

A Mathematica™ Package for Computing

Operator Product Expansions
(OPEdefs 3.1)

K. Thielemans*

Theoretical Physics Group
Imperial College
London SW7 2BZ (UK)

April 1995

Abstract

A general purpose Mathematica®™ package for computing Opera-
tor Product Expansions of composite operators in meromorphic con-
formal field theory is described. Given the OPEs for a set of “basic”
fields, OPEs of arbitrarily complicated composites can be computed
automatically. Normal ordered products are always reduced to a stan-
dard form. As an explicit example, the conformal anomaly for super-
strings is computed.

The most important extensions with respect to the first version
of the package are the ability the check the Jacobi identities, and to
compute Poisson brackets (“classical OPEs”).

*Email address : k.thielemans@ic.ac.uk

1 Introduction

Operator Product Expansions (OPEs) are extensively used in conformal
field theories, for example in string theory and statistical physics. They
are used to evaluate expectation values of several fields with arguments in
neighbouring points. One then writes

C(w D(w

()2+ ()—I— (1)

zZ—Ww

A(z)B(w) =

(2 — w)

where the dots represent the regular terms in the Laurent expansion. The
above expression is valid when evaluating expectation values for z — w.

In handling OPEs, the problem of normal ordering requires special at-
tention. In the so called point splitting regularization scheme, the normal
ordered product of two operators is defined as the zero’th order term in their
OPE. The OPE of an operator with a composite follows from a variation on
Wick’s theorem [1]. However, calculations quickly become long and error
prone when composites of composites are involved.

The definition of normal ordering is noncommutative and nonassociative.
As a consequence, it is recommended to use a standard order for the opera-
tors and introduce a standard way of normal ordering composites of several
operators. To this end, there exists a set of prescriptions and again these
formulas are conceptually quite simple, but have to be applied recursively
in complicated cases.

OPEdefs is written in Mathematica™ ', an interactive environment for
performing symbolic computations. The advantages of writing the package
in Mathematica are numerous. Its programming language has very pow-
erful pattern matching capabilities. The result of a computation can be
transformed with the help of built-in functions (expanding, factoring, col-
lecting terms in specified variables ...) and one may even obtain output
in TEX-form. Mathematica is running on a lot of machines, from PC’s to
supercomputers and all versions are completely compatible. And last but
not least, it is considerably less time-consuming to program this problem in
Mathematica than, for instance, in C'.

In using the package, all “basic” operators of the theory have to be de-
clared to be bosonic or fermionic (parafermions are not supported), and the
OPEs of the basic operators must be given. Fields with any (also negative)
conformal dimension may be used, the only restriction is that fractional

! Mathematica is a trademark of Wolfram Research Inc. For details, see [2].

powers in the Laurent expansion are not supported. With this input, the
package is able to compute OPEs of arbitrarily complicated composites,
given enough memory and time. Also, normal ordered products are auto-
matically reduced to standard form (putting operators in the order they are
declared and normal ordering them from right to left).

Version 2.0 of OPEdefs is already presented in [3]. Version 3.0 is de-
scribed in [4]. In this paper, version 3.1 is briefly described. A more com-
plete overview of the OPE formalism and of the internals of OPEdefs is
given in [5] to which I refer for further details.

The paper is organised as follows. In section 2, the necessary rules for
computing OPEs are given and the algorithm is discussed briefly. The next
section explains how to use the package. Finally, some runtimes are given.

Notation

Input for and output from Mathematica is written in typeset font. Input
lines are preceded by “In[n] :=", and corresponding output statements by
“Out[n] =", as in Mathematica.

We use the following notation for OPEs

ABw) = Y ABk) @)

n<=h(A,B) (z —w)"

where h(A, B) is some finite number, and is usually given by the sum of the
conformal dimensions of A and B. [AB], will be called the normal ordered
product of A and B.

For Poisson (or in fact Dirac) brackets we use

_1\n—1
{A(z), Blao)}ps = 3 U

A)0 6w =) (3
n>0)

where () (z — 2) is the Dirac delta-function on the plane. The derivative is
with respect to the z—coordinate. We choose the normalisation factors such
that:

{AB}u(y) = [de* (o = 5" {A(w), Bly)}es. @
2 Formulas

In [3], all formulas (extracted from [1]) needed to compute OPEs are given.
The more complicated rules can be derived in the following way, see [5] for

more details.

