
B1.1 Logic

Martin Bays

Oxford, MT 2024∗

Contents

1 Introduction 2

I Propositional Logic 4

2 Syntax 5

3 Semantics 7

4 Proofs 13

5 Completeness and Compactness 17

II First-order Logic 20

6 Syntax 21

7 Semantics 22

8 Proofs 32

9 Completeness and Compactness 34

10 Applications 41

0.1 Acknowledgements

These lecture notes are based on slides for earlier iterations of the course devel-
oped by Prof. J. Koenigsmann.

∗Last updated: November 20, 2024

1

1 Introduction

1.1 Historical motivation

• In the 19th century, the need for conceptual foundations in analysis be-
came clear, leading to attempts to formalise notions of infinity, infinites-
imal, limit, ...

“The definitive clarification of the nature of the infinite has be-
come necessary, not merely for the special interests of the in-
dividual sciences but for the honour of human understanding
itself.” – Hilbert 1926

• Hilbert’s 2nd Problem, 1900 ICM address: Prove consistency of an axiom
system for arithmetic.

“I am convinced that it must be possible to find a direct proof for
the compatibility of the arithmetical axioms.” – Hilbert 1900

• Early attempts to formalise mathematics:

– Cantor’s naive set theory;

– Frege’s Begriffsschrift and Grundgesetze.

For any expressible property P (x), Frege’s system posited the existence
of the set

{x : P (x)}.

• Russell’s paradox: consider the set R := {s : s ̸∈ s}

R ∈ R ⇒ R ̸∈ R contradiction
R ̸∈ R ⇒ R ∈ R contradiction

⇝ Fundamental crisis in the foundations of mathematics.

1.2 Hilbert’s Programme

Step 1. Find a uniform formal language for all mathematics.

Step 2. Find a complete proof system for deducing consequences of axioms.

Step 3. Find a complete system of axioms for mathematics.

Step 4. Prove consistency of the resulting system, i.e. that it does not lead to
contradictions.

Where:

• Complete in 2+3 would mean: every mathematical statement admits a proof
or disproof in the system. (“Wir müssen wissen. Wir werden wissen.”1)

• The system should be finitary, i.e. effective/computable/algorithmic, so e.g.
you can’t just take as axioms all true mathematical statements.

1We must know. We will know.

2

1.3 Results on Hilbert’s programme

Step 1. (Formal language for mathematics):
Possible in the framework of
ZF = Zermelo-Fraenkel set theory or
ZFC = ZF + Axiom of Choice.
(Covered in B1.2)

Step 2. (Complete proof system):
Possible in 1st-order logic, by Gödel’s Completeness Theorem.
(Covered in B1.1 - this course)

Step 3. (Complete axiom system):
Not possible, by Gödel’s 1st Incompleteness Theorem: there is no com-
putable axiomatisation of arithmetic.
(Covered in C1.2)

Step 4. (Proving consistency):
Not possible, by Gödel’s 2nd Incompleteness Theorem: a sufficiently pow-
erful consistent system can not prove its own consistency.
(Covered in C1.2)

1.4 Successes of mathematical logic

In summary, the positive outcomes from Steps 1 and 2 left us with a form of
mathematical logic with which we can:

• Provide a uniform, unambiguous language for mathematics.

• Give a precise formal definition of a proof.

• Explain and guarantee exactness, rigour, and certainty in mathemat-
ics.

• Establish the foundations of mathematics.

B1 (Foundations)
= B1.1 (Logic) + B1.2 (Set theory)

1.5 Decidability

Step 3. of Hilbert’s programme fails: there is no computable axiomatisation for
the entire body of mathematics (or even just of arithmetic).

But: many important parts of mathematics are completely and computably
axiomatizable; they are decidable, i.e. there is an algorithm = program =
effective procedure to decide whether a sentence is true or false.

Example: Th(C; +, ·), the 1st-order theory of the field C.

Axioms = field axioms
+ all non-constant polynomials have a zero
+ the characteristic is 0.

3

Every algebraic property of C follows from these axioms.
Similar results hold for e.g. the real field and for vector spaces.
⇝ C1.1 Model Theory.

1.6 Why mathematical logic?

• The language and deduction rules are tailored for mathematical objects
and mathematical ways of reasoning.

• The method is mathematical. Formulas expressing mathematical state-
ments, as well as proofs of such statements, will themselves be defined as
finitary mathematical objects. We will reason about them with ordinary
mathematical techniques, of the same kind we use to reason about natural
numbers.

• Logic has applications in other areas of mathematics, as well as in theo-
retical computer science.

1.7 Outline of the course

The main result of this course is Gödel’s Completeness Theorem for first-order
logic, which shows that every consequence of given mathematical axioms admits
a proof from those axioms. We first study the simpler case of propositional logic,
and prove the corresponding completeness theorem there. We end the course
by applying our results to some familiar mathematical structures.

Part I

Propositional Logic

We begin by studying propositional logic, which deals with statements built
out of simpler ones using connectives such as “and”, “or”, and “not”. This is
not in itself adequate for formalising mathematics, but we will later refine it to
first-order logic, which is. We first consider propositional logic in isolation, then
in Part II we extend our treatment to full first-order logic.

Example 1.1. Propositional logic formalises deductions of the following kind:

• 1. Socrates is alive or Socrates is dead.
2. Socrates is not alive.
Therefore: Socrates is dead.

• 1. If Socrates is a vampire and vampires are immortal, then Socrates is
not dead.
2. Socrates is dead.
Therefore: Either Socrates is not a vampire, or vampires are not immortal.

To preview the formalism, we will write these respectively as:

• {(p0 ∨ p1),¬p0} ⊨ p1.

4

• {((p2 ∧ p3) → ¬p1), p1} ⊨ (¬p2 ∨ ¬p3).

We use variables to denote propositions - e.g. p0 for “Socrates is alive”. A
proposition is something which can be true or false.

2 Syntax

We define a language Lprop for propositional logic.

2.1 Strings

Definition 2.1. The alphabet of Lprop consists of the following abstract sym-
bols:

¬,→,∧,∨,↔, (,), p0, p1, p2,

The pi are called propositional variables, and Lprop has one propositional
variable pi for each natural number i.

Definition 2.2. A string of Lprop is any finite sequence of symbols from the
alphabet of Lprop.

Example 2.3.
(i) → p13()
(ii) ((p0 ∧ p1) → ¬p2)
(iii)))¬)p37

Definition 2.4. The length len(A) of a string A is the number of symbols in
it.

So the strings in the examples have lengths 4, 10, and 5 respectively. (A
propositional variable is considered as a single symbol.)

2.2 Formulas

Definition 2.5. A formula of Lprop is a string of one of the following forms:

I. pi, where i ∈ N.

II. ¬ϕ, where ϕ is a formula.

III. (ϕ→ ψ) or (ϕ∧ψ) or (ϕ∨ψ) or (ϕ↔ ψ), where ϕ and ψ are both formulas.

In other words, a string ϕ is a formula if and only if ϕ can be obtained from
propositional variables by finitely many applications of the formation rules II.
and III.

Example 2.6. The string ((p0 ∧ p1) → ¬p2) is a formula.

5

Proof.
p0

66
66

66
66

66
66

66
6 p1

zz
zz

zz
zz

zz
zz

zz
zz

zz
z

p2

II.III.

(p0 ∧ p1)

CC
CC

CC
CC

CC
CC

CC
CC

CC
C

¬p2

��
��

��
��

��
��

��
��

��

III.

((p0 ∧ p1) → ¬p2)

Parentheses are important, e.g. (p0 ∧ (p1 → ¬p2)) is a different formula and
p0 ∧ (p1 → ¬p2) is not a formula at all.

The formulas are the strings which make “grammatical sense”, and we will
soon define a semantics under which they “mean something”.

Corresponding to these formation rules, we call ¬ a “unary connective”,
and →,∧,∨,↔ “binary connectives”. We summarise their pronunciation and
terminology in the following table.

¬ϕ “not ϕ” negation
(ϕ→ ψ) “ϕ implies ψ” implication
(ϕ ∧ ψ) “ϕ and ψ” conjunction
(ϕ ∨ ψ) “ϕ or ψ” disjunction
(ϕ↔ ψ) “ϕ if and only if ψ” equivalence

Example 2.7. The strings → p17() and))¬)p32 are not formulas.

Indeed, if ϕ is a formula, then ϕ is of one of the forms I., II, or III., and in
particular one of the following must hold:

1. ϕ is a propositional variable.

2. The first symbol of ϕ is ¬.

3. The first symbol of ϕ is (.

Theorem 2.8 (The unique readability theorem). A formula can be constructed
in only one way:
For each formula ϕ exactly one of the following holds

(a) ϕ is pi for some unique i ∈ N;

(b) ϕ is ¬ψ for some unique formula ψ;

(c) ϕ is (ψ ⋆ χ) for some unique pair of formulas ψ, χ and a unique binary
connective ⋆ ∈ {→,∧,∨,↔}.

Proof: Problem sheet 1.

6

2.3 Countability

Recall that a set X is countable if X = ∅ or there are xi for i ∈ N such that
X = {x0, x1, . . .}, i.e. there exists a surjection N → X.

Let Form(Lprop) be the set of all formulas of Lprop.

Fact 2.9. Form(Lprop) is countable.

This will be proven formally in B1.2 Set Theory, as a consequence of the
basic axioms ZF of set theory. More precisely, it will be proven that the set
of finite strings in a countable alphabet is countable, and that any subset of a
countable set is countable.

End of lecture 1

3 Semantics

3.1 Valuations

In natural language, the truth or falsity of a sentence using logical connectives
is determined by the truth or falsity of its subclauses:
“Socrates is dead or Socrates is a vampire” is true if “Socrates is dead” is true.

Propositional logic abstracts this to a recursive definition of the truth value
T (‘true’) or F (‘false’) of a formula ϕ in terms of the truth values of the
propositional variables occurring in ϕ.

Definition 3.1. A valuation v is a function

v : {p0, p1, p2, . . .} → {T, F}.

Given a valuation v we extend v uniquely to a function

ṽ : Form(Lprop) → {T, F}.

defined recursively as follows.

Suppose ϕ is a formula, and ṽ has been defined on formulas of length <
len(ϕ).

We split into the cases given by the Unique Readability Theorem:

(a) ϕ is a propositional variable.
Then define ṽ(ϕ) := v(ϕ).

(b) ϕ = ¬ψ. Then len(ψ) < len(ϕ). Define ṽ(ϕ) as follows:

ψ ¬ψ
T F
F T

(i.e. if ṽ(ψ) = T then ṽ(ϕ) := F , and if ṽ(ψ) = F then ṽ(ϕ) := T).

(c) ϕ = (ψ ⋆ χ) where ⋆ is a binary connective.
Then len(ψ) < len(ϕ) and len(χ) < len(ϕ).

7

Define ṽ(ϕ) as follows:

ψ χ (ψ ∧ χ) (ψ ∨ χ) (ψ → χ) (ψ ↔ χ)

T T T T T T
T F F T F F
F T F T T F
F F F F T T

(so e.g. if ⋆ is → and ṽ(ψ) = T and ṽ(χ) = F , then ṽ(ϕ) := F).

The tables in this definition are called the truth tables of the connectives.
They correspond to how we normally use ‘not’, ‘and’, ‘or’, ‘if . . . then’, and ‘if
and only if ’ in mathematics (though not always to how we use them in natural
language, particularly in the case of →).

We can draw up more general truth tables to analyse this recursive definition
of truth for more complicated formulas.

Example 3.2. “If n is prime then n = 2 or n is odd” is a true statement for
every natural number n. To analyse this, we construct the truth table for the
formula

ϕ := (p0 → (p1 ∨ p2)).

ṽ(ϕ) only depends on v(p0), v(p1), and v(p2).

po p1 p2 (p1 ∨ p2) ϕ

T T T T T
T T F T T
T F T T T
T F F F F
F T T T T
F T F T T
F F T T T
F F F F T

So “if n is prime then n = 2 or n is odd” is true unless n is prime but neither
odd nor equal to 2, i.e. unless n is an even prime other than 2. But no such
natural number n exists.

Example 3.3. We construct the truth table for the formula

ϕ := ((p0 → p1) → (¬p1 → ¬p0)).

p0 p1 (p0 → p1) ¬p1 ¬p0 (¬p1 → ¬p0) ϕ

T T T F F T T
T F F T F F T
F T T F T T T
F F T T T T T

3.2 Satisfaction, validity, consequences

Definition 3.4. Let ϕ be a formula.

8

• A valuation v satisfies ϕ if ṽ(ϕ) = T .

• ϕ is satisfiable if ϕ is satisfied by some valuation.

• ϕ is logically valid if ϕ is satisfied by every valuation (e.g. Example 3.3,
not Example 3.2). A logically valid formula is also called a propositional
tautology.

Remark 3.5. A formula ϕ is satisfiable if and only if ¬ϕ is not logically valid.

Definition 3.6. Let Γ be any set of formulas (possibly empty, possibly infinite).

• A valuation v satisfies Γ if it satisfies every element of Γ.

