Permutations

A permutation of a finite set S is an ordered list of its elements.
An r-permutation of S is an ordered list of r of its elements.

Warning:

there is another, related, meaning of 'permutation': an element of the group of bijections of S. We won't use that meaning in this course.
$P(n, r):=$ number of r-permutations of a set of size n.
e.g. $\quad P(26,5)=$ number of strings of 5 distinct letters from the Roman alphabet.

By the multiplication principle,
$P(n, r)=n *(n-1) * \ldots *(n-(r-1))(n$ choices for first, $n-1$ for second...)
$P(n, r)=n!/(n-r)!$
$P(n, n)=n!$

Remark:

Can interpret " $P(n, r)=n!/(n-r)!$ " as follows:
We can obtain an r-permutation of S by taking the first r elements of a permutation of S.
Partition the permutations of S according to the r-permutation which results from this: we see that the elements of each set of the partition correspond to the permutations of the left-over $n-r$ elements, so we recover the formula by the division principle.

A circular r-permutation of a set is a way of putting r of its elements around a circle, with two such considered equal if one can be rotated to the other.

We can obtain a circular r-permutation from an r-permutation by "joining the ends into a circle". Each circular r-permutation is obtained from r different r-permutations, so by the division principle:
number of circular r-permutations of n elements

$$
\begin{aligned}
& =P(n, r) / r \\
& =n!/ r(n-r)!
\end{aligned}
$$

Example:

How many different kinds of necklace can be made from 7 spherical beads of different colours? Consider two necklaces to be of the same kind when they can be non-destructively manipulated to look the same.

Solution:

There are $7!/ 7=6$! circular permutations of the 13 colours. Each kind of necklace is obtained from exactly two circular permutations, because flipping the necklace in space doesn't change the kind. So the answer is

$$
6!/ 2=360
$$

Example:

How many ways can 13 people be sat around a round table, if Professor Q is not to be sat next to his arch-nemesis Inspector P?

Solution:

Without the restriction, there would be 12 ! seating arrangements.
Consider seating everyone but P ; each such arrangement yields two forbidden arrangements of all 13 , one by placing P to Q's right and one by placing P to Q's left. We count each forbidden arrangement once in this way.

So the answer is $12!-2 * 11!=10 * 11!=399168000$

Subsets ("Combinations")

$C(n, r)=\binom{n}{r}=$ number of r-subsets of a set of size n.
e.g. $\binom{26}{5}=$ number of unordered selections of 5 letters from the roman alphabet

Theorem:

$\binom{n}{r}=n!/ r!(n-r)$!

Proof:

The r-permutations of a set are precisely the permutations of the r-subsets. Each r-subset has r ! permutations, so

$$
P(n, r)=r!*\binom{n}{r}
$$

So

$$
\begin{aligned}
\binom{n}{r} & =P(n, r) / r! \\
& =n!/ r!(n-r)!
\end{aligned}
$$

$\binom{n}{r}$ is also called a "binomial coefficient".

Example:

If we expand out $(x+y)^{n}$ and collect terms to obtain

$$
a_{0} x^{n}+a_{1} x^{n-1} y+\ldots+a_{n-1} x y^{n-1}+a_{n} y^{n}
$$

what are the coefficients a_{k} ?

Solution:

a_{k} is the number of ways of choosing $y k$ times when we have to choose either x or y from each factor of the product

$$
(x+y)(x+y) \ldots(x+y)(n \text { times })
$$

which is the number of subsets of this set of n factors.
So $a_{k}=\binom{n}{k}$.

Theorem [Pascal's Formula]:

If $0<k<n$,

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}
$$

Proof:

$|S|=n$.
Fix $x \in S$; let $S^{\prime}:=S \backslash\{x\}$.
Partition the k-subsets of S according to whether they contain x.
Those which don't correspond to k-subsets of S^{\prime},
those which do correspond to $(k-1)$-subsets of S^{\prime}.

Theorem:

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

Proof:

$|S|=n$.
$\sum_{k=0}^{n}\binom{n}{k}=$ number of subsets of S.
But to choose a subset of S is to choose for each element of S whether it should or should not go in to the subset. That's two choices for each of the n elements, so by the multiplication principle there are $2 * 2 * \ldots * 2=2^{n}$ subsets of S.

