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Inclusion-Exclusion

Let A1 and A2 be finite subsets of a set X.
If A1 and A2 are disjoint, the addition principle tells us |A1∪A2| = |A1|+|A2|.

If they’re not disjoint, this ”double-counts” the elements of the intersection;
we can fix this by subtracting the size of the intersection,
yielding the general formula |A1 ∪ A2| = |A1|+ |A2| − |A1 ∩ A2|.

For three finite subsets A1,A2,A3 of some set X, similar reasoning yields
|A1 ∪ A2 ∪ A3| =
|A1|+ |A2|+ |A3|−(|A1∩A2|+ |A2∩A3|+ |A1∩A3|)+ |A1∩A2∩A3|.

Example:
How many integers in [1,100] are divisible by 2, 5, or 7?

Let Dn := {k ∈ Z ∩ [1, 100] : n | k}.

Note |Dn| = b100n c.

By inclusion-exclusion,
|D2 ∪D5 ∪D7| = |D2|+ |D5|+ |D7|
−(|D2 ∩D5|+ |D5 ∩D7|+ |D2 ∩D7|)
+|D2 ∩D5 ∩D7|

= |D2|+ |D5|+ |D7| − (D10 + D35 + D14) + D70

= 50 + 20 + 14− (10 + 2 + 7) + 1
= 66.

Theorem [Inclusion-Exclusion Principle]:
Let A1, ..., An be finite subsets of a set X.
Then
|A1 ∪ ... ∪ An| =∑

i |Ai|
−
∑

i<j |Ai ∩ Aj|
+
∑

i<j<k |Ai ∩ Aj ∩ Ak|
−...
+(−1)n−1|A1 ∩ ... ∩ An|

Proof:
Let x ∈ A1 ∪ ... ∪ An.
We show that x ”contributes 1” to the right hand side.
Say x is in m ≥ 1 of the n sets.
Then x contributes 1 to m =

(
m
1

)
of the |Ai|,

to
(
m
2

)
of the |Ai ∩ Aj|,

to
(
m
3

)
of the |Ai ∩ Aj ∩ Ak|,

and so on.

So x contributes∑
k>0(−1)k−1

(
m
k

)
= −

∑
k>0(−1)k

(
m
k

)
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= 1−
∑

k≥0(−1)k
(
m
k

)
= 1− 0
= 1

Remark:
Neat alternative expression:
|
⋃

i Ai| =
∑
∅6=I⊆{1,...,n}(−1)|I|−1

∣∣⋂
i∈I Ai

∣∣.
Bonus:
Version of the proof using this notation:∣∣∣∣∣⋃

i

Ai

∣∣∣∣∣ =
∑

x⊆
⋃

i Ai

1

=
∑

x⊆
⋃

i Ai

(
−
∑
k>0

(−1)k
(

#{i | x ∈ Ai}
k

))

=
∑

x⊆
⋃

i Ai,I⊆{i | x∈Ai}

(−1)|I|−1

=
∑

{(x,I) | x∈
⋃

i Ai,I⊆{1,...,n},x⊆
⋂

i∈I Ai}

(−1)|I|−1

=
∑

∅6=I⊆{1,...,n}

(−1)|I|−1

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣
Example:
How many strings of 8 letters from the Roman alphabet contain ’j’, ’q’, ’x’,
’y’ and ’z’?

We could do this positively, but it would be fiddly.

Instead, let’s count the number of strings which don’t contain all of these
letters, i.e. which omit ’j’ or omit ’q’ or... .

Let Oj be the strings which omit ’j’, Ojq the strings which omit ’j’ and ’q’,
and so on.

Then by inclusion-exclusion,
|Oj ∪Oq ∪Ox ∪Oy ∪Oz| = |Oj|+ |Oq|+ ...
−(|Ojq|+ |Ojx|+ ...)
+(|Ojqx|+ |Ojqy|+ ...)
−(|Ojqxy|+ |Ojqxz|+ ...)
+|Ojqxyz|
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Now |Oj| = |Oq| = ... = 258,
and |Ojq| = |Ojx| = ... = 248,
and so on.

So
|Oj ∪Oq ∪Ox ∪Oy ∪Oz| =(

5
1

)
258 −

(
5
2

)
248 +

(
5
3

)
238 −

(
5
4

)
228 +

(
5
5

)
218

and the answer to the original question is 268 − |Oj ∪ Oq ∪ Ox ∪ Oy ∪ Oz|,
which comes to 87408720.

Combinations of multisets, revisited

Recall:
The number of r-combinations of a multiset with at least r of each of its t
types is

(
r+t−1
t−1

)
.

If there are fewer than r of some of the types, we can use inclusion-exclusion.

This is clearest if we transform the problem.

An r-combination of a multiset
{c1 ∗ a1, ..., ct ∗ at}

corresponds to a solution in non-negative integers of the equation
x1 + ... + xt = r

subject to the constraints
x1 ≤ c1, ..., xt ≤ ct.

