Pigeonhole Principles

Pigeonhole Principle (PP):

If some pigeons are in some pigeonholes,
and there are fewer pigeonholes than there are pigeons,
then some pigeonhole must contain at least two pigeons.
// The "pigeons" and "pigeonholes" can be abstract!

Example:

If there are 367 people in a room,
there must be two who share a common birthday.

Interlude: maps and numbers

$f: X \rightarrow Y$ map between finite sets.
For $y \in Y, f^{-1}(y)="$ fibre of f over $y "=\{x \mid f(x)=y\}$.

Recall:

- f is surjective aka onto, written $f: X \rightarrow Y$, if for all $y \in Y,\left|f^{-1}(y)\right| \geq 1$
- f is injective aka $1-1$, written $f: X \hookrightarrow Y$,
if for all $y \in Y,\left|f^{-1}(y)\right| \leq 1$
- f is bijective aka a (1-1) correspondence aka invertible,
written $f: X \xrightarrow{\equiv} Y$,
if f is both injective and surjective,
i.e. if for all $y \in Y,\left|f^{-1}(y)\right|=1$

Remark:

If f is

- injective then $|X| \leq|Y|$ (Pigeonhole principle)
- surjective then $|X| \geq|Y|$
- bijective then $|X|=|Y|$

Applications of the Pigeonhole principle

Example:

If I take 13 coins, divide them into 9 piles, placed in a row, then there will be a group of neighbouring piles within the row such that
there are exactly 4 coins in the group.
(Generally: n coins, m piles; must be k coins in a contiguous group if
$n+k<2 * m$
(this isn't sharp))

Proof:

Let $a_{i}:=$ number of coins in first i piles, $1 \leq i \leq 9$.
Consider the 18 numbers

$$
a_{1}, a_{2}, \ldots, a_{9}, a_{1}+4, a_{2}+4, \ldots, a_{9}+4
$$

Since $1 \leq a_{i} \leq 13$, these numbers are all between 1 and 17 .
So by the PP, two must be equal.
Since no two a_{i} are equal (since the piles are non-empty), and similarly no two $a_{i}+4$ are equal, we must have $a_{i}=a_{j}+4$ for some i, j.
So $a_{i}-a_{j}=4$,
so 4 is the sum of the sizes of the piles after i and up to j, namely piles $i+1, \ldots, j$.

Example:

Using as many coins as I want, I make a row of k piles.
Then there is a group of neighbouring piles such that the number of coins in the group is divisible by k.

Proof:

Let a_{1}, \ldots, a_{k} be as above.
Let r_{i} be the remainder on dividing a_{i} by k.
If any $r_{i}=0$, we're done.
Else, $0<r_{i}<k$,
so by the PP, two remainders are equal,
$r_{i}=r_{j}$.
But then $a_{i}-a_{j}$ is divisible by 7 , and we conclude as in the previous example.

Packed Pigeonhole Principle

Packed Pigeonhole Principle (PPP):

If there are more than $k * n$ pigeons in n pigeonholes, then some pigeonhole contains more than k pigeons.
(Note: "Packed" is not standard terminology. This principle is commonly referred to as the pigeonhole principle. Brualdi calls something slightly more general (but less pleasing) the "strong pigeonhole principle", but I don't think we need to cover it)

Example:

If $a_{1}, \ldots, a_{n^{2}+1}$ is a sequence of $n^{2}+1$ real numbers, there is a subsequence of length $n+1$ which is monotonic, i.e. is either (nonstrictly) increasing or (nonstrictly) decreasing.

Proof:

Suppose there is no increasing subsequence of length $n+1$.
Let l_{i} be the length of the longest increasing subsequence starting with a_{i}. So $1 \leq l_{i} \leq n$.

So by the PPP, $n+1$ of these $n^{2}+1$ numbers are equal;
say $l_{i_{1}}=\ldots=l_{i_{n+1}}$.
Now suppose $a_{i_{j}}<a_{i_{j+1}}$.
Then we can extend the longest increasing subsequence starting with $a_{i_{j+1}}$ to a longer one starting with $a_{i_{j}}$, by prepending $a_{i_{j}}$.
This contradicts $l_{i_{j}}=l_{i_{j+1}}$.
So $\left(a_{i_{j}}\right)_{j}$ is a decreasing sequence of length $n+1$.

Abstract version:

If $f: X \rightarrow Y$ is a surjection, and if all fibres are of size at most k, i.e. $\left|f^{-1}(y)\right| \leq k$ for all y, then $|X| \leq k|Y|$.

Remark (Division principle, map form):

If $f: X \rightarrow Y$ is a surjection, and if all fibres have size exactly k,
i.e. $\left|f^{-1}(y)\right|=k$ for all y,
then $|X|=k|Y|$.
(Proof: partition X according to the value of f, apply division principle)

Averaging principle:

Given integers a_{1}, \ldots, a_{n},
some a_{i} is at least the average,

$$
a_{i} \geq\left(a_{1}+\ldots+a_{n}\right) / n
$$

(Note the average might not be an integer!)

Packed Pigeonhole follows from averaging:

if there are more than $k * n$ pigeons,
then the average number of pigeons per pigeonhole is more than k ;
some pigeonhole has at least the average number of pigeons,
so has more than k pigeons.

Example:
Discs (p.75)

