Multisets

Example:

A bag of Scrabble tiles contains 100 tiles: 10 A's, 2 B's, 2 C's, 5 D's and so on.

When you start a game, you take 7 letters from the bag, and put them on a rack. How many possible hands can you get, if we say that the order of the tiles on the rack matters? How about if it doesn't?
A multiset is a "set with multiplicity".
Notation: $\{2 * a, 3 * b, 1 * c\}$
(Think of a "bag" with $2 a$'s, 3 's and a c in it.)
We also allow "infinite multiplicity", denoted $\{\infty * a\}$.
Multiplicities are also called "repetition numbers".
The size of a multiset is the sum of the multiplicities (may be ∞).
An r-permutation of a multiset is an ordered list of r elements from the multiset;
e.g. the 2-permutations of $\{2 * a, 1 * b\}$ are $a a, a b, b a$;
the 3-permutations of $\{\infty * a, 2 * b\}$ are $a a a, a a b, a b a, b a a, a b b, b a b, b b a$.

A permutation of a multiset of size n is an n-permutation.
Example: how many permutations are there of the unfortunate scrabble hand $\{4 * U, 1 * J, 2 * K\}$?

Theorem:

Let S be a multiset with k types with finite multiplicities n_{1}, \ldots, n_{k}.
Let $n=\Sigma_{i} n_{i}$ be the size of S.
Then the number of permutations of S is

$$
n!/ n_{1}!* n_{2}!* \ldots * n_{k}!
$$

Proof:

Label the elements $1, \ldots, n$. Each permutation of $\{1, \ldots, n\}$ yields a permutation of S, and two yield the same permutation precisely when we can get one from another by permuting the labels on elements of the same type.
So there are $n_{1}!* n_{2}!* \ldots * n_{k}$! permutations of $\{1, \ldots, n\}$ per permutation of S. We conclude by the division principle.

Example:

We have 4 black rooks and 4 white rooks. How many ways are there of putting them on a chess board such that no two are attacking (/defending) each other? e.g.

```
    .......R 8
    ....r... 5
    ..R..... 3
    ......R. }
    ...r.... 4
    .R...... 2
    .....r.. 6
    r....... 1
```


Solution:

First, just choose the 8 squares for them to occupy.
By listing off the filled columns row-by-row, a choice corresponds to a permutation of the columns, so there are 8 !.

For a given such choice, a choice of colours corresponds to a permutation of the multiset $\{4 * r, 4 * R\}$.

So the answer is

$$
8!*(8!/ 4!* 4!)=2822400
$$

An r-submultiset, or r-combination, of a multiset S is a multiset S^{\prime} of size r such that for all x,
the multiplicity of x in S^{\prime} is at most the multiplicity of x in S.
e.g. the 2 -submultisets of $\{3 * a, b\}$ are $\{2 * a\},\{1 * a, 1 * b\}$.

Theorem:

The number of r-combinations of a multiset with k types each with multiplicity at least r is

$$
\binom{r+k-1}{r}
$$

Example:

If we have a bag containing red, green and blue marbles, with many of each, and we draw 5 marbles from the bag, how many possible results (numbers of each colour drawn) are there?
Answer: $\binom{5+3-1}{5}=\binom{7}{5}=7!/ 2!5!=21$

Proof:

We can identify an r-submultiset with an arrangement of $k-1$ partitions interspersed among r identical objects, by counting the numbers of objects between the partitions; e.g. with $k=6$ and $r=8$
ooloool|olool
corresponds to

$$
\left\{2 * a_{1}, 3 * a_{2}, 0 * a_{3}, 1 * a_{4}, 2 * a_{5}, 0 * a_{6}\right\} .
$$

These arrangements correspond to choosing r of the $r+k-1$ characters to be 'o's, so the number of such arrangements is $\binom{r+k-1}{r}$.