• A formula ϕ is a logical consequence of Γ if every valuation satisfying
Γ satisfies ϕ;
i.e. if for all valuations v,

if ṽ(ψ) = T for all ψ ∈ Γ, then ṽ(ϕ) = T .

Notation: Γ ⊨ ϕ; “Γ entails ϕ”.

Note: ∅ ⊨ ϕ if and only if ϕ is logically valid. We abbreviate this to ⊨ ϕ. We
also often abbreviate {ψ} ⊨ ϕ to ψ ⊨ ϕ.

Example 3.7.
ϕ ⊨ (ψ → ϕ).

Indeed, for any v with ṽ(ϕ) = T , by tt → we have ṽ((ψ → ϕ)) = T (no matter
what ṽ(ψ) is).

(‘tt ⋆’ refers to the truth table of the connective ⋆)

Lemma 3.8. Γ ∪ {ψ} ⊨ ϕ if and only if Γ ⊨ (ψ → ϕ).

In particular, ψ ⊨ ϕ if and only if ⊨ (ψ → ϕ).

End of lecture 2

Proof.

⇒: Assume Γ ∪ {ψ} ⊨ ϕ. Let v be any valuation which satisfies Γ.

– Case 1: ṽ(ψ) = F . Then ṽ((ψ → ϕ)) = T by tt →.

– Case 2: ṽ(ψ) = T . Then ṽ satisfies Γ ∪ {ψ}, so ṽ(ϕ) = T , so then
ṽ((ψ → ϕ)) = T by tt →.

So Γ ⊨ (ψ → ϕ).

⇐: Suppose Γ ⊨ (ψ → ϕ). Let v be any valuation satisfying Γ ∪ {ψ}. Then
ṽ((ψ → ϕ)) = T = ṽ(ψ), so ṽ(ϕ) = T by tt →. Hence Γ ∪ {ψ} ⊨ ϕ.

Example 3.9. Recall from Example 3.3 that ⊨ ((p0 → p1) → (¬p1 → ¬p0)).
Applying Lemma 3.8 twice, we deduce first (p0 → p1) ⊨ (¬p1 → ¬p0), and then
{(p0 → p1),¬p1} ⊨ ¬p0.

9

3.3 Equivalence

Definition 3.10. Two formulas ϕ, ψ are logically equivalent if ϕ ⊨ ψ and
ψ ⊨ ϕ, i.e. if ṽ(ϕ) = ṽ(ψ) for every valuation v.

Notation: ϕ ⊨ ⊨ψ

Exercise. ϕ ⊨ ⊨ψ if and only if ⊨ (ϕ↔ ψ).

Lemma 3.11. (i) For any formulas ϕ, ψ

(ϕ ∨ ψ) ⊨ ⊨¬(¬ϕ ∧ ¬ψ).

(ii) Hence every formula is logically equivalent to one without ∨.

Proof. (i) Either use truth tables, or observe that for any valuation v:

ṽ(ϕ ∨ ψ) = F
iff ṽ(ϕ) = F = ṽ(ψ) by tt ∨
iff ṽ(¬ϕ) = T = ṽ(¬ψ) by tt ¬
iff ṽ((¬ϕ ∧ ¬ψ)) = T by tt ∧
iff ṽ(¬(¬ϕ ∧ ¬ψ)) = F by tt ¬

(ii) By induction on the length of ϕ. Consider cases:

• ϕ = pi: clear.

• ϕ = ¬ψ: by IH, ψ ⊨ ⊨ψ′ for some ψ′ not containing ∨.
Then ϕ ⊨ ⊨¬ψ′, which does not contain ∨.

• ϕ = (ψ ⋆ χ): by IH, say ψ ⊨ ⊨ψ′ and χ ⊨ ⊨χ′ where ψ′ and χ′ do not
contain ∨.
If ⋆ is not ∨, we conclude since ϕ ⊨ ⊨(ψ′ ⋆ χ′).
If ⋆ is ∨, we conclude since ϕ ⊨ ⊨¬(¬ψ′ ∧ ¬χ′).

Notation 3.12. If ϕ1, . . . , ϕn are formulas, we can write their disjunction as

(. . . ((ϕ1 ∨ ϕ2) ∨ ϕ3) . . . ∨ ϕn).

This is rather cumbersome notation, so we abbreviate it to

n∨
i=1

ϕi.

Formally, we make the following recursive definitions:

1∨
i=1

ϕi = ϕ1 and

1∧
i=1

ϕi = ϕ1,

and for n > 1,

n∨
i=1

ϕi = (

n−1∨
i=1

ϕi ∨ ϕn) and
n∧
i=1

ϕi = (

n−1∧
i=1

ϕi ∧ ϕn).

So ṽ(
∨n
i=1 ϕi) = T iff for some i, ṽ(ϕi) = T

and ṽ(
∧n
i=1 ϕi) = T iff for all i, ṽ(ϕi) = T .

We also sometimes write e.g. (ϕ1 ∨ ϕ2 ∨ ϕ3) for
∨3
i=1 ϕi = ((ϕ1 ∨ ϕ2) ∨ ϕ3).

10

Lemma 3.13. Let ϕ, ψ, ϕi be formulas. Then

(i) ¬(ϕ ∨ ψ) ⊨ ⊨(¬ϕ ∧ ¬ψ)
More generally,

¬
n∨
i=1

ϕi ⊨ ⊨
n∧
i=1

¬ϕi,

hence also

¬
n∧
i=1

ϕi ⊨ ⊨
n∨
i=1

¬ϕi.

These are called De Morgan’s Laws.

(ii) (ϕ→ ψ) ⊨ ⊨(¬ϕ ∨ ψ)

(iii) (ϕ↔ ψ) ⊨ ⊨((ϕ→ ψ) ∧ (ψ → ϕ))

(iv) (ϕ ∨ ψ) ⊨ ⊨((ϕ→ ψ) → ψ)

(v) (ϕ ∧
∨n
i=1 ψi) ⊨ ⊨

∨n
i=1(ϕ ∧ ψi)

(“∧ distributes over ∨”)

(vi) (ϕ ∨
∧n
i=1 ψi) ⊨ ⊨

∧n
i=1(ϕ ∨ ψi)

(“∨ distributes over ∧”)

3.4 Truth functions

Definition 3.14.

• Let Vn be the set of all functions

v : {p0, . . . , pn−1} → {T, F},

i.e. the “partial” valuations assigning values only to the first n proposi-
tional variables.
Note #Vn = 2n.

• An n-ary truth function is a function

J : Vn → {T, F}.

There are precisely 22
n

such functions.

• Let Formn(Lprop) be the set of formulas which contain only propositional
variables from the set {p0, . . . , pn−1}.
If ϕ ∈ Formn(Lprop) and v ∈ Vn, then ṽ(ϕ) is well-defined, so ϕ repre-
sents an n-ary truth function

Jnϕ : Vn → {T, F}; v 7→ ṽ(ϕ).

Remark 3.15. Formulas ϕ, ψ ∈ Formn(Lprop) are logically equivalent if and
only if the same valuations satisfy them, so

ϕ ⊨ ⊨ψ ⇔ Jnϕ = Jnψ .

In other words, a formula in Formn(Lprop) is determined up to logical equiv-
alence by the n-ary truth function it represents.

11

End of lecture 3

Definition 3.16. A formula is in disjunctive normal form (DNF) if it is
of the form

k∨
i=1

si∧
j=1

ψi,j

where each ψi,j is either a propositional variable or the negation of a proposi-
tional variable.

Example 3.17. (((p1 ∧¬p2)∨ p0)∨ ((¬p0 ∧¬p3)∧ p0)) is in disjunctive normal
form. So are p2 and ¬p7.

Theorem 3.18. For every n ≥ 1, every n-ary truth function J : Vn → {T, F},
is represented by a formula in disjunctive normal form.

In particular, every formula is logically equivalent to one in DNF.

Proof. Let
U := {v ∈ Vn | J(v) = T}.

First, suppose k := |U | > 0, say U = {v0, ..., vk−1}. Set

ϕ :=

k−1∨
i=0

n−1∧
j=0

ψi,j

where

ψi,j :=

{
pj if vi(pj) = T
¬pj if vi(pj) = F.

Then for any w ∈ Vn and i < k,

w̃(

n−1∧
j=0

ψi,j) = T ⇔ w = vi.

Hence for any w ∈ Vn, we have

Jnϕ (w) = T ⇔ w̃(ϕ) = T

⇔ (w = v0 or . . . or w = vk−1)

⇔ w ∈ U

⇔ J(w) = T,

so Jnϕ = J , i.e. ϕ represents J .

Finally, we handle the special case that U = ∅, i.e. J(v) = F for all v ∈ Vn,
by setting ϕ := (p0 ∧ ¬p0) (which is in DNF). Then ϕ represents J , since
Jnϕ (v) = ṽ(ϕ) = F = J(v) for any v ∈ Vn.

Definition 3.19. • If ∗1, ..., ∗k are truth-functional connectives with as-
sociated truth tables (unary, binary, or even ternary or higher), write
Lprop[∗1, ..., ∗k] for the language with these connectives instead of ¬,→
,∧,∨,↔, and define Form(Lprop[∗1, ..., ∗k]) and Formn(Lprop[∗1, ..., ∗k])
accordingly.

12

• Say Lprop[∗1, ..., ∗k] is adequate if every n-ary truth function (for n ≥ 1)
is represented by some ϕ ∈ Formn(Lprop[∗1, ..., ∗k]).

Lemma 3.20. The following languages are adequate:

(i) Lprop[¬,∧,∨].

(ii) Lprop[¬,∧].

(iii) Lprop[¬,∨].

(iv) Lprop[¬,→].

Proof.

(i) Theorem 3.18.

(ii) By (i) and De Morgan’s law

(ϕ ∨ ψ) ⊨ ⊨¬(¬ϕ ∧ ¬ψ),

via the argument of Lemma 3.11.

(iii) Similarly, using De Morgan’s other law

(ϕ ∧ ψ) ⊨ ⊨¬(¬ϕ ∨ ¬ψ).

(iv) Similarly, using (iii) and the equivalence (Lemma 3.13(iv))

(ϕ ∨ ψ) ⊨ ⊨((ϕ→ ψ) → ψ).

Remark 3.21.

• L := Lprop[∨,∧,→] is not adequate:
defining vT by vT (pi) = T for all i, we have vT (ϕ) = T for all ϕ ∈ Form(L,
so in particular no such ϕ gives J1

ϕ = J1
¬p0 .

• There are precisely two binary connectives, say ↑ and ↓, such that Lprop[↑]
and Lprop[↓] are adequate.

4 Proofs

• We introduced ‘logical consequence’ – Γ ⊨ ϕ means: whenever (each for-
mula of) Γ is true, so is ϕ.

• If Γ is finite, we can check whether Γ ⊨ ϕ by considering truth tables. But
for infinite Γ, it is less clear how to determine when Γ ⊨ ϕ holds.

• We now define a notion of a proof of a formula ϕ from hypotheses Γ, and
we will show that Γ ⊨ ϕ if and only if such a proof exists (“completeness”).

• Generally, a proof system can be defined by choosing some axioms and
some rules of inference. Then a proof of ϕ from Γ is a finite sequence
ϕ1, ϕ2, . . . , ϕn such that ϕn = ϕ, and for each i = 1, . . . , n:

13

- ϕi ∈ Γ,
- or ϕi is some axiom,
- or ϕi follows from previous ϕj ’s by a rule of inference.

We work with L0 := Lprop[¬,→]. Since L0 is adequate by Lemma 3.20(iv),
we lose nothing by considering only L0.

Definition 4.1. The proof system L0 consists of the following axioms and
rules:
Axioms
An axiom of L0 is any formula of the following form, where α, β, γ ∈ Form(L0):

A1 (α→ (β → α))

A2 ((α→ (β → γ)) → ((α→ β) → (α→ γ)))

A3 ((¬α→ β) → ((¬α→ ¬β) → α))

Rules of inference
Just one rule, modus ponens:

MP For any ϕ, ψ ∈ Form(L0):
From ϕ and (ϕ→ ψ), infer ψ.

Definition 4.2. Let Γ ⊆ Form(L0). A formula ϕ ∈ Form(L0) is provable from
hypotheses Γ, written

Γ ⊢ ϕ,
if there is a sequence of L-formulas (a derivation or proof) ϕ1, . . . , ϕn with
ϕn = ϕ such that for each i ≤ n, at least one of the following holds:

• (A1-A3) ϕi is an axiom.
• (Hyp) ϕi ∈ Γ.
• (MP) ϕk = (ϕj → ϕi) for some j, k < i.

End of lecture 4

In the case Γ = ∅, we usually write ⊢ ϕ rather than ∅ ⊢ ϕ, and we say that
ϕ is a theorem of the system L0.

Note that if ∆ ⊢ ϕ and ∆′ ⊇ ∆, then also ∆′ ⊢ ϕ.
The term propositional calculus is sometimes used to refer to L0 or similar

proof systems. It is also sometimes used to refer to propositional logic in general.