Using the definition (2) for the OPEs, and Cauchy’s residue formula for
contour integrals, we can isolate the contribution of a certain part of the
OPE by taking appropriate contour integrals:

ABCYl(w) = § 55— wr!

211

§ o8 - AR B)Cw), 6
c, 2mi

where C, denotes a contour which encircles u once anti-clockwise. We can
now use a contour deformation argument relating the contour integral in
eq. (5) to a contour integral where the integration over w is performed last.
This integral has two terms: one where the z contour is around u, and one
where it is around w. We find:

[A[BCLl = (~)MIBIBIAC], + 3 (‘{ B }) [ABIClyrgr. (6)

>0

This equation has to hold (inside correlators) for consistency of the OPE-
formalism. It is valid for any integers p, g, i.e. also negative numbers. How-
ever, in practice we use the Jacobi identities eq. (6) for positive p,q as
equations for the singular part of the OPEs, while for p or ¢ zero, they
define how one should calculate with composites.

OPEdefs 3.1 can calculate OPEs and Poisson brackets. We concentrate
on OPEs here and briefly comment which changes are needed for the other
case. However, note that the Jacobi identities eq. (6) for positive p, ¢ remain
exactly the same.

2.0.1 Computing OPEs

The package should compute OPEs of arbitrarily complicated composites
when a set of generators and their OPEs is given. For easy reference, we list
the rules we need, aside from linearity. First, there are the rules involving
derivatives:

[0AB), = —(¢—-1)[AB]4 (7)
[A0B), = (q—1)[AB],_1 +J[AB],. (8)

Next, we need the OPE of B with A, given the OPE of A with B:

(BA), = ()Y =000 AB,)

l>q
OPEs with composites can be calculated using eq. (6):
[A [BChly = (~1)PIB [AC]gJo + [[AB], Clo

+Z< > [AB],,C]; (10)

where ¢ > 1. Furthermore, we will use:

[AAlg=-) (=1) ~ 2 0'[AA];, for A fermionic . (11)
>0 21!
These rules are the only ones needed to compute every OPE in the OPA.
Indeed, when computing the OPE of A with B, we apply the following
procedure:

e if A and B are generators whose OPE we know, return it as the result.
e apply linearity if necessary.

e if A is an operator with derivatives, use eq. (7).

e if B is an operator with derivatives, use eq. (8).

e if A or B contains a composite, apply eq. (11) if necessary.

e if B is a composite, use eq. (10).

e if A is a composite, use eq. (9).

e if the OPE B(z) A(w) is known, compute the OPE A(z) B(w) using
eq. (9).
This list should be used recursively until none of the rules applies, which
means that the OPE has been calculated. The order in which we check the
rules is in this case not important, but we will check them in a “top-down”
order. Note that to compute an OPE of a composite with a generator, first
eq. (9) is used, and eq. (10) in the next step.

The algorithm used to compute Poisson brackets is essentially the same.
Some small changes in the rule eq. (10) are needed, namely all double con-
tractions have to be dropped. Also, eq. (11) is changed to [AA]p = 0 when
A is fermionic.

2.0.2 Simplifying composites

We now discuss how we can reduce normal ordered products to a standard
form. We define an order on the generators and their derivatives, e.g. lexi-
cographic ordering. Given a composite, we apply the rules given below until
all composites are normal ordered from right to left and the operators are
ordered, i.e. [A[B[C'.. .]olo]o, and A < B < C. The relevant formulas are:

O[AB)o = [A 0By + [0A B (12)

[ABLq=;ﬂ@%)Bb, 0> 1 (13)

[BAJy = (=D)MIPI[AB]o + (—1)AIP Z 3l AB], (14)
>1 '

[A [BColo = (—1)4IBI[B [AC)o]o + (15)

[([ABly — (~1)41BI[BAL) Clo (16)

For the case of Poisson brackets, the rules (14) and (16) drastically sim-
plify, only the first terms remain.

2.0.3 Improvements

The rules given in this section up to now are sufficient to compute any OPE,
and to reorder any composite into a standard form. However, some shortcuts
exist 2, and where introduced in OPEdefs 3.x.

[A [BC]o]q can be computed using eq. (10), but an alternative is:

ABCll, = (~)A2 (15 (Ao + X T 9B AL,
>0
q—1
+ 3 (=1)'[[BA) Cly) (17)
=1

This rule is more convenient when we know the OPE B(z)A(w) while
A(z)B(w) has to be computed using eq. (9).

