} n^{d-1}+\binom{d}{2} n^{d-2}+\ldots+1
$$

which has degree $d-1$.
So by the inductive hypothesis, $0=\Delta^{d} \Delta h_{n}=\Delta^{d+1} h_{n}$.

Now suppose $h_{n}=f(n)$ with f a polynomial of degree d.
By the above lemma, the numbers $h_{0}, \Delta h_{0}, \ldots, \Delta^{d} h_{0}$ determine the whole sequence h,
since we can generate the whole triangle from the initial diagonal $h_{0}, \Delta h_{0}, \ldots, \Delta^{d} h_{0}, 0,0, \ldots$.
Let's find a formula for h_{n} in terms of $h_{0}, \Delta h_{0}, \ldots, \Delta^{d} h_{0}$.
Generating the triangle is a linear process,
so if we can find a formula for h_{n} generated from an initial diagonal $0,0, \ldots, 0,1,0,0, \ldots$,
with $\Delta^{k} h_{0}=1$ and all other $\Delta^{i} h_{0}=0$,
we can then take a linear combination.
We get a "twisted Pascal's triangle", e.g.:

and so we see that $h_{n}=\binom{n}{k}$.
To prove this: let $f(x):=\frac{x(x-1)(x-2) \ldots(x-(k-1))}{k!}$;
then $f(0)=f(1)=\ldots=f(k-1)=0$ and $f(k)=1$,
so the difference triangle of $f(n)$ also starts with

, and since by the lemma it also has 0 s thereafter, we must have $h_{n}=f(n)$.
Then we directly calculate that $f(n)=\binom{n}{k}$.
So, taking linear combinations, we conclude :

Theorem:

If the initial diagonal of the difference triangle of h_{n} is $c_{0}, c_{1}, \ldots, c_{d}, 0,0, \ldots$
(i.e. if $\Delta^{k} h_{0}=c_{i}$ for $k \leq d$, and $\Delta^{k} h_{0}=0$ for $k>d$),
then

$$
h_{n}=\sum_{k=0}^{d} c_{k}\binom{n}{k} .
$$

Sums of powers

We can use this theorem to give neat formulae for sums of powers $\sum_{n=0}^{k} n^{d}$, generalising the formulae you know and love for $d=1$ and $d=2$ (and maybe even $d=3$, if you're that generous with your affections), and more generally to give formulae for $\sum_{n=0}^{k} f(n)$ where f is any polynomial.

First recall the formula (from the section on Binomial Coefficients)

$$
\binom{k+1}{r+1}=\sum_{n=0}^{k}\binom{n}{r} .
$$

So to find $\sum_{n=0}^{k} f(n)$, we can first use the above theorem to find an expression for $f(n)$ in terms of binomial coefficients, then use this formula to sum them.

Example:

Let's find a formula for $\sum_{n=0}^{k} n^{4}$.
Drawing the start of the difference triangle,

0	1	16	81	256
1		$15 \quad 65$	175	
	$14 \quad 50 \quad 110$			
	$36 \quad 60$			
	24			

, and recalling that all further rows are 0 since n^{4} has degree 4, we see that the initial diagonal is $0,1,14,36,24,0,0, \ldots$.

So by the above theorem,

$$
n^{4}=\binom{n}{1}+14\binom{n}{2}+36\binom{n}{3}+24\binom{n}{4} .
$$

So using the formula

$$
\binom{k+1}{r+1}=\sum_{n=0}^{k}\binom{n}{r},
$$

we find

$$
\begin{aligned}
& \sum_{n=0}^{k} n^{4} \\
& \quad=\sum_{n=0}^{k}\left(\binom{n}{1}+14\binom{n}{2}+36\binom{n}{3}+24\binom{n}{4}\right) \\
& \quad=\binom{k+1}{2}+14\binom{k+1}{3}+36\binom{k+1}{4}+24\binom{k+1}{5}
\end{aligned}
$$

Exercise:

Repeat this procedure for n^{1}, n^{2} and n^{3}, and check that the answers you get agree with the standard formulae.

Stirling numbers

We would like to understand the mysterious numbers which appear in the formula for $\sum_{n=0}^{k} n^{p}$,
i.e the numbers $c(p, k)$ defined by

$$
c(p, k):=\Delta^{k} h_{0} \text { where } h_{n}=n^{p} .
$$

So as we saw, these are the numbers $c(p, k)$ such that

$$
n^{p}=\sum_{k=0}^{p} c(p, k)\binom{n}{k} .
$$

We observe (and will eventually prove) that $c(p, k)$ seems to be divisible by k !, so set

$$
S(p, k):=c(p, k) / k!.
$$

So, introducing the notation $[n]_{k}:=P(n, k)=k!\binom{n}{k}$,

$$
n^{p}=\sum_{k=0}^{p} S(p, k)[n]_{k} .
$$

These numbers $S(p, k)$ are the Stirling numbers of the second kind.
Here's a table, written in Pascal triangle format with k going across and p going down, and starting with $S(1,1)=1$:

	1						
	11						
			3	3	1		
	1	7	7	6	6	1	
1	1					0	1
1	31	9	90	65	65	15	

This corresponds to the formulae

$$
\begin{aligned}
& n^{1}=[n]_{1} \\
& n^{2}=[n]_{1}+[n]_{2} \\
& n^{3}=[n]_{1}+3[n]_{2}+[n]_{1}
\end{aligned}
$$

All values of $S(p, k)$ not shown in the triangle are 0 , except $S(0,0)=1$.