Example 4.3. For any ϕ ∈ Form(L0)

⊢ (ϕ→ ϕ).

Proof.

1
((ϕ→ ((p0 → ϕ) → ϕ))
→ ((ϕ→ (p0 → ϕ))

→ (ϕ→ ϕ)))
[A2 with α = ϕ, β = (p0 → ϕ), γ = ϕ]

2 (ϕ→ ((p0 → ϕ) → ϕ)) [A1 with α = ϕ, β = (p0 → ϕ)]

3 ((ϕ→ (p0 → ϕ)) → (ϕ→ ϕ)) [MP 2, 1]

4 (ϕ→ (p0 → ϕ)) [A1 with α = ϕ, β = p0]

5 (ϕ→ ϕ) [MP 4, 3]

Then this sequence of formulas is a proof of (ϕ→ ϕ) from ∅ in L0.

14

Example 4.4. For any ϕ, ψ ∈ Form(L0):

{ψ,¬ψ} ⊢ ϕ

Proof.

1 ((¬ϕ→ ψ) → ((¬ϕ→ ¬ψ) → ϕ)) [A3]

2 ψ [Hyp]

3 (ψ → (¬ϕ→ ψ)) [A1]

4 (¬ϕ→ ψ) [MP 2, 3]

5 ((¬ϕ→ ¬ψ) → ϕ) [MP 4, 1]

6 ¬ψ [Hyp]

7 (ψ → (¬ϕ→ ¬ψ)) [A1]

8 (¬ϕ→ ¬ψ) [MP 6, 7]

9 ϕ [MP 8, 5]

Theorem 4.5 (The Soundness Theorem for L0). L0 is sound, i.e. for any
Γ ⊆ Form(L0) and for any ϕ ∈ Form(L0):

If Γ ⊢ ϕ then Γ ⊨ ϕ.

In particular, any theorem of L0 is logically valid.

Proof. We show by (complete) induction on m:

(⋆) If a formula ϕ has a proof of length m from Γ in L0, then Γ ⊨ ϕ.
So suppose α1, . . . , αm is a proof in L0, and (⋆) holds for all m′ < m. We

have to show that Γ ⊨ αm.

Case 1: αm is an axiom. One verifies by truth tables (exercise) that our
axioms are logically valid, so Γ ⊨ αm.

Case 2: αm ∈ Γ. Then Γ ⊨ αm.

Case 3: αm is obtained by MP. So say j, k < m and αk = (αj → αm).

By the inductive hypothesis, since α1, . . . , αj is a proof of length j < m, we
have Γ ⊨ αj . Similarly Γ ⊨ αk, i.e. Γ ⊨ (αj → αm).

But {αj , (αj → αm)} ⊨ αm by Lemma 3.8, and it follows (from the definition
of ⊨) that Γ ⊨ αm.

4.1 The Deduction Theorem for L0

A common pattern of reasoning goes as follows: “Suppose A holds. Then [some
chain of reasoning], and so B holds. Hence A implies B.” The Deduction Theo-
rem implements this.

Theorem 4.6 (The Deduction Theorem for L0). For any Γ ⊆ Form(L0) and
for any ϕ, ψ ∈ Form(L0),

if Γ ∪ {ϕ} ⊢ ψ then Γ ⊢ (ϕ→ ψ).

Proof. We prove this by induction on the length of a proof of ψ from Γ ∪ {ϕ}.
So suppose α1, . . . , αm is a proof in L0 from Γ∪{ϕ}, and we show Γ ⊢ (ϕ→

αm), assuming inductively that Γ ⊢ (ϕ→ αi) for all i < m.

Case 1: αm is an axiom. Then Γ ⊢ (ϕ→ αm):

15

1 αm [A1/2/3]
2 (αm → (ϕ→ αm)) [A1]
3 (ϕ→ αm) [MP 1,2]

Case 2: αm ∈ Γ ∪ {ϕ}. If αm ∈ Γ then the proof above works (changing the
justification on line 1 to “[Hyp]”). Otherwise αm = ϕ, and then ⊢ (ϕ→ αm) by
Example 4.3, and hence Γ ⊢ (ϕ→ αm).

Case 3: αm is obtained by MP from some earlier αj , αk, i.e. there are j, k < m
such that αj = (αk → αm).

By the induction hypothesis, we have

Γ ⊢ (ϕ→ αk)
and Γ ⊢ (ϕ→ (αk → αm))

So say
β1, . . . , βr−1, (ϕ→ αk)

and
γ1, . . . , γs−1, (ϕ→ (αk → αm))

are proofs in L0 from Γ.

Then

1 β1
...

...
r-1 βr−1

r (ϕ→ αk)
r+1 γ1
...

...
r+s-1 γs−1

r+s (ϕ→ (αk → αm))
r+s+1 ((ϕ→ (αk → αm)) →

((ϕ→ αk) → (ϕ→ αm))) [A2]

r+s+2 ((ϕ→ αk) → (ϕ→ αm)) [MP r+s, r+s+1]

r+s+3 (ϕ→ αm) [MP r, r+s+2]

is a proof of (ϕ→ αm) in L0 from Γ.

End of lecture 5

Remark 4.7.

• The proof only used instances of A1, A2, and the rule MP.

• The proof gives a precise algorithm for converting any proof showing
Γ ∪ {ϕ} ⊢ ψ into one showing Γ ⊢ (ϕ→ ψ).

• The converse implication is immediate from MP:

If Γ ⊢ (ϕ→ ψ) then Γ ∪ {ϕ} ⊢ ψ :

...
... proof from Γ

r (ϕ→ ψ)
r+1 ϕ [Hyp]

r+2 ψ [MP r, r+1]

16

More generally:

Remark 4.8. If Γ ⊢ (ϕ→ ψ) and Γ ⊢ ϕ, then Γ ⊢ ψ by MP.

Explicitly: if α1, . . . , αn−1, (ϕ → ψ) and β1, . . . , βm−1, ϕ are proofs from Γ,
then so is α1, . . . αn−1, (ϕ→ ψ), β1, . . . , βm−1, ϕ, ψ.

Example 4.9. If Γ ⊢ (ϕ→ ψ) and Γ ⊢ (ψ → χ), then Γ ⊢ (ϕ→ χ).

Proof. By the deduction theorem, it suffices to show that Γ ∪ {ϕ} ⊢ χ.
Now Γ∪{ϕ} ⊢ (ϕ→ ψ) and Γ∪{ϕ} ⊢ ϕ, so Γ∪{ϕ} ⊢ ψ by MP (Remark 4.8).

Then since Γ ∪ {ϕ} ⊢ (ψ → χ), we have Γ ∪ {ϕ} ⊢ χ by MP again.

Lemma 4.10. If Γ ∪ {ϕ} ⊢ ψ and Γ ⊢ ϕ, then Γ ⊢ ψ.

Proof. We have Γ ⊢ (ϕ→ ψ) by the deduction theorem, so Γ ⊢ ψ by MP.

(Alternative direct argument: if α1, . . . , αn−1, ϕ is a proof from Γ and β1, . . . , βm−1, ψ
is a proof from Γ∪{ϕ}, then α1, . . . , αn−1, β1, . . . , βm−1, ψ is a proof from Γ.)

5 Completeness and Compactness

Theorem 5.1 (The Completeness Theorem for L0). L0 is complete, i.e. for
any Γ ⊆ Form(L0) and for any ϕ ∈ Form(L0):

If Γ ⊨ ϕ then Γ ⊢ ϕ.

Given also soundness, it follows: Γ ⊨ ϕ iff Γ ⊢ ϕ.
To prove completeness, it is convenient to go via a proof-theoretic analogue

of satisfiability called consistency.

Definition 5.2. Γ ⊆ Form(L0) is inconsistent if for some χ ∈ Form(L0),

Γ ⊢ χ and Γ ⊢ ¬χ.

Otherwise, Γ is consistent.

Lemma 5.3. Any satisfiable Γ ⊆ Form(L0) is consistent.

Proof. Suppose Γ is inconsistent, say Γ ⊢ χ and Γ ⊢ ¬χ. Then Γ ⊨ χ and
Γ ⊨ ¬χ by soundness. But no valuation satisfies both χ and ¬χ, so Γ is not
satisfiable.

Lemma 5.4.

(i) Γ ⊢ ϕ if and only if Γ ∪ {¬ϕ} is inconsistent.

(ii) Γ ⊨ ϕ if and only if Γ ∪ {¬ϕ} is unsatisfiable.

Proof.

17

(i) Suppose Γ ∪ {¬ϕ} is inconsistent, say Γ ∪ {¬ϕ} ⊢ χ and Γ ∪ {¬ϕ} ⊢ ¬χ.
Then by the deduction theorem, Γ ⊢ (¬ϕ→ χ) and Γ ⊢ (¬ϕ→ ¬χ).
But

((¬ϕ→ χ) → ((¬ϕ→ ¬χ) → ϕ))

is an instance of A3, so by MP twice, we conclude Γ ⊢ ϕ.
Conversely, if Γ ⊢ ϕ then Γ∪{¬ϕ} is inconsistent, since Γ∪{¬ϕ} ⊢ ϕ and
Γ ∪ {¬ϕ} ⊢ ¬ϕ.

(ii) Γ ⊨ ϕ ⇔ any valuation satisfying Γ satisfies ϕ
⇔ no valuation satisfying Γ satisfies ¬ϕ
⇔ Γ ∪ {¬ϕ} is unsatisfiable.

So to prove the Completeness Theorem, it suffices to prove that any consis-
tent Γ is satisfiable.

Definition 5.5. Γ ⊆ Form(L0) is complete (or maximal consistent) if

• Γ is consistent, and

• for every ϕ ∈ Form(L0), either Γ ⊢ ϕ or Γ ⊢ ¬ϕ.

Warning. This notion of completeness of a set of formulas is quite distinct from
the notion of completeness of a proof system! In the Completeness Theorem
we are proving, as well as Gödel’s Completeness Theorem for first-order logic
which we will prove later, “completeness” refers to completeness of a proof
system (“⊨⇒ ⊢”). In Gödel’s Incompleteness Theorems (the subject of a Part
C course) meanwhile, “completeness” refers to completeness of a set of (first-
order) formulas, as in Definition 5.5.

We will prove the completeness theorem by first showing that every consis-
tent Γ extends to a complete set, then showing that complete sets are satisfiable.

Lemma 5.6. If Γ ⊆ Form(L0) is consistent and ϕ ∈ Form(L0), then either
Γ ∪ {ϕ} is consistent or Γ ∪ {¬ϕ} is consistent.

Proof. If Γ ̸⊢ ϕ, then Γ∪{¬ϕ} is consistent by Lemma 5.4(i). Otherwise, Γ ⊢ ϕ.
Then Γ∪ {ϕ} is consistent, since otherwise for some χ we have Γ∪ {ϕ} ⊢ χ and
Γ ∪ {ϕ} ⊢ ¬χ, and hence Γ ⊢ χ and Γ ⊢ ¬χ (by Lemma 4.10), contradicting
consistency of Γ.

Theorem 5.7. Suppose Γ is consistent. Then there is a complete Γ′ ⊇ Γ.

Proof. Form(L0) is countable (Fact 2.9), so say

Form(L0) = {ϕ0, ϕ1, ϕ2, . . .}.

Construct a chain of consistent sets

Γ = Γ0 ⊆ Γ1 ⊆ Γ2 ⊆ . . .

as follows:

18

• Γ0 := Γ.
• Given consistent Γn, let

Γn+1 :=

{
Γn ∪ {ϕn} if Γn ∪ {ϕn} is consistent
Γn ∪ {¬ϕn} otherwise

Then Γn+1 is consistent by Lemma 5.6.

Now let Γ′ :=
⋃∞
n=0 Γn. Then Γ′ is consistent: if Γ′ ⊢ χ and Γ′ ⊢ ¬χ, then

proofs witnessing this use only finitely many formulas from Γ′ as hypotheses, so
for some n, Γn ⊢ χ and Γn ⊢ ¬χ, contradicting the consistency of Γn.

Finally, Γ′ is complete: for all n, either ϕn ∈ Γ′ or ¬ϕn ∈ Γ′, so in particular
either Γ′ ⊢ ϕn or Γ′ ⊢ ¬ϕn.

End of lecture 6

Lemma 5.8. Suppose Γ is complete. Then for every ψ, χ ∈ Form(L0):

(a) Γ ⊢ ¬ψ iff Γ ̸⊢ ψ.
(b) Γ ⊢ (ψ → χ) iff either Γ ̸⊢ ψ or Γ ⊢ χ.

Proof.

(a) Immediate from the definition of Γ being complete.

(b) ‘⇒’: By MP, if Γ ⊢ (ψ → χ) and Γ ⊢ ψ, then Γ ⊢ χ.
‘⇐’: Suppose Γ ̸⊢ ψ. Then Γ ⊢ ¬ψ by (a). But Γ ∪ {ψ,¬ψ} ⊢ χ by
Example 4.4, so then Γ∪ {¬ψ} ⊢ (ψ → χ) by the deduction theorem, and
so Γ ⊢ (ψ → χ) (by Lemma 4.10).