*Egs. (17)- (19) follow from the familiar argument of splitting the paths of a contour-
integral, and using [A B]__ = L[A“‘) B], for positive n, where A denotes the n-th

n n!
derivative of A.

Similarly, to compute an OPE where the first operator is a composite,
the algorithm as presented above uses egs. (9) and (10). However, the next
rule implements this in one step:

[4Blo Cly = 3 {04 [BChiglo + (-DMIP Y 2 (0B [ACT o

>0 " z>0
|A||B| Z [AC),1, (18)
where ¢ > 1 and:
[ABloClo = [A[BClolo +
1
3 ﬁ[alA [BC))]o + (—1)1AlIBI Z [6'B . (19)
>0 " l>0

In OPEdefs 3.1 these two last rules are applied when C' is not a composite
itself.

3 User’s Guide

This section is intended as a user’s guide to the package OPFEdefs 3.1. Ex-
plicit examples are given for most operations. Note that OPEdefs 3.1 re-
quires Mathematica 1.2 or later.

We introduce some special notations. Input for and output from Math-
ematica is written in typeset font. Input lines are preceded by “In[n] :="
and corresponding output statements by “Out[n] =", as in Mathematica.

As OPEdefs is implemented as a Mathematica package, it has to be
loaded before any of its global symbols is used. Loading the package a
second time will clear all previous definitions of operators and OPEs, as
well as all stored intermediate results. Assuming that the package is located
in the Mathematica-path, e.g. in your current directory, issue:

In[1] := <<0OPEdefs.m

After loading OPEdefs into Mathematica, help for all the global symbols is
provided using the standard help-mechanism, e.g. 70PE.

Now, you need to declare the operators that will be used. If you want to
define bosonic operators T and J[i] (any index could be used), and fermionic
operators psi[i], the corresponding statements are:

In[2] := Bosonic[T, J[i_1]
In[3] := Fermionic[psili_1]

The order of the declarations fixes also the ordering of operators used by
the program:

T < J[11° < J[1] < J[2] < J[i] < psil1l < ... (20)

By default, derivatives of an operator are considered “smaller” than the
operator itself. This can be reversed using the global options NOOrdering
(see below).

Finally, the non-regular OPEs between the basic operators have to be
given. An OPE can be specified in two different ways.
The first way is by listing the operators that occur at the poles, the first
operator in the list is the one at the highest non-zero pole, the last operator
has to be the one at the first order pole, e.g. :

In[4] := OPE[T, T] = MakeOPE[{c/2 One, 0, 2T, T’ }1;

Note the operator One which specifies the unit-operator.
The second way is by giving the OPE as a Laurent series expansion, adding
the symbol Ord which specifies the (implicit) arguments of the operators for
which the OPE is defined®. The arguments for the operators can be any
Mathematica expression.
Warning: it is important that the operators occuring as arguments of OPE in
a definition should be given in standard order (20), otherwise wrong results
will be generated. -

The following statements define a SU(2),-Ka¢-Moody algebra:

Inf5] := OPE[J[i_]1,J[i 1] :=

MakeOPE[-k/2 (z-w)~-2+ Ord[z,w,0]]
In[6] := OPE[J[1],J[2]1] =

MakeOPE[J[3] [w] (z-w) "-1 +0rd[z,w,0]];
In[7] := OPE[J[2],J[3]1] =

MakeOPE[J[1] [w] (z-w) -1 + Ord[z,w,0]];
In[8] := OPE[J[1],J[31] =

MakeOPE[-J[2] [w] (z-w) -1 + Ord[z,w,0]];

In fact, with the above definitions, one has to use always the explicit indices
1,2, 3 for the currents J. If we would compute an OPE with current J[i]

3The first time you use this syntax, you may notice an unexpected delay. This is
because Mathematica is loading the Series package.

where the index ¢ is not 1,2 or 3, wrong results will be given. One can
circumvent this peculiarity by reformulating the definitions.

A normal ordered product [AB]y is entered in the form NO[A,B]. Multiple
composites can be entered using only one NO head, e.g. NO[A,B,C]. This
input is effectively translated into NO[A, NO[B, CI]]. All output is normal
ordered with the same convention, i.e. from right to left (input can be in any
order). Also, the operators in composites will always be ordered according
to the standard order (20).

