Inclusion-Exclusion

Let A_{1} and A_{2} be finite subsets of a set X.
If A_{1} and A_{2} are disjoint, the addition principle tells us $\left|A_{1} \cup A_{2}\right|=\left|A_{1}\right|+\left|A_{2}\right|$.
If they're not disjoint, this "double-counts" the elements of the intersection; we can fix this by subtracting the size of the intersection, yielding the general formula $\left|A_{1} \cup A_{2}\right|=\left|A_{1}\right|+\left|A_{2}\right|-\left|A_{1} \cap A_{2}\right|$.

For three finite subsets A_{1}, A_{2}, A_{3} of some set X, similar reasoning yields
$\left|A_{1} \cup A_{2} \cup A_{3}\right|=$

$$
\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|-\left(\left|A_{1} \cap A_{2}\right|+\left|A_{2} \cap A_{3}\right|+\left|A_{1} \cap A_{3}\right|\right)+\left|A_{1} \cap A_{2} \cap A_{3}\right| .
$$

Example:

How many integers in $[1,100]$ are divisible by 2, 5, or 7?
Let $D_{n}:=\{k \in \mathbb{Z} \cap[1,100]: n \mid k\}$.
Note $\left|D_{n}\right|=\left\lfloor\frac{100}{n}\right\rfloor$.
By inclusion-exclusion,

$$
\begin{aligned}
& \left|D_{2} \cup D_{5} \cup D_{7}\right|=\left|D_{2}\right|+\left|D_{5}\right|+\left|D_{7}\right| \\
& \quad \quad-\left(\left|D_{2} \cap D_{5}\right|+\left|D_{5} \cap D_{7}\right|+\left|D_{2} \cap D_{7}\right|\right) \\
& \quad \quad\left|D_{2} \cap D_{5} \cap D_{7}\right| \\
& =\left|D_{2}\right|+\left|D_{5}\right|+\left|D_{7}\right|-\left(D_{10}+D_{35}+D_{14}\right)+D_{70} \\
& =50+20+14-(10+2+7)+1 \\
& =66 .
\end{aligned}
$$

Theorem [Inclusion-Exclusion Principle]:

Let A_{1}, \ldots, A_{n} be finite subsets of a set X.
Then

$$
\begin{aligned}
& \left|A_{1} \cup \ldots \cup A_{n}\right|= \\
& \quad \sum_{i}\left|A_{i}\right| \\
& \quad-\sum_{i<j}\left|A_{i} \cap A_{j}\right| \\
& \quad+\sum_{i<j<k}\left|A_{i} \cap A_{j} \cap A_{k}\right| \\
& \quad-\ldots \\
& \quad+(-1)^{n-1}\left|A_{1} \cap \ldots \cap A_{n}\right|
\end{aligned}
$$

Proof:

Let $x \in A_{1} \cup \ldots \cup A_{n}$.
We show that x "contributes 1 " to the right hand side.
Say x is in $m \geq 1$ of the n sets.
Then x contributes 1 to $m=\binom{m}{1}$ of the $\left|A_{i}\right|$,
to $\binom{m}{2}$ of the $\left|A_{i} \cap A_{j}\right|$,
to $\binom{m}{3}$ of the $\left|A_{i} \cap A_{j} \cap A_{k}\right|$,
and so on.
So x contributes

$$
\begin{aligned}
& \sum_{k>0}(-1)^{k-1}\binom{m}{k} \\
& \quad=-\sum_{k>0}(-1)^{k}\binom{m}{k}
\end{aligned}
$$

$$
\begin{aligned}
& =1-\sum_{k \geq 0}(-1)^{k}\binom{m}{k} \\
& =1-0 \\
& =1
\end{aligned}
$$

Remark:

Neat alternative expression:

$$
\left|\bigcup_{i} A_{i}\right|=\sum_{\emptyset \neq I \subseteq\{1, \ldots, n\}}(-1)^{|I|-1}\left|\bigcap_{i \in I} A_{i}\right|
$$

Bonus:

Version of the proof using this notation:

$$
\begin{aligned}
\left|\bigcup_{i} A_{i}\right| & =\sum_{x \subseteq \bigcup_{i} A_{i}} 1 \\
& =\sum_{x \subseteq \bigcup_{i} A_{i}}(-\sum_{k>0}(-1)^{k}(\begin{array}{c}
\left.\#\left\{i \left\lvert\, \begin{array}{c}
\left.x \in A_{i}\right\} \\
k
\end{array}\right.\right)\right) \\
\\
\end{array} \underbrace{}_{x \subseteq \bigcup_{i} A_{i}, I \subseteq\{i \mid} \sum_{\left\{\in A_{i}\right\}}(-1)^{|I|-1} \\
& =\sum_{\left\{(x, I) \mid x \in \cup_{i} A_{i}, I \subseteq\{1, \ldots, n\}, x \subseteq \bigcap_{i \in I} A_{i}\right\}}(-1)^{|I|-1} \\
& =\sum_{\emptyset \neq I \subseteq\{1, \ldots, n\}}(-1)^{|I|-1}\left|\bigcap_{i \in I} A_{i}\right|
\end{aligned}
$$

