Pigeonhole Principles

Pigeonhole Principle (PP):

If some pigeons are in some pigeonholes, and there are fewer pigeonholes than there are pigeons, then some pigeonhole must contain at least two pigeons.

// The "pigeons" and "pigeonholes" can be abstract!

Example:

If there are 367 people in a room, there must be two who share a common birthday.

Interlude: maps and numbers

 $f: X \to Y$ map between finite sets.

For $y \in Y$, $f^{-1}(y) =$ "fibre of f over y" = $\{x \mid f(x) = y\}$.

Recall:

- f is surjective aka <u>onto</u>, written $f: X \to Y$, if for all $y \in Y$, $|f^{-1}(y)| \ge 1$
- f is injective aka $\underline{1-1}$, written $f: X \longrightarrow Y$, if for all $y \in Y$, $|f^{-1}(y)| \leq 1$
- f is bijective aka a (1-1) correspondence aka invertible, written f : X = Y,
 if f is both injective and surjective,
 i.e. if for all y ∈ Y, |f⁻¹(y)| = 1

Remark:

If f is

- injective then $|X| \le |Y|$ (Pigeonhole principle)
- surjective then $|X| \ge |Y|$
- bijective then |X| = |Y|

Applications of the Pigeonhole principle

Example:

If I take 13 coins, divide them into 9 piles, placed in a row, then there will be a group of neighbouring piles within the row such that there are exactly 4 coins in the group. (Generally: n coins, m piles; must be k coins in a contiguous group if n+k<2*m(this isn't sharp))

Proof:

Let $a_i :=$ number of coins in first *i* piles, $1 \le i \le 9$. Consider the 18 numbers $a_1, a_2, \dots, a_9, a_1 + 4, a_2 + 4, \dots, a_9 + 4$.

Since $1 \le a_i \le 13$, these numbers are all between 1 and 17. So by the PP, two must be equal.

Since no two a_i are equal (since the piles are non-empty), and similarly no two $a_i + 4$ are equal, we must have $a_i = a_j + 4$ for some i,j.

So $a_i - a_j = 4$, so 4 is the sum of the sizes of the piles after *i* and up to *j*, namely piles i + 1, ..., j.

Example:

Using as many coins as I want,

I make a row of k piles.

Then there is a group of neighbouring piles such that the number of coins in the group is divisible by k.

Proof:

Let a_1, \ldots, a_k be as above.

Let r_i be the remainder on dividing a_i by k. If any $r_i = 0$, we're done. Else, $0 < r_i < k$, so by the PP, two remainders are equal, $r_i = r_j$. But then $a_i - a_j$ is divisible by 7, and we conclude as in the previous example.

Packed Pigeonhole Principle

Packed Pigeonhole Principle (PPP):

If there are more than k * n pigeons in n pigeonholes,

then some pigeonhole contains more than k pigeons.

(Note: "Packed" is not standard terminology. This principle is commonly referred to as the pigeonhole principle. Brualdi calls something slightly more general (but less pleasing) the "strong pigeonhole principle", but I don't think we need to cover it)

Example:

If $a_1, ..., a_{n^2+1}$ is a sequence of $n^2 + 1$ real numbers, there is a subsequence of length n + 1 which is monotonic, i.e. is either (nonstrictly) increasing or (nonstrictly) decreasing.

Proof:

Suppose there is no increasing subsequence of length n + 1.

Let l_i be the length of the longest increasing subsequence starting with a_i . So $1 \le l_i \le n$.

So by the PPP, n + 1 of these $n^2 + 1$ numbers are equal; say $l_{i_1} = \ldots = l_{i_{n+1}}$.

Now suppose $a_{i_j} < a_{i_{j+1}}$. Then we can extend the longest increasing subsequence starting with $a_{i_{j+1}}$ to a longer one starting with a_{i_j} , by prepending a_{i_j} . This contradicts $l_{i_j} = l_{i_{j+1}}$.

So $(a_{i_i})_j$ is a decreasing sequence of length n+1.

Abstract version:

If $f: X \to Y$ is a surjection, and if all fibres are of size at most k, i.e. $|f^{-1}(y)| \leq k$ for all y, then $|X| \leq k|Y|$.

Remark (Division principle, map form):

If $f : X \rightarrow Y$ is a surjection, and if all fibres have size exactly k, i.e. $|f^{-1}(y)| = k$ for all y, then |X| = k|Y|.

(Proof: partition X according to the value of f, apply division principle)

Averaging principle:

Given integers $a_1, ..., a_n$, some a_i is at least the average, $a_i \ge (a_1 + ... + a_n)/n$ (Note the average might not be an integer!)

Packed Pigeonhole follows from averaging:

if there are more than k * n pigeons, then the average number of pigeons per pigeonhole is more than k; some pigeonhole has at least the average number of pigeons, so has more than k pigeons.

Example: Discs (p.75)