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Partial Orders

Basics

A partial order on a set X is a binary relation ≤ which is

• reflexive (x = y => x ≤ y)

• transitive (if x ≤ y and y ≤ z then x ≤ z)

• antisymmetric (if x ≤ y and y ≤ x then x = y).

A set X equipped with a partial order ≤, denoted (X;≤), is called a
partially ordered set or a poset.

”x ≥ y” means ”y ≤ x”.
”x < y” means ”x ≤ y and x 6= y”.

Examples:

(i) The usual order ≤ on the integers.

(ii) The relation of divisibility is a partial order on the natural numbers;
(N; |) is the corresponding poset.

(iii) If A is a set, the set of subsets of A is partially ordered by inclusion,
⊆.

Hasse diagrams:
x covers y if x > y and there is no z such that x > z > y.

The Hasse diagram of a finite poset (X,≤) consists of points for the elements
of X and a line drawn upwards from y to x whenever x covers y.

(We will see below that every finite poset has a Hasse diagram.)

x is minimal if x > y for no y.
x is maximal if x < y for no y.

Lemma:
< is transitive: if x < y and y < z then x < z.

Proof:
x ≤ z by transitivity of ≤.
Suppose x = z.
Then y ≤ x and x ≤ y, so x = y by antisymmetry, contradicting x < y.
So x 6= z. �

Lemma:
Any finite poset has at least one minimal element, and at least one maximal
element.
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Proof:
Suppose (X;≤) has no minimal element.
Then there exist arbitrarily long chains x1 > x2 > x3 > ... > xn.
By transitivity of >, the xi are distinct, so we contradict finiteness. �

A partial order ≤ on a set X is total (aka linear) if for all x and y in X,
either x ≤ y or y ≤ x.

Lemma:
Any finite total order (X;≤) can be enumerated as X = {x1, ..., xn} with
xi ≤ xj iff i ≤ j.

(i.e. (X;≤) is isomorphic to {1, ..., n} with the usual order.)

Proof:
If x is minimal in a total order, then x ≤ y for any y.

Let x1 be minimal in X, then let x2 be minimal in X \ {x1},
and so on.

Then xi ≤ xj for i ≤ j.
By antisymmetry, xi 6≤ xj for i 6≤ j. �

Lemma:
Any finite poset (X;≤) can be linearised,
i.e. there exists a total order ≤′ such that x ≤ y => x ≤′ y.

Proof:
Let x1, ..., xn be the minimal elements of (X;≤).
Let X ′ := X \ {x1, ..., xn}.
By induction, (X ′;≤) can be linearised, say to ≤′.
Extend ≤′ to X by defining

• xi ≤′ xj iff i ≤ j

• xi ≤′ y for any y ∈ X ′

This is total. �

Consequence:
Any finite poset has a Hasse diagram:
draw the points with heights ordered according to a linearisation of the
partial order,
then draw a line whenever x covers y, which implies that x is above y.
(Nudge the points horizontally if there are any overlapping lines).
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Chains and antichains

Definition:
Let (X;≤) be a poset.

∅ 6= C ⊆ X is a chain if (C;≤) is a total order.

∅ 6= A ⊆ X is an antichain if a1 ≤ a2 => a1 = a2 for ai ∈ A.

A chain partition is a partition X = C1 ∪ ... ∪ Cn by disjoint chains.

An antichain partition is a partition X = A1∪ ...∪An by disjoint antichains.

Theorem:
In a finite poset (X;≤),

(i) The maximal size of a chain is equal to the minimal size of an antichain
partition.

(ii) [Dilworth’s theorem] The maximal size of an antichain is equal to the
minimal size of a chain partition.

Proof:
First observe that a chain and an antichain can have no more than 1 point
in common,
|C ∩ A | ≤ 1.

So given an antichain partition and a chain,
each element of the chain is in precisely one of the antichains,
and no two elements of the chain are in the same antichain,
so

size of any chain ≤ size of any antichain partition
so

maximal size of a chain ≤ minimal size of an antichain partition.

Similarly for (ii): given a chain partition, each element of an antichain is in
exactly one of the chains in the partition,
and no two elements of the antichain are in the same chain, so

maximal size of an antichain ≤ minimal size of a chain partition.

So it remains to see

(i) There exists an antichain partition of size the maximal size of a chain;

(ii) There exists a chain partition of size the maximal size of an antichain.

These require separate arguments.

(i) Let C be a chain of maximal length.
Say C = {c1, ..., cn} with ci ≤ cj iff i ≤ j.

For i = 1, ..., n, recursively define
Ai := the set of minimal elements of X \ (A1 ∪ ... ∪ Ai−1).

Then Ai is an antichain,
and ci ∈ Ai so no Ai is empty.
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If x ∈ X \ ∪iAi then x ≥ ci for all i,
so we could extend C to a larger chain by adjoining x,
contradicting maximality of C.
So X = ∪iAi.

So the Ai form an antichain partition of size n = |C| as required.

(ii) By induction on the size of X.

First, suppose some antichain A of maximal size m is not the set of
maximal elements and is not the set of minimal elements.

Let
A+ :=

⋃
a∈A{x | x ≥ a}

A− :=
⋃

a∈A{x | x ≤ a}.

Then A+ ∪ A− = X by maximality of A,
and A+ ∩ A− = A.

Now A is a maximal-size antichain in A+,
and A+ 6= X since A is not the set of maximal elements,
so by induction, A+ has a chain partition of size |A|.

Similarly, we have a chain partition of A−.

For each element a ∈ A, a is in one of the chains of A+ and one of the
chains of A−, and the union of these two chains is a chain Ca in X.

Then {Ca | a ∈ A} is a chain partition of X of size m = |A|.

For the remaining case,
suppose every maximal-size antichain is either the set of maximal ele-
ments or the set of minimal elements.

Let x be minimal and y be maximal, with x ≤ y.

(To see that such that such x and y exist:
we proved above that maximal and minimal elements always exist,
so we only need to see that some minimal element is comparable with
(and hence ≤) some maximal element.
Otherwise, the minimal elements and the maximal elements together
form an antichain,
which contradicts our assumption unless the set of minimal elements
is equal to the set of maximal elements,
in which case we can take x = y.)

Then X \ {x, y} has no antichains of size m but has an antichain of
size m− 1,
so by induction it has a chain partition of size m− 1.
Adjoining the chain {x, y}, we obtain a chain partition of X of size m.

�
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Bonus: Sperner’s Theorem

Example:
Inductively define ”symmetric” chain partitions Sn of the set of subsets of
{1, ..., n}:

Let S1 be the partition with only one chain,
∅ ( {1}.

Given a chain partition Sn of {1, ..., n},
let Sn+1 have, for each chain A1 ( ... ( Ak of Sn,

• the chain A1 ( ... ( Ak ( Ak ∪ {n + 1},

• and, if k > 1, the chain A1 ∪ {n + 1} ( ... ( Ak−1 ∪ {n + 1}.

Each chain A1 ( ... ( Ak in Sn has subsequent elements differing in size by
one,
and |A1|+ |Ak| = n.

Hence each chain contains a subset of size bn
2
c,

so |Sn| =
(

n
bn
2
c

)
.

(bn
2
c = n/2 ”rounded down”)

So by Dilworth, we obtain ”Sperner’s Theorem”:
The set of subsets of {1, ..., n} of size bn

2
c is a maximal-size antichain.