Lemma:

For all $p>0$, and all k,

$$
S(p, k)=S(p-1, k-1)+k S(p-1, k) .
$$

Proof:

First, note that $S(p, k)=0$ when $k>p$, by considering degrees of polynomials.
Also $S(p, k)=0$ when $k<0$, by definition.
Now

$$
\begin{aligned}
n^{p}= & n n^{p-1}=n \sum_{k=0}^{p-1} S(p-1, k)[n]_{k} \\
& =\sum_{k=0}^{p-1} S(p-1, k)((n-k)+k)[n]_{k} \\
& =\sum_{k=0}^{p=1} S(p-1, k)[n]_{k+1}+\sum_{k=0}^{p-1} k S(p-1, k)[n]_{k} \\
& =\sum_{k=1}^{p=1} S(p-1, k-1)[n]_{k}+\sum_{k=0}^{p-1} k S(p-1, k)[n]_{k} \\
& =\sum_{k=0}^{p} S(p-1, k-1)[n]_{k}+\sum_{k=0}^{p} k S(p-1, k)[n]_{k} \\
& \quad(u \operatorname{sing} S(p-1,-1)=0=S(p-1, p)) \\
& =\sum_{k=0}^{p}(S(p-1, k-1)+k S(p-1, k))[n]_{k},
\end{aligned}
$$

so we conclude by comparing coefficients with

$$
n^{p}=\sum_{k=0}^{p} S(p, k)[n]_{k} .
$$

Theorem:

$S(p, k)$ is the number of partitions of a set of p objects into k indistinguishable boxes in which no box is empty,
i.e. the number of partitions of a set of size p into a set of k non-empty subsets,
i.e. the number of sets of non-empty subsets of $\{1, \ldots, p\}$ which are disjoint and have union $\{1, \ldots, p\}$.

Proof:

Write $S^{\prime}(p, k)$ for this number.
Suppose $p \geq 1$ and $1 \leq k \leq p$.
Consider a partition of $\{1, \ldots, p\}$ into a set of k non-empty subsets, and consider removing p.
First, suppose the set in the partition which contains p is just $\{p\}$.
Then on removing p, we obtain a partition of $\{1, \ldots, p-1\}$ into $k-1$ subsets.
Otherwise, on removing p we obtain a partition of $\{1, \ldots, p-1\}$ into k subsets. In the first case, the map is bijective, but in the second case there are k ways of obtaining the same partition of $\{1, \ldots, p-1\}$, since p could have been removed from any of the k sets in that partition.

So

$$
S^{\prime}(p, k)=S^{\prime}(p-1, k-1)+k S^{\prime}(p-1, k) .
$$

Clearly $S^{\prime}(p, k)=0$ for $k<0$ or $k>p$ or $p<0$, and $S(0,0)=1$.
So by induction on $p, S(p, k)=S^{\prime}(p, k)$ for all p and k.

So now we know that $S(p, k)$ is an integer.
Moreover, we can now reason combinatorially to find a formula for $S(p, k)$:

Theorem:

For $p \geq 0$ and $0 \leq k \leq p$,

$$
S(p, k)=\sum_{i=0}^{k}(-1)^{i} \frac{(k-i)^{p}}{i!(k-i)!}
$$

Proof:

Fix p and k.
Let P be the number of partitions of $\{1, \ldots, p\}$ into an ordered sequence of k non-empty subsets.
So $P=k!S(p, k)$.
A partition of $\{1, \ldots, p\}$ into an ordered sequence of k subsets, with no restrictions on the subsets being non-empty, just corresponds to a k-colouring of $\{1, \ldots, p\}$,
i.e. a choice of which of the k sets in the partition each element should go in,
so there are k^{p} such partitions.
Let A_{i} be the partitions of $\{1, \ldots, p\}$ into an ordered sequence of k subsets, where the i th is empty.

Such a partition corresponds to a partition into $k-1$ possibly empty subsets, by ignoring the one which is required to be empty.
So $\left|A_{i}\right|=(k-1)^{p}$.
Similarly, $\left|A_{i} \cap A_{j}\right|=(k-2)^{p}$ for $i \neq j$, and generally $\left|\bigcap_{i \in I} A_{i}\right|=(k-|I|)^{p}$.
So by inclusion-exclusion,

$$
\begin{aligned}
& S(p, k)=\frac{1}{k!} P \\
& \quad=\frac{1}{k!}\left(k^{p}-\left|\bigcup_{i} A_{i}\right|\right) \\
& \quad=\frac{1}{k!}\left(k^{p}-\sum_{\emptyset \neq I \subseteq\{1, \ldots, k\}}(-1)^{|I|-1}\left|\bigcap_{i \in I} A_{i}\right|\right) \\
& \quad=\frac{1}{k!}\left(k^{p}-\sum_{i=1}^{k}(-1)^{i-1}\binom{k}{i}(k-i)^{p}\right) \\
& \quad=\frac{1}{k!}\left(\sum_{i=0}^{k}(-1)^{i}\binom{k}{i}(k-i)^{p}\right) \\
& \left.\quad=\sum_{i=0}^{k}(-1)^{i} \frac{(k-i)^{p}}{i!(k-i)!}\right)
\end{aligned}
$$