If Γ ⊢ χ then Γ ⊢ (ψ → χ) by A1 and MP.

Theorem 5.9. Suppose Γ is complete. Then Γ is satisfiable.

Proof. Define a valuation v by

v(pi) = T iff Γ ⊢ pi.

We prove by induction on ϕ:

Claim. For all ϕ ∈ Form(L0), ṽ(ϕ) = T iff Γ ⊢ ϕ.

Case 1: ϕ = pi for some i. Then we are done by the definition of v.

Case 2: ϕ = ¬ψ. Then

ṽ(ϕ) = T iff ṽ(ψ) = F tt ¬
iff Γ ̸⊢ ψ IH

iff Γ ⊢ ¬ψ Lemma 5.8(a)

iff Γ ⊢ ϕ

Case 3: ϕ = (ψ → χ). Then

ṽ(ϕ) = T iff ṽ(ψ) = F or ṽ(χ) = T tt →
iff Γ ̸⊢ ψ or Γ ⊢ χ IH

iff Γ ⊢ (ψ → χ) Lemma 5.8(b)

iff Γ ⊢ ϕ

19

The Claim is proven, so in particular ṽ(ϕ) = T for all ϕ ∈ Γ, i.e. v satisfies
Γ.

Theorem 5.10. Let Γ ⊆ Form(L0). Then Γ is consistent if and only if it is
satisfiable.

Proof. If Γ is consistent, then by Theorem 5.7 it extends to a complete set,
which by Theorem 5.9 is satisfiable, hence Γ is also satisfiable.

The converse is Lemma 5.3.

Proof of Completeness Theorem 5.1. Immediate from Lemma 5.4 and Theorem 5.10.

Theorem 5.11 (The Compactness Theorem for L0). Γ ⊆ Form(L0) is satisfi-
able iff every finite subset of Γ is satisfiable.

Proof. By Theorem 5.10, this is equivalent to:
Γ ⊆ Form(L0) is consistent iff every finite subset of Γ is consistent.

But indeed, by finiteness of proofs, Γ ⊢ χ and Γ ⊢ ¬χ iff already Γ0 ⊢ χ and
Γ0 ⊢ ¬χ for some finite Γ0 ⊆ Γ.

Remark 5.12. Our proof of completeness used that the language was countable
(in the proof of Theorem 5.7). One could also consider uncountable languages,
for example with a propositional variable pr for each real number r. Complete-
ness can then be proven along the same lines, but it requires some form of the
Axiom of Choice2.

Part II

First-order Logic

Consider: “If everyone loves their mother, then everyone loves someone.”

Propositional logic can treat only the implication, (p0 → p1). We now
introduce a refinement of propositional logic, known as first-order or predicate
logic, which can capture the full meaning – rendering it as

(∀x0L(x0,m(x0)) → ∀x0∃x1L(x0, x1))

where L is a “binary relation symbol” interpreted as loving, and m is a “unary
function symbol” interpreted as m(x) being the mother of x.

First-order logic extends propositional logic with universal and existential
quantifiers, predicates and relations, and functions and constants. The result is
highly constrained compared to natural language, but is just expressive enough
for the purpose of formalising mathematical statements.

As in the propositional case, we first formally define the syntax, then give
a precise definition of truth, then proceed to find a sound and complete proof
calculus. We will then consider compactness and other consequences for actual
mathematical structures.

2Namely, it is equivalent modulo ZF to the Boolean Prime Ideal Theorem; see section 2.3
in Jech’s book ”The Axiom of Choice” for a proof.

20

6 Syntax

A countable first-order language L consists of a countable set of non-
logical symbols, along with a categorisation of its elements as each being of
exactly one of the following kinds:

• A k-ary predicate symbol3 for some k ≥ 1.
• A k-ary function symbol for some k ≥ 1.
• A constant symbol.

The alphabet of L consists of its non-logical symbols along with the following
disjoint set of logical symbols:

• Connectives: →,¬
• Quantifier: ∀ (‘for all’)
• Variables: x0, x1, x2, . . . (one variable xi for each i ∈ N)
• 3 punctuation marks: , ()
• Equality symbol:

.
=

End of lecture 7

We recursively define terms and formulas:

Definition 6.1.

(a) A string is an L-term if it has one of the following forms:
(i) A variable xi.
(ii) A constant symbol.
(iii) f(t1, . . . , tk) where f is a k-ary function symbol in L and t1, . . . , tk

are terms.
(b) An atomic L-formula is any string of the form

P (t1, . . . , tk) or t1
.
= t2

where k ≥ 1, P ∈ L is a k-ary relation symbol in L, and all ti are L-terms.
(c) A string is a L-formula if it has one of the following forms:

(i) An atomic L-formula.
(ii) ¬ϕ or (ϕ→ ψ) where ϕ, ψ are L-formulas.
(iii) ∀xiϕ where ϕ is an L-formula and i ∈ N.

Example 6.2. The most general countable first-order language has a countably
infinite set of symbols of each type:

Lpred := {(P (k)
i)i,k>0, (f

(k)
i)i,k>0, (ci)i>0},

where each P
(k)
i is a k-ary predicate symbol,

each f
(k)
i is a k-ary function symbol,

and each ci is a constant symbol.

• The following are all Lpred-terms:

c3, x5, f
(1)
3 (c2), f

(2)
1 (x1, f

(1)
1 (c37)).

• f
(3)
2 (x1, x2) is not a term (wrong arity).

3We often say “unary”, “binary”, “ternary” for “k-ary” with k = 1, 2, 3. When k ≥ 2, a
k-ary predicate symbol is also often called a k-ary relation symbol.

21

• P
(3)
2 (x4, c2, f

(2)
3 (c1, x2)) and f

(2)
1 (c5, x2)

.
= x3 are atomic formulas.

• ∀x1f (2)2 (x1, c7)
.
= x2 and (∀x2(P (1)

1 (x3) ∧ P
(2)
1 (x4, x3)) → c1

.
= c0) are

non-atomic formulas.

Example 6.3. A more typical example of a first-order language appearing in
mathematics is the language of ordered rings

Lo.ring := {<, ·,+,−, 0, 1},

where < is a binary relation symbol, ·, +, and − are binary function symbols,
and 0 and 1 are constant symbols.

(Note that we are using these symbols as abstract symbols – forget for now
the meanings we usually give to them.)

When dealing with binary function and relation symbols, we often allow
ourselves to use “infix notation” as an abbreviation, so e.g.

∀x0x0 < x0 + 1

abbreviates the Lo.ring-formula

∀x0 <(x0,+(x0, 1)).

Exercise 6.4. We have unique readability for terms, for atomic formulas,
and for formulas.

As in Fact 2.9, we have

Fact 6.5. For any given countable first-order language L, the sets Term(L) of
terms in L and Form(L) of formulas in L are countable.

From now on, we consider only countable first-order languages, so we often
refer to them just as “languages”.

7 Semantics

7.1 Informal discussion

The truth value of a propositional formula is determined by the truth values
of the propositional variables. We now consider what information we need to
determine the truth value of a first-order formula.

To determine the truth of

ϕ := ∀x0(P (x0) → P (f(x0)))

we first need to decide the domain of quantification: a non-empty set M . We
then read ∀x0 as “for all x0 ∈M”.

Then, for each possible assignment of x0 to an element of M , we want to
determine whether

ψ := (P (x0) → P (f(x0)))

holds.

For this, we need:

22

• an interpretation of f as a function M → M , so that f(x0) denotes an
element of M ;

• an interpretation of P as a choice of True/False for each element ofM (i.e.
as a a subset of M), so that P (x0) and P (f(x0)) are given truth values.

For example, takingM = Z, interpreting f as the successor function S(n) =
n+ 1 and P as the natural numbers N ⊆ Z, ϕ is true because ψ is true for any
assignment of x0, but ϕ is false if we interpret P as −N, because ψ is false when
we assign x0 to 0 ∈ Z.

So in general, to evaluate the truth of a formula we need:

• a domain;
• interpretations of the non-logical symbols;
• an assignment of the variables to elements of the domain.

7.2 Interpretations and Assignments

Definition 7.1. Let L be a language. An L-structure M consists of:

• A non-empty set M , the domain of M;

• For each k-ary function symbol f ∈ L, a k-ary function fM : Mk →M ;
• For each k-ary predicate symbol P ∈ L, a subset PM ⊆Mk;
• For each constant symbol c ∈ L, an element cM ∈M .

An interpretation of a language L is precisely a choice of an L-structure.

Notation 7.2. Consider for example the language L = {f, P, c} with f a binary
function symbol, P a unary predicate symbol, and c a constant symbol.

We denote an L-structure by M = ⟨M ; fM, PM, cM⟩.
We also write e.g. M = ⟨N; +, 2N, 3⟩ for the L-structure with domain N and

with f interpreted as the addition function fM : N2 → N; (x, y) 7→ x+ y, P as
the subset PM = 2N ⊆ N, and c as the element cM = 3 ∈ N.

End of lecture 8

Definition 7.3. Let M = ⟨M ; . . .⟩ be an L-structure with domain M .

• An assignment in M is a function

a : {x0, x1, . . .} →M

• An assignment a extends to a function

ã : Terms(L) →M

defined recursively as follows:

– ã(xi) := a(xi) where i ∈ N.
– ã(c) := cM where c ∈ L is a constant symbol.

– ã(f(t1, . . . , tk)) := fM(ã(t1), . . . , ã(tk)) where f ∈ L is a k-ary func-
tion symbol and ti ∈ Term(L).

23

• Given an assignment a in M, we recursively define whether

M ⊨a ϕ

(read as “ϕ holds in M under the assignment a”, or “M satisfies ϕ under
a”; sometimes also written as M ⊨ ϕ[a]), as follows:

– M ⊨a P (t1, . . . , tk) if and only if (ã(t1), . . . , ã(tk)) ∈ PM

(where P ∈ L is a k-ary predicate symbol and ti ∈ Term(L)).
– M ⊨a t1

.
= t2 if and only if ã(t1) = ã(t2)

(where t1, t2 ∈ Term(L)).
– M ⊨a ¬ψ if and only if M ⊭a ψ.

– M ⊨a (ψ → χ) if and only if M ⊭a ψ or M ⊨a χ.

– M ⊨a ∀xiψ if and only if M ⊨a∗ ψ for all assignments a∗ such that
a∗(xj) = a(xj) for all j ̸= i.

Example 7.4. Consider M = ⟨Z; ·⟩ as an {f}-structure (f a binary function
symbol). Let a be an assignment in Z, and let

ϕ = ∀x0∀x1(f(x0, x2)
.
= f(x1, x2) → x0

.
= x1)

Then:
M ⊨a ϕ

⇔ For all a∗ with a∗(xi) = a(xi) for i ̸= 0,
M ⊨a∗ ∀x1(f(x0, x2)

.
= f(x1, x2) → x0

.
= x1).

⇔ For all a∗∗ with a∗∗(xi) = a(xi) for i ̸= 0, 1,
M ⊨a∗∗ (f(x0, x2)

.
= f(x1, x2) → x0

.
= x1).

⇔ For all a∗∗ with a∗∗(xi) = a(xi) for i ̸= 0, 1,
if a∗∗(x0) · a∗∗(x2) = a∗∗(x1) · a∗∗(x2).
then a∗∗(x0) = a∗∗(x1).

⇔ For all n,m ∈ Z,
if n · a(x2) = m · a(x2) then n = m,

⇔ a(x2) ̸= 0.

Notation 7.5. If a and a∗ are assignments in a structure M and i ∈ N, write
a∗ ∼i a to mean a∗(xj) = a(xj) for all j ̸= i.

So M ⊨a ∀xiϕ if and only if M ⊨a∗ ϕ for all a∗ ∼i a.
Given m ∈M , let a[m/xi] be the unique assignment such that a[m/xi] ∼i a

and a[m/xi](xi) = m, namely

a[m/xi](xj) =

{
a(xj) if j ̸= i
m if j = i.

Example 7.6. Suppose P ∈ L with P a unary predicate symbol, M is an
L-structure,

ϕ = (∀x0P (x0) → P (x1)),

and a is any assignment in M. Then M ⊨a ϕ.

24

Proof. Suppose M ⊨a ∀x0P (x0).
Then for all a∗ ∼0 a, we have M ⊨a∗ P (x0). In particular, M ⊨a[a(x1)/x0]

P (x0), so a(x1) = a[a(x1)/x0](x0) ∈ PM. So M ⊨a P (x1).
Hence M ⊨a ϕ.

Definition 7.7. Let L be a language.

• An L-formula ϕ is logically valid, written ⊨ ϕ, if M ⊨a ϕ for all L-
structures M and for all assignments a in M.

• ϕ ∈ Form(L) is satisfiable if M ⊨a ϕ for some L-structure M and for
some assignment a in M.

• For Γ ⊆ Form(L), we write M ⊨a Γ to mean that M ⊨a ϕ for all ϕ ∈ Γ.