Example:

How many strings of 8 letters from the Roman alphabet contain ' j ', ' q ', ' x ', ' y ' and ' z '?

We could do this positively, but it would be fiddly.
Instead, let's count the number of strings which don't contain all of these letters, i.e. which omit ' j ' or omit ' q ' or... .

Let O_{j} be the strings which omit ' j ', $O_{j q}$ the strings which omit ' j ' and ' q ', and so on.

Then by inclusion-exclusion,

$$
\begin{aligned}
\mid O_{j} & \cup O_{q} \cup O_{x} \cup O_{y} \cup O_{z}\left|=\left|O_{j}\right|+\left|O_{q}\right|+\ldots\right. \\
& -\left(\left|O_{j q}\right|+\left|O_{j x}\right|+\ldots\right) \\
& +\left(\left|O_{j q x}\right|+\left|O_{j q y}\right|+\ldots\right) \\
& -\left(\left|O_{j q x y}\right|+\left|O_{j q x z}\right|+\ldots\right) \\
& +\left|O_{j q x y z}\right|
\end{aligned}
$$

Now $\left|O_{j}\right|=\left|O_{q}\right|=\ldots=25^{8}$,
and $\left|O_{j q}\right|=\left|O_{j x}\right|=\ldots=24^{8}$,
and so on.
So

$$
\begin{aligned}
& \left|O_{j} \cup O_{q} \cup O_{x} \cup O_{y} \cup O_{z}\right|= \\
& \quad\binom{5}{1} 25^{8}-\binom{5}{2} 24^{8}+\binom{5}{3} 23^{8}-\binom{5}{4} 22^{8}+\binom{5}{5} 21^{8}
\end{aligned}
$$

and the answer to the original question is $26^{8}-\left|O_{j} \cup O_{q} \cup O_{x} \cup O_{y} \cup O_{z}\right|$, which comes to 87408720 .

Combinations of multisets, revisited

Recall:

The number of r-combinations of a multiset with at least r of each of its t types is $\binom{r+t-1}{t-1}$.
If there are fewer than r of some of the types, we can use inclusion-exclusion.
This is clearest if we transform the problem.
An r-combination of a multiset

$$
\left\{c_{1} * a_{1}, \ldots, c_{t} * a_{t}\right\}
$$

corresponds to a solution in non-negative integers of the equation

$$
x_{1}+\ldots+x_{t}=r
$$

subject to the constraints

$$
x_{1} \leq c_{1}, \ldots, x_{t} \leq c_{t}
$$

Concrete example:

I take 8 marbles from a bag containing 3 red marbles, 2 blue marbles, and 10 green marbles. How many possibilities are there for the numbers of each colour I get? Equivalently, what is

$$
|\{(r, b, g) \mid r+b+g=8,0 \leq r \leq 3,0 \leq b \leq 2\}| ?
$$

So we want to count the number of such solutions, and we know that the answer is $\binom{r+t-1}{t-1}$ if there are no constraints.
By the subtraction principle,
the number of solutions in the constrained case is the number in the unconstrained case minus the number which fail at least one constraint,

$$
\binom{r+t-1}{t-1}-\left|F_{1} \cup \ldots \cup F_{t}\right|,
$$

where $F_{i}:=\left\{\left(x_{1}, \ldots, x_{t}\right) \mid x_{1}+\ldots+x_{t}=r, x_{i}>c_{i}\right\}$.
So we can use the inclusion-exclusion principle if we can determine the sizes of the intersections of the F_{i}.

If $c_{i} \geq r$, then $F_{i}=\emptyset$.
Otherwise, subtracting $c_{i}+1$ from x_{i} puts F_{i} in correspondence with $\left\{\left(y_{1}, \ldots, y_{t}\right) \mid y_{1}+\right.$
$\left.\ldots+y_{t}=r-\left(c_{i}+1\right), y_{i} \geq 0\right\}$,
so $\left|F_{i}\right|=\binom{r-\left(c_{i}+1\right)+t-1}{t-1}$.
Similarly, $\left|F_{i} \cap F_{j}\right|=\binom{r-\left(c_{i}+1\right)-\left(c_{j}+1\right)+t-1}{t-1}$, and so on.

