Ramsey Theory

Example:

Given 6 people, either there are 3 who all like each other, or there are 3 no two of whom like each other.

Abstract version:

 $K_n :=$ "complete graph on *n* vertices" = *n* points with an edge between each pair.

Colour the edges of K_6 each either red or blue, then there's a red copy of K_3 or there's a blue copy of K_3 ; i.e. there is a monochromatic triangle.

Denote this fact

 $K_6 \rightarrow K_3, K_3$

Proof:

Pick a vertex v_0 .

Consider the 5 edges from it.

3 of them are red or 3 of them are blue, since 5 > (3-1) + (3-1).

Say 3 are red, and consider the 3 other vertices of these red edges.

If the edges between them are all blue, they form a blue triangle and we're done.

Else, some edge is red; but then it along with the edges from v_0 form a red triangle, and we're done.

Ramsey's Theorem for 2-coloured graphs:

Given n and m positive integers,

there exists r such that for any red-blue colouring of the edges of K_r , there are n vertices all edges between which are red or there are m vertices all edges between which are blue.

Notation:

We write

 $K_r \to K_n, K_m$ to mean that r has this property, and we let r(m, n) ("the (m,n)th Ramsey number") be the least such r.

Remarks:

We saw that $K_6 \rightarrow K_3, K_3$; it's easy to see that $K_5 \not\rightarrow K_3, K_3$, so r(3,3) = 6.

It has been shown that r(3,4) = 9

r(3,5) = 14 r(4,4) = 18 r(5,5) is unknown! All we know is 43 < r(5,5) < 49.

Erdös:

"Suppose aliens invade the earth and threaten to obliterate it in a year's time unless human beings can find the Ramsey number for red five and blue five. We could marshal the world's best minds and fastest computers, and within a year we could probably calculate the value. If the aliens demanded the Ramsey number for red six and blue six, however, we would have no choice but to launch a preemptive attack."

Proof of Theorem:

Suppose inductively that

 $K_b \to K_{n-1}, K_m$ and $K_c \to K_n, K_{m-1}.$

We show that

 $K_{b+c} \to K_n, K_m.$

So colour K_{b+c} , and suppose there's no red K_n and no blue K_m .

Pick a vertex v_0 ; consider the b + c - 1 edges from it. Since b + c - 1 > (b - 1) + (c - 1), b of the edges are red or c of the edges are blue.

Say b are red.

Consider the K_b formed by the vertices these edges connect to v_0 . By the inductive hypothesis, it contains a red K_{n-1} or a blue K_m . If it contains a red K_{n-1} , adjoining v_0 yields a red K_n ; contradiction. If it contains a blue K_m , then so does our original K_{b+c} ; contradiction.

A symmetrical argument applies in the case that c of the edges from v_0 are blue.

Remark:

This proof yields a recursive upper bound on the Ramsey numbers:

 $r(m,n) \le r(n-1,m) + r(n,m-1)$

(but this is far from sharp).