• ϕ ∈ Form(L) is a logical consequence of Γ ⊆ Form(L), written Γ ⊨ ϕ,
if for all L-structures M and for all assignments a in M with M ⊨a Γ,
also M ⊨a ϕ.

• ϕ, ψ ∈ Form(L) are logically equivalent, ϕ ⊨ ⊨ψ, if {ϕ} ⊨ ψ and {ψ} ⊨
ϕ.

We abbreviate ∅ ⊨ ϕ to ⊨ ϕ; e.g. ⊨ (∀x0P (x0) → P (x1)) by Example 7.6.

7.3 Some abbreviations

We use . . . as abbreviation for . . .
(α ∨ β) ((α→ β) → β)
(α ∧ β) ¬(¬α ∨ ¬β)
(α↔ β) ((α→ β) ∧ (β → α))
∃xiϕ ¬∀xi¬ϕ

Exercise 7.8. For any L-structure M and any assignment a in M one has

M ⊨a (α ∨ β) ⇔ M ⊨a α or M ⊨a β
M ⊨a (α ∧ β) ⇔ M ⊨a α and M ⊨a β
M ⊨a (α↔ β) ⇔ M ⊨a α iff M ⊨a β

M ⊨a ∃xiϕ ⇔ M ⊨a∗ ϕ for some assignment a∗ ∼i a

7.4 Tautologies

Let L be a first-order language.

Definition 7.9. A tautology of L is a substitution instance of a propositional
tautology, i.e. a formula ϕ ∈ Form(L) obtained as follows:

• Let α be a logically valid formula of the propositional logic L0 with propo-
sitional variables among p0, . . . , pn;

• let ψ0, . . . , ψn ∈ Form(L);
• let ϕ be the L-formula obtained from α by replacing each occurrence of pi
by ψi.

Example 7.10. (∀x0P (x0) → (¬x0
.
= x1 → ∀x0P (x0))) is a tautology, ob-

tained from the propositional validity (p0 → (p1 → p0)).

25

Lemma 7.11. Tautologies are logically valid: if ϕ is a tautology of L, then ⊨ ϕ.

Proof. Generally, let ϕ be the formula resulting from substituting ψi for pi in
a propositional formula α. Given a structure M and assignment a, define a
propositional valuation by

v(pi) = T ⇔ M ⊨a ψi.

By the recursive definitions of ⊨a and of ṽ, it follows:

ṽ(α) = T ⇔ M ⊨a ϕ.

In particular, if α is a propositional validity, then ṽ(α) = T and M ⊨a ϕ, so
ϕ is logically valid.

Remark 7.12. Not all first-order logical validities are tautologies – e.g. x0
.
= x0.

7.5 Free and bound variables

Recall from Example 7.4 that whether or not

⟨Z; ·⟩ ⊨a ∀x0∀x1(f(x0, x2)
.
= f(x1, x2) → x0

.
= x1)

depends on a(x2). But it does not depend on a(x0) or a(x1).

This is because all occurrences of x0 and x1 in ϕ are subordinate to the cor-
responding quantifiers ∀x0 and ∀x1. We say that these occurrences are bound,
while the occurrence of x2 is free.

Definition 7.13. Let L be a language, ϕ an L-formula, and x ∈ {x0, x1, . . .} a
variable.

An occurrence of x in ϕ is free, if

(i) ϕ is atomic; or
(ii) ϕ = ¬ψ resp. ϕ = (χ→ ρ), and the occurrence of x is free in ψ resp. in χ

or in ρ; or
(iii) ϕ = ∀xiψ, and x ̸= xi, and the occurrence of x is free in ψ.

The variables which occur free in ϕ are called the free variables of ϕ,
Free(ϕ) := {xi : xi occurs free in ϕ}.

An occurrence which is not free is bound.
In particular, if ϕ = ∀xiψ, then any occurrence of xi in ϕ is bound. (We do not
consider the use of the symbol xi in the quantifier ∀xi as an occurrence of xi;
e.g. x0 does not occur in the formula ∀x0c

.
= c.)

Example 7.14.

(∃x0P (x0︸︷︷︸
bnd

, x1︸︷︷︸
free

) ∨ ∀x1(P (x0︸︷︷︸
free

, x1︸︷︷︸
bnd

) → ∃x0P (x0︸︷︷︸
bnd

, x1︸︷︷︸
bnd

)))

Lemma 7.15. Let L be a language, let M be an L-structure, let a1 and a2 be
assignments in M, and let ϕ be an L-formula.

Suppose a1(xi) = a2(xi) for every variable xi with a free occurrence in ϕ.

Then
M ⊨a1 ϕ iff M ⊨a2 ϕ.

26

End of lecture 9

Proof. For ϕ atomic: exercise.

Now use induction on the length of ϕ. If ϕ = ¬ψ or ϕ = (χ → ρ), this is
straightforward.

So say ϕ = ∀xiψ, and assume the result holds for ψ.

Suppose M ⊨a1 ∀xiψ. We want to show M ⊨a2 ∀xiψ. So suppose a∗2 ∼i a2,
and we want to show M ⊨a∗2 ψ.

Let a∗1(xj) := a1[a
∗
2(xi)/xi]. Then M ⊨a∗1 ψ, since a

∗
1 ∼i a1.

We conclude by applying the inductive hypothesis on ψ to obtain M ⊨a∗2 ψ
as required. For this, we need to show that if xj occurs free in ψ then a∗2(xj) =
a∗1(xj). If j = i, this is by definition of a∗1. If j ̸= i, then xj occurs free in ϕ, so

a∗2(xj) = a2(xj) = a1(xj) = a∗1(xj).

Corollary 7.16. Let L be a language, and let α, β ∈ Form(L). Assume the
variable xi has no free occurrence in α (i.e. xi /∈ Free(α)). Then

⊨ (∀xi(α→ β) → (α→ ∀xiβ)).

Proof. Let M be an L-structure and let a be an assignment in M such that
M ⊨a ∀xi(α→ β) and M ⊨a α. We must show M ⊨a ∀xiβ.

So let a∗ ∼i a; we conclude by showing M ⊨a∗ β.
Since a∗ ∼i a and M ⊨a ∀xi(α→ β), we have M ⊨a∗ (α→ β).

But M ⊨a∗ α by Lemma 7.15, since xi is not free in α, so M ⊨a∗ β as
required.

More generally, similar arguments yield the following.

Exercise 7.17. Assuming xi /∈ Free(α), the following logical equivalences hold:

• (α ∨ ∀xiβ) ⊨ ⊨∀xi(α ∨ β).

• (α ∨ ∃xiβ) ⊨ ⊨∃xi(α ∨ β).

7.6 Sentences

Definition 7.18. An L-formula σ with no free variables is called an L-sentence.
The set of all L-sentences is denoted Sent(L).

By Lemma 7.15, for any L-structure M and σ ∈ Sent(L), whether or not
M ⊨a σ does not depend on the choice of assignment a.

So we write
M ⊨ σ

if M ⊨a σ for some (equivalently, all) a, and we then say that σ is true in M,
or M is a model of σ.

(⇝ ‘Model Theory’)

Warning. The symbol ‘⊨’ is used in two quite distinct ways depending on what
is on the left:

27

• Logical consequence: Γ ⊨ ϕ where Γ ⊆ Form(L);
• Satisfaction: M ⊨ σ, or M ⊨a ϕ, where M is an L-structure.

Many mathematical concepts can be naturally expressed by first-order for-
mulas.

Example 7.19. Let L = {·, e} with · a binary function symbol and e a constant
symbol.

Consider the sentences (writing x, y, z for x0, x1, x2)

σ1 : ∀x∀y∀z x · (y · z) .= (x · y) · x
σ2 : ∀x∃y(x · y .

= c ∧ y · x .
= c)

σ3 : ∀x(x · c .= x ∧ c · x .
= x)

Let M = ⟨M ; ·M, eM⟩ be an L-structure. Then M ⊨
∧3
i=1 σi if and only if

M is a group.

Example 7.20. Let L = {E} with E a binary relation symbol. Consider

τ1 : ∀xE(x, x)
τ2 : ∀x∀y(E(x, y) ↔ E(y, x))
τ3 : ∀x∀y∀z(E(x, y) → (E(y, z) → E(x, z)))

Then ⟨M ;R⟩ ⊨
∧
i τi if and only if R is an equivalence relation on M .

Example 7.21. Let < be a binary predicate symbol, L := {<}. Consider the
sentence

σDLO := ∀x ∀y ∀z (¬x < x

∧ (x < y ∨ x .
= y ∨ y < x)

∧ ((x < y ∧ y < z) → x < z)

∧ (x < y → ∃w (x < w ∧ w < y))

∧ ∃w w < x

∧ ∃w x < w).

This axiomatises the dense linear orders without endpoints, i.e. they are
precisely the models of σ. In particular, ⟨Q;<⟩ ⊨ σDLO and ⟨R;<⟩ ⊨ σDLO.

7.7 Isomorphism

Definition 7.22. Let M = ⟨M ; . . .⟩ and N = ⟨N ; . . .⟩ be L-structures.
An isomorphism of M with N is a bijection θ :M → N such that

• θ(cM) = cN for c a constant symbol;

• θ(fM(a1, . . . , ak)) = fN (θ(a1), . . . , θ(ak)) for f a k-ary function symbol
and ai ∈M ;

• (a1, . . . , ak) ∈ PM ⇔ (θ(a1), . . . , θ(ak)) ∈ PN for P a k-ary relation
symbol and ai ∈M .

We write M ∼= N to mean that an isomorphism M → N exists.

Exercise 7.23. If M ∼= N and σ is an L-sentence, then M ⊨ σ if and only if
N ⊨ σ.

28

7.8 Substitution

Let M be an L-structure, ϕ ∈ Form(L), and suppose M ⊨ ∀xiϕ. If c is a
constant symbol in L, then M ⊨ ϕ[c/xi] where ϕ[c/xi] is the result of replacing
each free instance of xi in ϕ with c.

We would like to say more generally that

⊨ (∀xiϕ→ ϕ[t/xi])

for a term t, but we have to be careful:

Example 7.24. Let L contain a constant symbol c, and let ϕ := ∃x0¬x0
.
= x1.

Then M ⊨ ∀x1ϕ for any L-structure M with at least two elements,
and then also M ⊨ ϕ[c/x1] = ∃x0¬x0

.
= c.

However, if were to define ϕ[x0/x1] in the same way, we would obtain
∃x0¬x0

.
= x0, which does not hold in any M.

Problem: the variable x0 has become bound in the substitution.

Definition 7.25. Given ϕ ∈ Form(L), a variable xi, and a term t ∈ Term(L),
the result of substituting t for xi in ϕ is the formula

(ϕ)[t/xi]

which is obtained by replacing each free occurrence of xi in ϕ with the string t,
as long as this does not lead to new bound occurrences of variables being intro-
duced; if it does, we say that (ϕ)[t/xi] is undefined.

End of lecture 10

For clarity, we restate this as a recursive definition:

(i) If ϕ is atomic, (ϕ)[t/xi] is the result of replacing each instance of xi in ϕ
with t.

(ii) (¬ψ)[t/xi] := ¬(ψ)[t/xi]
(undefined if (ψ)[t/xi] is).

(iii) ((ψ → χ))[t/xi] := ((ψ)[t/xi] → (χ)[t/xi])
(undefined if (ψ)[t/xi] or (χ)[t/xi] is).

(iv) (∀xiψ)[t/xi] := ∀xiψ.

(v) If j ̸= i, (∀xjψ)[t/xi] := ∀xj(ψ)[t/xi] unless xj occurs in t and xi occurs
free in ψ, in which case (∀xjψ)[t/xi] is undefined.

Notation 7.26. When no ambiguity could result, we often write ϕ[t/xi] for
(ϕ)[t/xi].

Notation 7.27. For a an assignment in an L-structure and t ∈ Term(L), let

a[t/xi] := a[ã(t)/xi].

Lemma 7.28 (Substitution Lemma). Let a be an assignment in an L-structure
M. Let ϕ ∈ Form(L), t ∈ Term(L), and suppose ϕ[t/xi] is defined. Then

M ⊨a ϕ[t/xi] ⇔ M ⊨a[t/xi] ϕ.

29

Proof. Case 1 ϕ atomic:
First, for u ∈ Term(L) define:

u[t/xi] := the term obtained by replacing
each occurrence of xi in u by t.

Then ã[t/xi](u) = ã(u[t/xi]). (Exercise)

Now if ϕ = P (t1, . . . , tk) for a k-ary relation symbol P in L, then:

M ⊨a[t/xi] ϕ

iff (ã[t/xi](t1), . . . , ã[t/xi](tk)) ∈ PM

iff (ã(t1[t/xi]), . . . , ã(tk[t/xi])) ∈ PM

iff M ⊨a P (t1[t/xi], . . . , tk[t/xi])
iff M ⊨a ϕ[t/xi]

If ϕ = t1
.
= t2, a similar argument applies.

IH: Lemma holds for shorter formulas ψ (i.e. M ⊨a ψ[t/xi] ⇔ M ⊨a[t/xi]

ψ).

