Ramsey Theory

Example:

Given 6 people,
either there are 3 who all like each other,
or there are 3 no two of whom like each other.

```
Abstract version:
K
    =n points with an edge between each pair.
```

Colour the edges of K_{6} each either red or blue, then there's a red copy of K_{3} or there's a blue copy of K_{3}; i.e. there is a monochromatic triangle.

Denote this fact

$$
K_{6} \rightarrow K_{3}, K_{3}
$$

Proof:
Pick a vertex v_{0}.
Consider the 5 edges from it.
3 of them are red or 3 of them are blue, since $5>(3-1)+(3-1)$.
Say 3 are red, and consider the 3 other vertices of these red edges.
If the edges between them are all blue, they form a blue triangle and we're done.
Else, some edge is red; but then it along with the edges from v_{0} form a red triangle, and we're done.

Ramsey's Theorem for 2-coloured graphs:

Given n and m positive integers, there exists r such that for any red-blue colouring of the edges of K_{r}, there are n vertices all edges between which are red or there are m vertices all edges between which are blue.

Notation:

We write

$$
K_{r} \rightarrow K_{n}, K_{m}
$$

to mean that r has this property, and we let $r(m, n)$ ("the (m,n)th Ramsey number") be the least such r.

Remarks:

We saw that $K_{6} \rightarrow K_{3}, K_{3}$;
it's easy to see that $K_{5} \nrightarrow K_{3}, K_{3}$,
so $r(3,3)=6$.
It has been shown that

$$
r(3,4)=9
$$

$r(3,5)=14$
$r(4,4)=18$
$r(5,5)$ is unknown! All we know is
$43 \leq r(5,5) \leq 49$.
Erdös:
"Suppose aliens invade the earth and threaten to obliterate it in a year's time unless human beings can find the Ramsey number for red five and blue five. We could marshal the world's best minds and fastest computers, and within a year we could probably calculate the value. If the aliens demanded the Ramsey number for red six and blue six, however, we would have no choice but to launch a preemptive attack."

Proof of Theorem:

Suppose inductively that

$$
K_{b} \rightarrow K_{n-1}, K_{m}
$$

and

$$
K_{c} \rightarrow K_{n}, K_{m-1}
$$

We show that

$$
K_{b+c} \rightarrow K_{n}, K_{m}
$$

So colour K_{b+c}, and suppose there's no red K_{n} and no blue K_{m}.
Pick a vertex v_{0}; consider the $b+c-1$ edges from it.
Since $b+c-1>(b-1)+(c-1)$,
b of the edges are red or c of the edges are blue.
Say b are red.
Consider the K_{b} formed by the vertices these edges connect to v_{0}.
By the inductive hypothesis, it contains a red K_{n-1} or a blue K_{m}.
If it contains a red K_{n-1}, adjoining v_{0} yields a red K_{n};
contradiction.
If it contains a blue K_{m}, then so does our original K_{b+c};
contradiction.
A symmetrical argument applies in the case that c of the edges from v_{0} are blue.

Remark:

This proof yields a recursive upper bound on the Ramsey numbers:

$$
r(m, n) \leq r(n-1, m)+r(n, m-1)
$$

(but this is far from sharp).

