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Binomial coefficients

Miscellaneous Curiosities

Recall:

• For n a non-negative integer and r an integer,(
n
r

)
= number of subsets of size r of a set of size n
= n!

n!(n−r)! if 0 ≤ r ≤ n
= 0 else.

• Pascal’s triangle

• Pascal’s Formula:
(
n
r

)
=
(
n−1
r

)
+
(
n−1
r−1

)
•
(
n
r

)
=
(
n
n−r

)
•
∑n

r=0

(
n
r

)
= 2n

• (x+ y)n =
∑n

r=0

(
n
r

)
xn−ryr

Remark:(
n
r

)
= number of paths from root of Pascal’s triangle to the (n, r) position.

Further identities:

• k
(
n
k

)
= n

(
n−1
k−1

)
(immediate from

(
n
k

)
= n(n−1)...(n−k+1)

k(k−1)...1 )

• (x+ 1)n =
∑n

r=0

(
n
r

)
xr

• 0 = ((−1) + 1)n =
∑n

r=0

(
n
r

)
(−1)r;

so alternating sum of binomial coefficients is 0;
so sum of even coefficients = sum of odd coefficients = 2n−1.

Yet further identities:

(i)
(
n+1
r+1

)
=
∑n

s=0

(
s
r

)
(ii)

∑n
r=0

(
n
r

)2
=
(
2n
n

)
(iii)

∑n
r=0 r

(
n
r

)
= n2n−1

Proofs:

(i) Iteratively apply Pascal’s formula:(
n+1
r+1

)
=
(
n
r+1

)
+
(
n
r

)
=
(
n−1
r+1

)
+
(
n−1
r

)
= ...
=
(

0
r+1

)
+
(
0
r

)
+ ...+

(
n−1
r

)
=
(
0
r

)
+ ...+

(
n−1
r

)
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Alternative inductive proof:
Easily holds for n = r = 0.
Suppose inductively it holds for smaller n+ r.
Then using Pascal’s formula, we have:(
n+1
r+1

)
=
(
n
r+1

)
+
(
n
r

)
=
∑n−1

k=0

(
k
r

)
+
∑n−1

k=0

(
k
r−1

)
=
∑n−1

k=0(
(
k
r

)
+
(
k
r−1

)
)

=
∑n−1

k=0

(
k+1
r

)
=
∑n

k=1

(
k
r

)
=
∑n

k=0

(
k
r

)
(ii) Consider diamonds in Pascal’s triangle.

OR: Given a set S of size 2n, arbitrarily split it into two sets S1, S2 of
size n.
Then an n-subset S ′ of S corresponds to the pair (S ′ ∩ S1, S

′ ∩ S2).
The pairs of subsets arising in this way are precisely those of sizes
summing to n,
so (

2n
n

)
=
∑n

r=0

(
n
r

)(
n
n−r

)
=
∑n

r=0

(
n
r

)2
(iii) Neat algebraic proof:

n(x+ 1)n−1 = d
dx

(x+ 1)n = d
dx

∑n
r=0

(
n
r

)
xr

=
∑n

r=0 r
(
n
r

)
xr.

This holds for all x; taking x = 1 gives the result.

Examples of (i):

•
(
n
1

)
=
∑n−1

s=0

(
s
0

)
=
∑n−1

s=0 1 = n

•
(
n
2

)
=
∑n−1

s=0

(
s
1

)
=
∑n−1

s=0 s = nth triangular number

•
(
n
3

)
=
∑n−1

s=0

(
s
2

)
= nth pyrimidal number

Multinomial theorem

What is the coefficient ar,s,t of xryszt in the expansion of (x+ y + z)n?

Clearly ar,s,t 6= 0 only if r + s+ t = n.

ar,s,t is the number of ways of choosing r x’s, s y’s, and t z’s from the n
factors (x+ y + z);
i.e. the number of strings like ”xyzzyxyzzy” with this many of each letter;
i.e. the number of permutations of the multiset {r ∗ x, s ∗ y, t ∗ z}.

So as we saw before,
ar,s,t = n!

r!s!t!
.

Write
(
n
r s t

)
for this number.

Generalising to arbitrarily many variables, we have
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Theorem:
(x1 + ...+ xt)

n =
∑

ni≥0,n1+...+nt=n

(
n

n1 n2 ... nt

)
xn1
1 x

n2
2 ...x

nt
t

Here,
(

n
n1 n2 ... nt

)
= n!

n1!...nt!
are the multinomial coefficients (only defined if

n1 + ...+ nt = n).

Note:(
n
r

)
=
(

n
r n−r

)
.

The number of terms in the multinomial expansion of (x1 + ...+ xt)
n is the

number of n-combinations with t types in unlimited supply, which we saw
is (

n+t−1
n

)
.

Unnatural exponents: (x+ y)α

Theorem [Newton’s Binomial Theorem]:
Let α be a real (or even complex) number.
Suppose 0 ≤ |x| < |y|.
Then

(x+ y)α =
∑∞

k=0

(
α
k

)
xkyα−k

where(
α
k

)
= α(α−1)...(α−k+1)

k!
.

Note that for α natural, this agrees with our previous definition.

Proof (not on syllabus):
Dividing through by yα, sufficient to show that for |z| < 1,

(1 + z)α =
∑∞

k=0

(
α
k

)
zk.

We show this for complex z with |z| < 1.
(1 + z)α = exp(α log(1 + z)) for any choice of branch.
This is holomorphic on the domain |z| < 1,
so the Taylor series at 0 converges to the value of the function on this domain.

Since d
dz

(1 + z)α = α(1 + z)α−1 and (1 + 0)α = 1,
this gives

(1 + z)α = ((1 + z)α|z=0)
z0

0!
+

(α(1 + z)α−1|z=0)
z1

1!
+

(α(α− 1)(1 + z)α−2|z=0)
z2

2!
+ ...

=
∑∞

k=0(α(α− 1)...(α− k + 1)) z
k

k!

=
∑∞

k=0

(
α
k

)
zk

�

Examples:

• 1
1+z

= (1 + z)−1

=
∑∞

k=0

(−1
k

)
zk
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=
∑∞

k=0
(−1)∗(−2)∗...∗(−k)
k∗(k−1)∗...∗1 zk

=
∑∞

k=0(−1)kzk

= 1− z + z2 − z3 + ...

• √
37 =

√
62 + 1 = 6

√
1 + 1/36 = 6(1 + 1/36)1/2

= 6(
∑∞

k=0

(
1/2
k

)
(1/36)k)

Now for k > 0,(
1/2
k

)
=

1
2

1−2
2
...

1−2(k−1)
2

k!

= (−1)k−11∗3∗5∗...∗(2k−3)
2kk!

= (−1)k−1(2k−2)!
2k(2∗4∗...∗(2k−2))k!

= (−1)k−1(2k−2)!
22k−1(k−1)!k!

= (−1)k−1

k22k−1

(
2k−2
k−1

)
So √

1 + z = 1 +
∑∞

k=1
(−1)k−1

k22k−1

(
2k−2
k−1

)
zk

= 1 + 1
2
z − 1

8
z2 + 1

16
z3 − 1

25
z4 + ...

So
√

37 = 6(1 + 1/36)1/2

≈ 6(1 + 1/(2 ∗ 36)− 1/(8 ∗ 362) + 1/(16 ∗ 363)− 1/(25 ∗ 364))
= 6.0828

(Error is very small: (6 ∗ (1 + 1/(2 ∗ 36)− 1/(8 ∗ 362) + 1/(16 ∗ 363)−
1/(25 ∗ 364)))2 = 36.99999992692224)