Case 2 ϕ = ¬ψ or ϕ = (χ→ ρ):
Follows directly from IH.

Case 3 ϕ = ∀xiψ:
Then ϕ[t/xi] = ϕ. We have xi /∈ Free(ϕ), so a and a[t/xi] agree on all x ∈
Free(ϕ), so by Lemma 7.15,

M ⊨a[t/xi] ϕ iff M ⊨a ϕ iff M ⊨a ϕ[t/xi]

as required.

Case 4 ϕ = ∀xjψ, j ̸= i:

Then ϕ[t/xi] = ∀xj(ψ)[t/xi]. If xi does not occur free in ψ, then ϕ[t/xi] = ϕ,
and we conclude exactly as in the previous case. So suppose xi occurs free in
ψ. Then since ϕ[t/xi] is defined, xj does not occur in t. It follows that

{a∗[t/xi] : a∗ ∼j a} = {a′ : a′ ∼j a[t/xi]}; (∗)

indeed, if a∗ ∼j a, then ã∗(t) = ã(t), and so a∗[t/xi] ∼j a[t/xi]; conversely, if
a′ ∼j a[t/xi] then a′ = a∗[t/xi] for some a∗ ∼j a, namely a∗ = a[a′(xj)/xj].

Now:

M ⊨a ϕ[t/xi]

⇔ M ⊨a ∀xj(ψ)[t/xi]
⇔ M ⊨a∗ ψ[t/xi] for all a

∗ ∼j a
⇔ M ⊨a∗[t/xi] ψ for all a∗ ∼j a (by IH)

⇔ M ⊨a′ ψ for all a′ ∼j a[t/xi] (by (*))

⇔ M ⊨a[t/xi] ϕ.

Corollary 7.29. For any ϕ ∈ Form(L) and t ∈ Term(L) such that ϕ[t/xi] is
defined,

⊨ (∀xiϕ→ ϕ[t/xi]).

30

Proof. Let a be an assignment in an L-structure M.

Suppose M ⊨a ∀xiϕ. Then M ⊨a[t/xi] ϕ, since a[t/xi] ∼i a. Hence M ⊨a
ϕ[t/xi] by the Substitution Lemma 7.28.

7.9 Prenex normal form

A formula is in prenex normal form (PNF) if it is of the form

Q1xi1Q2xi2 · · ·Qkxikϕ′,

where each Qi is a quantifier (either ∀ or ∃), and ϕ′ is a formula containing no
quantifiers.

Theorem 7.30 (PNF Theorem). Every ϕ ∈ Form(L) is logically equivalent to
an L-formula in PNF.

Proof. It suffices to prove this for ϕ which can be written using ∨ and ¬ as
the only propositional connectives (rather than → and ¬), since by adequacy of
Lprop[¬,∨], any L-formula is logically equivalent to such a formula.

We prove this by induction on ϕ.

• ϕ atomic: ϕ is already in PNF.

• ϕ = ∀xiψ. By the inductive hypotheses, we may assume that ψ is in PNF.
Then ϕ is already in PNF.

• ϕ = ¬ψ. Again, we may assume that ψ is in PNF, say ϕ = ¬Q1xi1Q2xi2 · · ·Qkxikψ.
Then (by definition of ∃ and equivalences ¬¬χ ⊨ ⊨χ)

ϕ ⊨ ⊨Q−
1 xi1 · · ·Q

−
k xik¬ψ,

where Q−
j :=

{
∃ if Qj = ∀
∀ if Qj = ∃.

• ϕ = (ψ ∨ χ). Again, we may assume ψ and χ are in PNF, say

ϕ = (Q1xi1 · · ·Qkxikψ′ ∨Q′
1xj1 · · ·Q′

lxjlχ
′).

Note that ∀xiα ⊨ ⊨∀xjα[xj/xi] if xj does not occur in α.
Changing quantified variables in this way, we may assume that the vari-
ables quantified over in ψ (namely xi1 , . . . , xik) do not appear in χ (quan-
tified or not), and, similarly, the variables quantified over in χ (namely
xj1 , . . . , xjl) do not appear in ψ.

But then by iterative application of Exercise 7.17 (“pulling the quantifiers
out” of the disjunction),

ϕ ⊨ ⊨Q1xi1 · · ·QkxikQ′
1xj1 · · ·Q′

lxjl(ψ
′ ∨ χ′).

31

8 Proofs

Associate to each first-order language L the formal system S(L) with the fol-
lowing axioms and rules:

• Axioms: An axiom of S(L) is an L-formula of one of the following forms,
where α, β, γ ∈ Form(L), t ∈ Term(L), and i, j ∈ N:
A1 (α→ (β → α))
A2 ((α→ (β → γ)) → ((α→ β) → (α→ γ)))
A3 ((¬α→ β) → ((¬α→ ¬β) → α))
A4 (∀xiα→ α[t/xi]) where α[t/xi] is defined
A5 (∀xi(α→ β) → (α→ ∀xiβ)) where xi ̸∈ Free(α)
A6 xi

.
= xi

A7 (xi
.
= xj → xj

.
= xi)

A8 (xi
.
= xj → (α→ α[xj/xi])) where α is atomic

• Rules:

MP (Modus Ponens): From α and (α→ β) infer β.
Gen (Generalisation): For any variable xk, from α infer ∀xkα.

Definition 8.1. Let Σ ⊆ Sent(L). A formula ϕ ∈ Form(L) is provable in S(L)
from hypotheses Σ, written Σ ⊢L ϕ (or Σ ⊢ ϕ for short), if there is a sequence
of L-formulas (a derivation or proof) ϕ1, . . . , ϕn with ϕn = ϕ such that for
each i ≤ n, at least one of the following holds:

• (A1-A8) ϕi is an axiom of S(L).
• (Hyp) ϕi ∈ Σ.
• (MP) ϕk = (ϕj → ϕi) for some j, k < i.
• (Gen) ϕi = ∀xkϕj for some j < i and some k ∈ N.

Again, ⊢ ϕ abbreviates ∅ ⊢ ϕ.

Example 8.2 (Swapping variables). Let ϕ ∈ Form(L) be such that Free(ϕ) =
{xi} and ϕ[xj/xi] is defined. Then {∀xiϕ} ⊢ ∀xjϕ[xj/xi].

Proof.
1 ∀xiϕ [Hyp]

2 (∀xiϕ→ ϕ[xj/xi]) [A4]

3 ϕ[xj/xi] [MP 1,2]

4 ∀xjϕ[xj/xi] [Gen]

Remark 8.3. For any ϕ ∈ Form(L) and i, we have ϕ[xi/xi] = ϕ, and so
(∀xiϕ→ ϕ) is an instance of A4.

Theorem 8.4 (Soundness Theorem). For any Σ ⊆ Sent(L) and ϕ ∈ Form(L),

Σ ⊢ ϕ ⇒ Σ ⊨ ϕ.

Proof. By induction on length of a proof.

First we show that A1-A8 are logically valid.

A1-3: These are tautologies, so are logically valid by Lemma 7.11.

32

A4: Corollary 7.29.

A5: Corollary 7.16.

A6-7: Immediate by reflexivity and symmetry of equality.

A8: Let M be an L-structure and a an assignment in M such that

M ⊨a xi
.
= xj and M ⊨a α,

where α is atomic. We want to show that M ⊨a α[xj/xi].

Now a(xi) = a(xj), so ã(t[xj/xi]) = ã(t) for any term t, by induction on
the length of t.

Now if α = P (t1, . . . , tk), then

M ⊨a α ⇒ (ã(t1), . . . , ã(tk)) ∈ PM

⇒ (ã(t1[xj/xi]), . . . , ã(tk[xj/xi])) ∈ PM

⇒ M ⊨a P (t1[xj/xi], . . . , tk[xj/xi])
⇒ M ⊨a α[xj/xi],

as required. A similar argument applies if α is of the form t1
.
= t2.

We conclude by verifying that the rules MP and Gen preserve the property
of being a logical consequence of Σ.

MP: For any M and a, if M ⊨a α and M ⊨a (α→ β) then M ⊨a β.

Hence, if Σ ⊨ α and Σ ⊨ (α→ β) then Σ ⊨ β.

Gen: Suppose Σ ⊨ ψ; we want to show Σ ⊨ ∀xiψ. Recall that the elements of
Σ are sentences.

Let M be such that M ⊨ Σ, and let a be an arbitrary assignment on M.
We must show M ⊨a ∀xiψ. So let a∗ ∼i a. We must show M ⊨a∗ ψ. But
since Σ ⊨ ψ, we have M ⊨a′ ψ for any assignment a′, in particular for a∗.

Theorem 8.5 (Deduction Theorem). Let Σ ⊆ Sent(L), and τ ∈ Sent(L), and
ϕ ∈ Form(L).

If Σ ∪ {τ} ⊢ ϕ then Σ ⊢ (τ → ϕ).

Proof. As for the deduction theorem of propositional logic, Theorem 4.6, we
prove this by induction on the length of a proof. Axioms and uses of MP are
handled exactly as in that proof. To handle a use of Gen, deriving say ∀xiχ
from χ, it suffices to show:

Claim. If Σ ⊢ (τ → χ) then Σ ⊢ (τ → ∀xiχ).

But indeed, (∀xi(τ → χ) → (τ → ∀xiχ)) is an instance of A5 since xi ̸∈
Free(τ) = ∅, so the Claim follows by Gen and MP.

Lemma 8.6. If ϕ is a tautology of L, then ⊢ ϕ.

33

Proof. Say ϕ results from substituting ψi for pi in the propositional tautology
α. By completeness of L0, there is a proof α1, ..., αn−1, α of α in L0.

Since A1, A2, A3 and MP are in S(L), substituting ψi for pi in each αi
yields a proof ϕ1, ..., ϕn−1, ϕ in S(L).

By the lemma, we may freely introduce tautologies in our proofs in S(L).

Example 8.7. Let τ ∈ Sent(L) and ψ ∈ Form(L) with Free(ψ) ⊆ {i}. Then

⊢ (∀xi(ψ → τ) → (∃xiψ → τ)).

Proof. Note that ∀xi(ψ → τ) is a sentence. We show

{∀xi(ψ → τ)} ⊢ (∃xiψ → τ);

the result then follows by the Deduction Theorem.

1 ∀xi(ψ → τ) [Hyp]
2 (∀xi(ψ → τ) → (ψ → τ)) [A4]
3 (ψ → τ) [MP 1, 2]
4 ((ψ → τ) → (¬τ → ¬ψ)) [Tautology]
5 (¬τ → ¬ψ) [MP 3, 4]
6 ∀xi(¬τ → ¬ψ) [Gen 5]
7 (∀xi(¬τ → ¬ψ) → (¬τ → ∀xi¬ψ)) [A5]
8 (¬τ → ∀xi¬ψ) [MP 6, 7]
9 ((¬τ → ∀xi¬ψ) → (¬∀xi¬ψ → τ)) [Tautology]
10 (¬∀xi¬ψ → τ) [MP 8, 9]
11 (∃xiψ → τ) [Def. ∃]

In line 7, xi ̸∈ Free(¬τ) because τ is a sentence, so the condition in A5 is
met.

9 Completeness and Compactness

Let L be a countable first-order language. Write ⊢ for ⊢L. We aim to show:

Theorem 9.1 (Gödel’s Completeness Theorem). Let Σ ⊆ Sent(L) and ϕ ∈
Form(L).

If Σ ⊨ ϕ then Σ ⊢ ϕ.

9.1 Proof of completeness

In outline, our proof strategy is much as in the propositional case:

• Reduce to: consistent ⇒ satisfiable.
• Show: any consistent Σ extends to “complete witnessing” Σ′.
• Show: complete witnessing ⇒ satisfiable.

This will be rather more involved than the propositional case. We begin with
one easy reduction.

Remark 9.2. It suffices to prove Theorem 9.1 in the case that ϕ is a sentence.

34

Proof. Given Σ ⊆ Sent(L) and ϕ ∈ Form(L) let Free(ϕ) = {xi1 , ..., xin} and set
τ := ∀xi1 ...∀xinϕ ∈ Sent(L).

Then if Σ ⊨ ϕ, then also Σ ⊨ τ , so Σ ⊢ τ by Theorem 9.1 for sentences, but
then Σ ⊢ ϕ by A4 and MP.

Definition 9.3. An L-theory is a set Σ ⊆ Sent(L) of L-sentences.

Definition 9.4. Let Σ ⊆ Sent(L) be an L-theory.

• Σ is consistent (in S(L)) if for no χ ∈ Sent(L) do we have both Σ ⊢ χ
and Σ ⊢ ¬χ.

• Σ is satisfiable if it has a model, i.e. if there exists an L-structure M
with M ⊨ Σ.

Remark 9.5. If an L-theory Σ ⊆ Sent(L) is inconsistent, then Σ ⊢ ϕ for any
ϕ ∈ Form(L), since (χ→ (¬χ→ ϕ)) is a tautology.

Lemma 9.6. Let Σ be an L-theory and τ an L-sentence.

(i) Σ ⊢ τ if and only if Σ ∪ {¬τ} is inconsistent.