Concrete example:
I take 8 marbles from a bag containing 3 red marbles, 2 blue marbles, and
10 green marbles. How many possibilities are there for the numbers of each
colour I get? Equivalently, what is

|{(r, b, g) | r + b + g = 8, 0 ≤ r ≤ 3, 0 ≤ b ≤ 2}|?

So we want to count the number of such solutions,
and we know that the answer is

(
r+t−1
t−1

)
if there are no constraints.

By the subtraction principle,
the number of solutions in the constrained case is the number in the uncon-
strained case minus the number which fail at least one constraint,(

r+t−1
t−1

)
− |F1 ∪ ... ∪ Ft|,

where Fi := {(x1, ..., xt) | x1 + ... + xt = r, xi > ci}.

So we can use the inclusion-exclusion principle if we can determine the sizes
of the intersections of the Fi.

If ci ≥ r, then Fi = ∅.
Otherwise, subtracting ci+1 from xi puts Fi in correspondence with {(y1, ..., yt) | y1+
... + yt = r − (ci + 1), yi ≥ 0},
so |Fi| =

(
r−(ci+1)+t−1

t−1

)
.

Similarly, |Fi ∩ Fj| =
(
r−(ci+1)−(cj+1)+t−1

t−1

)
, and so on.
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So inclusion-exclusion yields∑
I⊆{1,...,t}(−1)|I|

(
r−(

∑
i∈I(ci+1))+t−1

t−1

)
.

Marble example:(
8+2
2

)
−
(
8−(3+1)+2

2

)
−
(
8−(2+1)+2

2

)
+
(
8−(3+1)−(2+1)+2

2

)
=
(
10
2

)
−
(
6
2

)
−
(
7
2

)
+
(
3
2

)
= 12

Scrabble example:
How many 7-tile hands can be drawn from a standard 100-tile bag of scrabble
tiles?
Using the above formula, my computer calculates it as 3199724.

(for the curious, here’s the Haskell code I used to calculate this:

import Math.Combinatorics.Binomial (choose)

combs :: Int -> [Int] -> Int

combs r cs =

let

t = length cs

subs = subs’ [] cs

-- subs’: returns relevant subsequences of cs, omitting those which

-- will contribute 0 to the final sum (without this, the algorithm

-- would have complexity exponential in t)

subs’ sub [] = [sub]

subs’ sub _ | (sum (map (+1) sub) > r) = []

subs’ sub (c:cs) = subs’ (c:sub) cs ++ subs’ sub cs

in sum [ (-1)^(length sub) *

choose (r - sum (map (+1) sub) + t-1) (t-1) | sub <- subs ]

scrabbleBag :: [Int]

scrabbleBag = concat [ replicate n c | (n,c) <-

[(5,1), (10,2), (1,3), (4,4), (3,6), (1,8), (2,9), (1,12)] ]

main :: IO ()

main = print $ combs 7 scrabbleBag

)

Derangements

A derangement is a permutation which leaves nothing in its original position.

e.g.

(5,3,4,2,1) is a derangement of
(1,2,3,4,5), and
”endgreatmen” is a derangement of
”derangement”.



5

Dn := the number of derangements of a sequence of length n,
= number of derangements of (1, 2, ..., n).

We can use inclusion-exclusion to determine Dn.

A derangement of (1, ..., n) is a permutation (a1, ..., an) which satisfies the
conditions a1 6= 1, ..., an 6= n.

Let Pi be the set of permutations which fail the ith of these conditions,
i.e. such that ai = i.

Easily, for I ⊆ {1, ..., n},
|
⋂

i∈I Pi| = (n− |I|)!.

So by inclusion-exclusion,
Dn = n!− |

⋃
i Pi|

= n!−
∑
∅6=I⊆{1,...,n}(−1)|I|−1|

⋂
i∈I Pi|

= n!−
∑
∅6=I⊆{1,...,n}(−1)|I|−1(n− |I|)!

= n!−
∑n

i=1(−1)i−1
(
n
i

)
(n− i)!

=
∑n

i=0(−1)i
(
n
i

)
(n− i)!

=
∑n

i=0(−1)i n!
i!

= n!
∑n

i=0
(−1)i
i!

Note then that the probability that a random n-permutation is a derange-
ment is

Prn = |Dn|
n!

=
∑n

i=0
(−1)i
i!

,
so

limn→∞ Prn =
∑∞

i=0
(−1)i
i!

= e−1 ≈ 0.368

The convergence is very fast;
e.g. Prn ≈ 0.368 to 3 significant figures for n ≥ 6.

Example:
A deranged scientist removes the heads from a large number of different
animals and re-attaches them at random. What is the probability that
every resulting creature is a chimera, i.e. that no head is reattached to its
own body?

Answer:
About e−1.