So inclusion-exclusion yields

$$
\sum_{I \subseteq\{1, \ldots, t\}}(-1)^{|I|}\binom{r-\left(\sum_{i \in I}\left(c_{i}+1\right)\right)+t-1}{t-1} .
$$

Marble example:

$$
\begin{aligned}
& \binom{8+2}{2}-\binom{8-(3+1)+2}{2}-\binom{8-(2+1)+2}{2}+\binom{8-(3+1)-(2+1)+2}{2} \\
& \quad=\binom{10}{2}-\binom{6}{2}-\binom{7}{2}+\binom{3}{2} \\
& \quad=12
\end{aligned}
$$

Scrabble example:

How many 7 -tile hands can be drawn from a standard 100-tile bag of scrabble tiles?
Using the above formula, my computer calculates it as 3199724.
(for the curious, here's the Haskell code I used to calculate this:

```
    import Math.Combinatorics.Binomial (choose)
combs :: Int -> [Int] -> Int
combs r cs =
        let
            t = length cs
            subs = subs' [] cs
            -- subs': returns relevant subsequences of cs, omitting those which
            -- will contribute 0 to the final sum (without this, the algorithm
            -- would have complexity exponential in t)
            subs' sub [] = [sub]
            subs' sub _ | (sum (map (+1) sub) > r) = []
            subs' sub (c:cs) = subs' (c:sub) cs ++ subs' sub cs
    in sum [ (-1)^(length sub) *
            choose (r - sum (map (+1) sub) + t-1) (t-1) | sub <- subs ]
scrabbleBag :: [Int]
scrabbleBag = concat [ replicate n c | (n,c) <-
            [(5,1), (10,2), (1,3), (4,4), (3,6), (1,8), (2,9), (1,12)] ]
main :: IO ()
main = print $ combs 7 scrabbleBag
)
```


Derangements

A derangement is a permutation which leaves nothing in its original position.
e.g.

```
(5,3,4,2,1) is a derangement of
(1,2,3,4,5), and
"endgreatmen" is a derangement of
"derangement".
```

$D_{n}:=$ the number of derangements of a sequence of length n, $=$ number of derangements of $(1,2, \ldots, n)$.

We can use inclusion-exclusion to determine D_{n}.
A derangement of $(1, \ldots, n)$ is a permutation $\left(a_{1}, \ldots, a_{n}\right)$ which satisfies the conditions $a_{1} \neq 1, \ldots, a_{n} \neq n$.

Let P_{i} be the set of permutations which fail the i th of these conditions, i.e. such that $a_{i}=i$.

Easily, for $I \subseteq\{1, \ldots, n\}$,

$$
\left|\bigcap_{i \in I} P_{i}\right|=(n-|I|)!
$$

So by inclusion-exclusion,

$$
\begin{aligned}
D_{n} & =n!-\left|\bigcup_{i} P_{i}\right| \\
& =n!-\sum_{\emptyset \neq I \subseteq\{1, \ldots, n\}}(-1)^{|I|-1}\left|\bigcap_{i \in I} P_{i}\right| \\
& =n!-\sum_{\emptyset \neq I \subseteq\{1, \ldots, n\}}(-1)^{|I|-1}(n-|I|)! \\
& =n!-\sum_{i=1}^{n}(-1)^{i-1}\binom{n}{i}(n-i)! \\
& =\sum_{i=0}^{n}(-1)^{i}\binom{n}{j}(n-i)! \\
& =\sum_{i=0}^{n}(-1)^{i} \frac{n}{i!} \\
& =n!\sum_{i=0}^{n} \frac{(-1)^{i}}{i!}
\end{aligned}
$$

Note then that the probability that a random n-permutation is a derangement is

$$
\begin{aligned}
& P r_{n}=\frac{\left|D_{n}\right|}{n!}=\sum_{i=0}^{n} \frac{(-1)^{i}}{i!}, \\
& \lim _{n \rightarrow \infty} P r_{n}=\sum_{i=0}^{\infty} \frac{(-1)^{i}}{i!} \\
& \quad=e^{-1} \approx 0.368
\end{aligned}
$$

so

The convergence is very fast;
e.g. $P r_{n} \approx 0.368$ to 3 significant figures for $n \geq 6$.

Example:

A deranged scientist removes the heads from a large number of different animals and re-attaches them at random. What is the probability that every resulting creature is a chimera, i.e. that no head is reattached to its own body?

Answer:

About e^{-1}.