(ii) Σ ⊨ τ if and only if Σ ∪ {¬τ} is unsatisfiable.

Proof. (i) Exactly as in Lemma 5.4, using the Deduction Theorem.

(ii) Immediate.

Given Lemma 9.6 and Remark 9.2, to prove Theorem 9.1 it suffices to prove:

Proposition 9.7. Every consistent L-theory is satisfiable.

Note that the converse holds by soundness.

Definition 9.8.

• An L-theory Σ is called complete (or maximal consistent) if Σ is consis-
tent, and for any τ ∈ Sent(L): Σ ⊢ τ or Σ ⊢ ¬τ .

• An L-theory Σ is called witnessing if for all ψ ∈ Form(L) such that
Σ ⊢ ∃xiψ and ∃xiψ ∈ Sent(L), there is some constant symbol c ∈ L such
that Σ ⊢ ψ[c/xi]

Similar to the propositional case, we will prove Proposition 9.7 (consistent
implies satisfiable) by first extending a consistent theory to a complete witness-
ing set, then showing that any complete witnessing set has a model. One slight
complication will be that we have to add constants to the language to be the
witnesses, but we will see that this is harmless.

Lemma 9.9. Let Σ be a consistent L-theory and τ an L-sentence. Then either
Σ ∪ {τ} is consistent or Σ ∪ {¬τ} is consistent.

Proof. Exactly as in Lemma 5.6.

35

Lemma 9.10. Let Σ be an L-theory, ϕ an L-formula, and i ∈ N. Assume that
c ∈ L is a constant symbol which does not occur in ϕ nor in any sentence in Σ,
and that Σ ⊢ ϕ[c/xi].

Then Σ ⊢ ϕ. Moreover, there is a proof of ϕ from Σ in which c does not
appear.

Proof. Let α1, . . . , αn = ϕ[c/xi] be a proof of ϕ[c/xi] from Σ. Let m ∈ N be
such that that no αk contains xm.

Let α′
1, . . . , α

′
n be the sequence obtained by replacing in each αk each occur-

rence of c by xm. We claim that α′
1, ..., α

′
n is a proof of α′

n = ϕ[xm/xi] from
Σ.

Since c occurs in no formula from Σ, if αk ∈ Σ then α′
k = αk ∈ Σ. If αk is

an axiom, then so is α′
k; this is immediate for all the axiom schemes except A4,

and for A4 note that if αk = (∀xjϕ → ϕ[t/xj]), then α
′
k = (∀xjϕ′ → ϕ′[t′/xj])

where ϕ′ resp. t′ is obtained by replacing c with xm; here ϕ′[t′/xj] is defined
because ϕ[t/xj] is and the quantifier ∀xm does not occur in ϕ′. The rules MP
and Gen are insensitive to the change: if αk was obtained from αr and αs by
MP then α′

k was obtained from α′
r and α′

s by MP, and similarly with Gen.

So Σ ⊢ α′
n = ϕ[xm/xi]. By Gen, this implies Σ ⊢ ∀xmϕ[xm/xi].

Now note that (ϕ[xm/xi])[xi/xm] is defined and equal to ϕ: the effect of the
substitutions is to replace the free occurrences of xi in ϕ with xm then revert
them to xi (which doesn’t create new bound occurrences because only the free
occurrences of xi were substituted by xm).

So by A4 with t = xi and MP, we obtain Σ ⊢ (ϕ[xm/xi])[xi/xm] = ϕ, with
a proof in which c does not appear.

Lemma 9.11. Let Σ be a consistent L-theory, and suppose Σ ⊢ ∃xiψ ∈ Sent(L),
and c is a constant symbol of L which does not occur in ψ nor in any σ ∈ Σ.
Then Σ ∪ {ψ[c/xi]} is consistent.

Proof. We first show

Claim. If τ is an L-sentence in which c does not occur and Σ ∪ {ψ[c/xi]} ⊢ τ ,
then already Σ ⊢ τ .

So suppose Σ ∪ {ψ[c/xi]} ⊢ τ ∈ Sent(L) and c does not occur in τ . Recall
we also assumed that c does not occur in Σ or ψ.

Note that ψ[c/xi] ∈ Sent(L). By DT, Σ ⊢ (ψ[c/xi] → τ). By Lemma 9.10,
Σ ⊢ (ψ → τ).

By Gen, Σ ⊢ ∀xi(ψ → τ). Using Example 8.7, we obtain Σ ⊢ (∃xiψ → τ).

But we assumed Σ ⊢ ∃xiψ, so by MP, Σ ⊢ τ , as required. This concludes
the proof of the Claim.

Now if Σ∪{ψ[c/xi]} were inconsistent then (by Remark 9.5) we would have
for any τ that Σ∪{ψ[c/xi]} ⊢ τ and Σ∪{ψ[c/xi]} ⊢ ¬τ ; picking τ in which c does
not occur, it would follow by the Claim that Σ ⊢ τ and Σ ⊢ ¬τ , contradicting
consistency of Σ.

Lemma 9.12. Let Σ be a consistent L-theory, and suppose L contains infinitely
many constant symbols not appearing in Σ. Then Σ extends to a complete
witnessing L-theory Σ∗ ⊆ Sent(L).

36

Proof. Sent(L) is countable (by Fact 6.5); say Sent(L) = {τ0, τ1, τ2, . . .}.
We construct a chain Σi ⊆ Sent(L)

Σ = Σ0 ⊆ Σ1 ⊆ Σ2 ⊆ . . .

such that for each n:

(†) Σn is consistent, and L contains infinitely many constant symbols not
appearing in Σn.

Σ0 := Σ satisfies (†) by assumption.

Given Σn satisfying (†), let

Σ′
n :=

{
Σn ∪ {τn} if Σn ∪ {τn} is consistent
Σn ∪ {¬τn} otherwise.

Then Σ′
n is consistent by Lemma 9.9.

If τn /∈ Σ′
n or if τn is not of the form ∃xiψ, let Σn+1 := Σ′

n.

Otherwise, i.e. if τn = ∃xiψ ∈ Σ′
n, choose a constant symbol c ∈ L which

occurs in no formula in Σ′
n ∪ {ψ} (such exists by (†)), and let Σn+1 := Σ′

n ∪
{ψ[c/xi]}. By Lemma 9.11, Σn+1 is consistent.

Since Σn+1 \ Σn is finite, L contains infinitely many constant symbols not
appearing in Σn+1. So Σn+1 satisfies (†).

Finally, let Σ∗ :=
⋃
n≥0 Σn. Then Σ∗ is consistent since each Σn is (as in

Theorem 5.7), and Σ∗ is complete and witnessing by construction, since every
sentence appears as some τn.

Lemma 9.13. Every complete witnessing L-theory Σ has a model.

Proof. We prove this by a method known as the Henkin construction, named
after its originator Leon Henkin.

A term is closed if no variable appears in it. Let T be the set of closed
L-terms. Define an equivalence relation E on T by

t1Et2 iff Σ ⊢ t1
.
= t2.

Let T/E be the set of equivalence classes t/E for t ∈ T .

Define an L-structure M with domain T/E by

cM := c/E

fM(t1/E, . . . , tk/E) := f(t1, . . . , tk)/E

PM := {(t1/E, ..., tk/E) | Σ ⊢ P (t1, . . . , tk)}

(for c a constant symbol, f a k-ary function symbol, and P a k-ary predicate
symbol). We leave some verifications as exercises:

• E is indeed an equivalence relation on T . This follows from A6-8; see
Sheet 4 Question 1(b).

• fM and PM are well-defined, i.e. if ti/E = t′i/E for i = 1, . . . k then:

– f(t1, . . . , tk)/E = f(t′1, . . . , t
′
k)/E,

– Σ ⊢ P (t1, . . . , tk) ⇔ Σ ⊢ P (t′1, . . . , t′k).

37

This follows from A8 and A4; see Sheet 4 Question 1(c).

Observe also by a straightforward induction:

(⋆) tM = t/E for any t ∈ T .

We conclude by showing M ⊨ Σ. In fact, we show more generally that for
any σ ∈ Sent(L),

M ⊨ σ iff Σ ⊢ σ.

We prove this by induction on the number of symbols among {¬,→,∀} in
the sentence σ. We split into the possible cases for the form of σ:

• σ = P (t1, ..., tk). Then

M ⊨ σ ⇔ (tM1 , ..., tMk) ∈ PM

⇔ (t1/E, ..., tk/E) ∈ PM (by (⋆))

⇔ Σ ⊢ σ.

• σ = t1
.
= t2. Then:

M ⊨ σ ⇔ tM1 = tM2

⇔ t1/E = t2/E (by (⋆))

⇔ t1Et2

⇔ Σ ⊢ σ.

• σ = ¬τ :

M ⊨ ¬τ
⇔ M ⊭ τ [def. of ‘⊨’]
⇔ Σ ̸⊢ τ [IH]

⇔ Σ ⊢ ¬τ [Σ complete]

• σ = (τ → ρ):

M ⊭ (τ → ρ)
⇔ (M ⊨ τ and M ⊭ ρ) [def. of ‘⊨’]
⇔ (Σ ⊢ τ and Σ ̸⊢ ρ) [IH]

⇔ (Σ ⊢ τ and Σ ⊢ ¬ρ) [Σ complete]

⇔ Σ ⊢ ¬(τ → ρ) [Tautology (see below)]

⇔ Σ ̸⊢ (τ → ρ) [Σ complete]

where the penultimate line uses the following tautologies:

(τ → (¬ρ→ ¬(τ → ρ)))

(¬(τ → ρ) → τ)

(¬(τ → ρ) → ¬ρ).

• σ = ∀xiϕ:
By the Substitution Lemma 7.28, M ⊨ ϕ[t/xi] if and only if M ⊨at ϕ
where at is any assignment with at(xi) = tM = t/E.

38

So since the domain of M is T/E,
M ⊨ ∀xiϕ iff for all t ∈ T , M ⊨ ϕ[t/xi].

Now for t ∈ T , ϕ[t/xi] is a sentence containing fewer symbols among
{¬,→,∀} than σ = ∀xiϕ, so by the IH, M ⊨ ϕ[t/xi] iff Σ ⊢ ϕ[t/xi].
So to show that Σ ⊢ ∀xiϕ iff M ⊨ ∀xiϕ, it suffices to show:

Claim. Σ ⊢ ∀xiϕ iff for all t ∈ T , Σ ⊢ ϕ[t/xi].

⇒: A4 + MP.

⇐: First note:
{∀xi¬¬ϕ} ⊢ ∀xiϕ; (⋆)

indeed, by A4 we have {∀xi¬¬ϕ} ⊢ ¬¬ϕ; conclude using the tautol-
ogy (¬¬ϕ→ ϕ) and Gen.

Now suppose Σ ̸⊢ ∀xiϕ. Then Σ ̸⊢ ∀xi¬¬ϕ, by (⋆). So by complete-
ness, Σ ⊢ ¬∀xi¬¬ϕ, i.e. Σ ⊢ ∃xi¬ϕ. Note that ∃xi¬ϕ is a sentence,
since σ = ∀xiϕ is. So since Σ is witnessing, Σ ⊢ ¬ϕ[c/xi] for some
constant symbol c. Then since Σ is consistent, Σ ̸⊢ ϕ[c/xi]. But
c ∈ T , so it is not the case that for all t ∈ T , Σ ⊢ ϕ[t/xi].

This concludes the proof of the Claim, and hence of the Lemma.

Finally, we deal with the problem that L might not have the additional
constants required to build a witnessing set.

Let C = {c0, c1, ...} be a countably infinite set of distinct symbols disjoint
from L, and define the extended language L′ := L ∪ C in which each ci is a
constant symbol. Write Σ ⊢L′ ϕ to mean that there exists a proof of ϕ from Σ
in S(L′) (meaning that the proof can use L′-axioms). We continue to use ⊢ for
provability in S(L).

Lemma 9.14. Let Σ be an L-theory.

(i) Suppose Σ ⊢L′ τ ∈ Sent(L). Then Σ ⊢ τ .

(ii) Suppose Σ is inconsistent in S(L′). Then Σ is inconsistent in S(L).

Proof. (i) Since proofs are finite, there is a proof of τ from Σ in S(L ∪
{c1, ..., cn}) for some c1, ..., cn ∈ C. Since τ is a sentence, τ = τ [cn/x0],
so by Lemma 9.10, there is a proof of τ from Σ (in S(L ∪ {c1, ..., cn})) in
which cn does not appear, i.e. a proof in S(L(∪{c1, ..., cn−1)). Iterating
this argument, we obtain a proof in S(L).
(In other words, replacing the constants ci in the original proof of τ with
distinct variables xji not appearing in that proof yields a proof in S(L).)

(ii) By Remark 9.5, for any τ ∈ Sent(L) we have Σ ⊢L′ τ , and hence Σ ⊢ τ
by (i). So Σ is inconsistent in S(L).

39

Proof of Proposition 9.7. Let Σ ⊆ Sent(L) be consistent in S(L). By Lemma 9.14(ii),
Σ is also consistent in S(L′). By Lemma 9.12, Σ therefore extends to a complete
witnessing set Σ∗ ⊆ Sent(L′), and by Lemma 9.13, Σ∗ is satisfiable. So say M′

is an L′ structure such that M′ ⊨ Σ∗, so in particular M′ ⊨ Σ.

Let M be the L-structure obtained from M′ by “forgetting” the new con-
stants C. Then M ⊨ Σ, as required.

This concludes our proof of completeness. Explicitly:

Proof of Theorem 9.1. Given Σ ⊆ Sent(L) and τ ∈ Sent(L),

Σ ⊨ τ
⇒9.6(i) Σ ∪ {¬τ} is unsatisfiable
⇒9.7 Σ ∪ {¬τ} is inconsistent
⇒9.6(ii) Σ ⊢ τ.

It suffices to consider this case where τ is a sentence, by Remark 9.2.

To summarise, from soundness and completeness we conclude the following
equivalences.

Proposition 9.15. Let L be a countable first-order language, and let Σ be an
L-theory.

(i) Σ is consistent if and only if it is satisfiable.

(ii) If ϕ is an L-formula, then Σ ⊢ ϕ if and only if Σ ⊨ ϕ.

9.2 Compactness

We deduce:

Theorem 9.16 (The Compactness Theorem for 1st-order logic). An L-theory
Σ is satisfiable if and only if every finite subset Σ0 ⊆ Σ is satisfiable.

Proof. By Proposition 9.15(i) and finiteness of proofs (exactly as in the propo-
sitional case Theorem 5.11).

9.3 Löwenheim-Skolem

Definition 9.17. A structure is countable if its domain is countable (i.e. finite
or countably infinite).

The (Henkin) model constructed in Lemma 9.13 is countable, because the
set T of closed terms is countable, since L is. So we have actually proven:

Theorem 9.18 (Weak downwards Löwenheim-Skolem Theorem). Every satis-
fiable set of sentences has a countable model.

(The full Löwenheim-Skolem Theorem says somewhat more, and will be
covered in C1.1 Model Theory.)

40

10 Applications

Throughout, L denotes a countable first-order language.

10.1 Elementary equivalence

Definition 10.1.

• Let A be an L-structure. Then the (first-order) theory of A is the
L-theory

Th(A) = ThL(A) := {σ ∈ Sent(L) | A ⊨ σ},

the set of all L-sentences true in A.

• L-structures A and B are elementarily equivalent, written A ≡ B, if
Th(A) = Th(B).

Exercise 10.2. An L-theory Σ ⊆ Sent(L) is complete if and only if Σ has a
model and A ≡ B for any two models A and B of Σ.

10.2 Axiomatisations

Definition 10.3. An axiomatisation of the theory Th(A) of an L-structure
A is a complete subset of Th(A); i.e. a set of sentences which hold of A and
which suffice to deduce any sentence which holds of A.

Recall Hilbert’s programme from Lecture 1. Now we have established the
Completeness Theorem, the programme would call for us to find “finitary” (i.e.
computable) axiomatisations of the structures in mathematics.

In general this is impossible: Gödel’s first incompleteness theorem shows that
already the theory of arithmetic Th(⟨N; +, ·⟩) has no computable axiomatisation.
But for some interesting structures it is possible, as we will now begin to see.

10.3 A criterion for completeness

Remark 10.4. A ∼= B implies A ≡ B, by Exercise 7.23.

The converse fails (e.g. due to Löwenheim-Skolem).

Theorem 10.5. Suppose Σ ⊆ Sent(L) has a unique countable model up to
isomorphism, i.e. Σ is consistent and if A,B ⊨ Σ are countable then A ∼= B.

Then Σ is complete.

Proof. Let A,B ⊨ Σ. We conclude by showing A ≡ B.
ByWeak Downward Löwenheim-Skolem (Theorem 9.18), there are countable

A′ ≡ A and B′ ≡ B. Then A′,B′ ⊨ Σ, so A′ ∼= B′, and so A′ ≡ B′ by
Remark 10.4. Hence A ≡ A′ ≡ B′ ≡ B.

Remark 10.6. The converse fails. We will see an example in the next lecture.

Example 10.7. Let L= := ∅, the language with no non-logical symbols. For
n ≥ 2, set τn := ∃x1 . . . ∃xn

∧
1≤i<j≤n ¬xi

.
= xj . Then the models of

Σ∞ := {τn : n ≥ 2}

41

are precisely the infinite L=-structures (i.e. the infinite sets). By Theorem 10.5,
Σ∞ is complete.

10.4 Example: Axiomatising Th(⟨Q;<⟩)
Recall from Example 7.21 the sentence σDLO axiomatising dense linear orders
without endpoints.

Theorem 10.8 (Cantor). σDLO has a unique countable model up to isomor-
phism (so any countable model is isomorphic to ⟨Q;<⟩).

Proof. (“Back-and-forth argument”)

Let M,N ⊨ σDLO be countable. By the non-existence of endpoints, each is
infinite.

A partial isomorphism θ : M 99K N is a partially defined injective map
such that for all a, b ∈ dom(θ),

M ⊨ a < b ⇔ N ⊨ θ(a) < θ(b).

Enumerate the domains of M and N as (mi)i∈N and (ni)i∈N respectively.
We recursively construct a chain of partial isomorphisms θi : M 99K N such
that

dom(θi) is finite, and for all j < i, we have mj ∈ domθi and nj ∈ imθi. (*)

Let θ0 := ∅.
Given θi satisfying (*), we first extend θi by finding n ∈ N such that setting

θ′i(mi) := n yields a partial isomorphism θ′i : M 99K N with domθ′i = domθ ∪
{mi}.

Say dom(θi) = {a1, . . . , as} with M ⊨ ak < al for 1 ≤ k < l ≤ s, and
similarly im(θi) = {b1, . . . , bs} with N ⊨ bk < bl for 1 ≤ k < l ≤ s. There are
four cases:

(i) mi = ak (some k ∈ [1, s]): set n := bk.

(ii) mi < a1: let n ∈ N be such that n < b1 (n exists, since N has no
endpoint).

(iii) mi > as: let n ∈ N be such that n > bs (n exists, since N has no
endpoint).

(iv) aj < mi < aj+1 (some j ∈ [1, s−1]): let n ∈ N be such that ai < n < ai+1

(n exists, since N is dense).

In all cases, θ′i is a partial isomorphism.

Symmetrically, (θ′i)
−1 : N 99K M extends to θ′′i : N 99K M with ni ∈

domθi
′′;

then θi+1 := (θ′′i)
−1 : M 99K N is a partial isomorphism satisfying (*).

Then θ :=
⋃
i θi : M

∼=−→ N is an isomorphism.

Applying Theorem 10.5, we obtain:

42

Corollary 10.9. {σDLO} is complete. Hence {σDLO} axiomatises Th(⟨Q;<⟩).

Corollary 10.10. Completeness of a linear order is not a first-order property:
there is no L<-theory Σ such that the models of Σ are precisely the complete
linear orders.

Proof. Suppose such a Σ exists. Then ⟨R;<⟩ ⊨ Σ since ⟨R;<⟩ is a complete lin-
ear order. But ⟨R;<⟩ ≡ ⟨Q;<⟩, since both satisfy the complete theory {σDLO},
so then also ⟨Q;<⟩ ⊨ Σ. But ⟨Q;<⟩ is not a complete linear order, contradicting
the desired property of Σ.

10.5 An algebraic application (non-examinable)

Let Lring := {+,−, ·, 0̄, 1̄}. Let ACF be the Lring-theory whose models are
precisely the algebraically closed fields:

ACF := [Field axioms] ∪{∀z0, . . . , zn

(
¬zn

.
= 0̄ → ∃x

n∑
i=0

zix
i .= 0̄

)
: n ≥ 1}.

Let
ACF0 := ACF ∪ {¬n̄ .

= 0̄ : n ∈ N},

where for n ≥ 1, n̄ := 1̄+ . . .+1̄ (n times). So the models of ACF0 are precisely
the algebraically closed fields of characteristic 0. In particular, ⟨C; +,−, ·, 0, 1⟩ ⊨
ACF0. We aim to show that ACF0 is complete, i.e. axiomatises Th(⟨C; +,−, ·, 0, 1⟩).

We can prove this analogously to the case of ⟨Q;<⟩, but working with un-
countable sets.

From now on, we assume the axiom of choice. We will explain this and
the related notion of the cardinality (“size”) |A| of a set A in the Set Theory
course; for now it suffices to know that |A| = |B| if and only if there exists a
bijection A→ B, and cardinalities are linearly ordered.

Fact 10.11. Any characteristic 0 algebraically closed field ⟨K; +,−, ·, 0, 1⟩ ⊨
ACF0 with the same cardinality as C is isomorphic to ⟨C; +,−, ·, 0, 1⟩.

Sketch proof. A subset A ⊆ K is algebraically independent if there are no
non-trivial polynomial relations between its elements, i.e. f(a1, . . . , an) ̸= 0 for
any f ∈ Z[X1, . . . , Xn] \ {0} and {a1, . . . , an} ⊆ A.

Then just as for linear independence in vector spaces, an algebraically closed
field has a well-defined dimension (“transcendence degree”) which is the cardi-
nality of any maximal algebraically independent subset, this dimension deter-
mines an algebraically closed field of a given characteristic up to isomorphism,
and the dimension of an uncountable ACF is equal to its cardinality.

Fact 10.12. Let L be a possibly uncountable first-order language, i.e. with sets
of constant, function, and relation symbols of arbitrary cardinality. Let |L| be
the cardinality of the language, i.e. that of the alphabet.

Let Σ ⊆ Sent(L), and suppose any finite subset of Σ has a model. Then Σ
has a model of cardinality (i.e. with domain of cardinality) ≤ |L|.

43

Sketch proof. Our proof for countable L mostly goes through directly.

The only place we used the countability assumption was in extending a con-
sistent set Σ to a complete witnessing set. We can use Zorn’s lemma here in
the uncountable case – the union of a chain of consistent witnessing sets con-
taining Σ is still consistent and witnessing, so there exists a maximal such with
respect to inclusion, which (as in the proof in the countable case) is complete
witnessing.

Corollary 10.13. ACF0 is complete, hence axiomatises Th(C).

Proof. Let A ⊨ ACF0. Note that A is infinite, since it has characteristic 0.

Let C = {ca : a ∈ C} be a set of constant symbols of cardinality |C|, and let
L′ := Lring ∪ C. Let Σ := ThLring(A) ∪ {¬ca

.
= cb : a, b ∈ C, a ̸= b} ⊆ Sent(L′).

Then since A is infinite, any finite subset of Σ has as model A with the finitely
many ca which appear interpreted as distinct elements. So by Fact 10.12, Σ has
a model B of cardinality ≤ |L′| = |C|. Considering the interpretations of the ca,
we actually have |B| = |C|. Let B′ be the Lring structure obtained from B by
ignoring the ca. Then by Fact 10.11, B′ ∼= C. So A ≡ B′ ≡ C.

So we conclude that any two models of ACF0 are elementary equivalent, so
ACF0 is complete.

Theorem 10.14 (Ax-Grothendieck). Let F : Cn → Cn be a polynomial map,
i.e. F (a1, . . . , an) = (F1(a1, . . . , an), . . . , Fn(a1, . . . , an)), where Fi ∈ C[X].

If F is injective, then F is surjective.

Proof. Fact: The algebraic closure of the finite field Fp is the union of a chain
of finite subfields, Falg

p =
⋃
k Fpk! .

Claim 10.15. Let p be prime. Any injective polynomial map F : (Falg
p)n →

(Falg
p)n is surjective.

Proof. Let k0 be such that the coefficients of F are in Fpk0! .

Let k ≥ k0. Then F (Fpk!
n) ⊆ Fpk!

n, and so by injectivity, finiteness of Fpk!
n,

and the pigeonhole principle, F (Fpk!
n) = Fpk!

n.

Hence F ((Falg
p)n) = (Falg

p)n.

Let n, d ∈ N. Let σn,d be an Lring-sentence expressing that any injective
polynomial map F : Kn → Kn consisting of polynomials of degree ≤ d is
surjective:

σn,d := ∀z1,0, . . . , zn,d (∀x, y ((
∧
i

∑
j

zi,jxi
j .
=
∑
j

zi,jyi
j) →

∧
i

xi
.
= yi)

→ ∀y ∃x
∧
i

∑
j

zi,jxi
j .
= yi).

Suppose C ̸⊨ σn,d. Then by completeness of ACF0, ACF0 ⊨ ¬σn,d. Then by
compactness, for some m ∈ N,

ACF ∪ {¬ī .= 0̄ : 0 < i < m} ⊨ ¬σn,d.

So if p > m is prime, Falg
p ⊨ ¬σn,d. But this contradicts the Claim.

44

	Introduction
	I Propositional Logic
	Syntax
	Semantics
	Proofs
	Completeness and Compactness

	II First-order Logic
	Syntax
	Semantics
	Proofs
	Completeness and Compactness
	Applications