As an example, we can define the Sugawara energy-momentum tensor for
SU(2),,. The Mathematica output of an OPE is a list of the operators at
the poles.

In[9] := Ts = -1/(k+2) (NO[J[1],J[1]1]+
NO[J[2],J[2]1+NO[J[3],J[3]11);
In[10] := OPESimplify[OPE[Ts, J[1]]]

Out[10] = << 211 J[1] 1111 J[11° >>

Warning: when computing OPEs with composites, or when reordering com-
posites, OPEdefs remembers by default some intermediate results. Thus, it
is dangerous to change the definition of the basic OPEs after some calcula-
tions have been performed. For example, consider a constant a in an OPE.
If calculations are performed after assigning a value to a, the intermediate
results are stored with this value. Changing a afterwards will give wrong
results.
The other globally defined functions available from the package are:

e OPEQOperator [operator_, parity_] provides a more general way to
declare an operator than Bosonic and Fermionic. The second argu-
ment is the parity of the operator such that (—1)P2*i%V is +1 for a
boson, and —1 for a fermion. It can be a symbolic constant. This
is mainly useful for declaring a bc-system of unspecified parity, or a
Kac-Moody algebra based on a super-Lie algebra. In such cases, the
operator can contain a named pattern:

In[11] := OPEOperator[J[i_],parity[i]]
If one wants to declare more operators, one can group each operator
and its parity in a list:

In[12] := OPEOperator[{b[i_],parity[il},{c[i_],parity[il}]
See also SetOPEOptions [ParityMethod, _J].

e OPEPole[n_] [ope_] gets a single pole term of an OPE:
In[13] := 0PEPole[2] [Out[10]]

Out[13] = J[1]
OPEPole[n_][A_,B_] can also be used to compute only one pole term
of an OPE:

In[14] := Factor[0PEPole[4] [Ts, Tsl]

Out[14] = (3 k One)/(2 (2 + k))
OPEPole can also give terms in the regular part of the OPE:

In[15] := OPEPole[-1] [T, T]

Out[15] = NO[T’, T]

e MaxPole[ope_] gives the order of the highest pole in the OPE.
e OPEParity[A] returns an even (odd) integer of A is bosonic (fermionic).

e OPESimplify[ope_, function_] “collects” all terms in ope with the
same operator and applies function on the coefficients. When no
second argument is given, the coefficients are Expanded.

In[16] := OPESimplify[OPE[J[1], NO[J[2], J[1]11]
Out[16] = << 2|| (1 - k/2) J[2] |I1]|
NO[J[1], J[31] + J[2]° >>

OPESimplify[pole_, function_] does the same simplifications on
sums of operators.

e OPEMap[function_, ope_] maps function to all poles of ope.

e GetCoefficients[expr_] returns a list of all coefficients of operators
in expr which can be (a list of) OPEs or poles.

e OPEJacobil[opl_,op2_,0p3_] computes the Jacobi-identities (6) for
the singular part of the OPEs of the three arguments. Due to the
nature of eq. (6), the computing time will be smallest (in most cases)
when opl < op2 < op3 in the order (20). Note that it is sufficient to
check the Jacobi-identities with the generators of the OPA.

The result of OPEJacobi is a double list of operators. It is generated
by
Table [0PEPole[n] [A,O0PEPole[m] [B,C]] +
corrections, {m, maxm},{n,maxn}]
All elements of the list should be zero up to null operators for the OPA
to be associative.

e Deltali_,j_] is the Kronecker delta symbol d;;.

10

ClearOPESavedValues [] clears all stored intermediate results, but not
the definition of the operators and their OPEs. To clear everything,
reload the package.

OPEToSeries[ope_] converts an OPE to a Laurent series expansion
in z and w. The arguments can be set to x and y with:
In[17] := SetOPEOptions[SeriesArguments, {x, y}]

TeXForm[ope_] gives TEXoutput for an OPE. The same arguments
are used as in OPEToSeries.

OPESave[filename_] (with filename a string between double quotes)
saves the intermediate results that OPEdefs remembers to file (see the
option OPESaving below).

SetOPEOptions is a function to set the global options of the package.
The current options are:

— SetOPEOptions[SeriesArguments, {argl_, arg2_}] : sets ar-
guments to be used by TeXForm and OPEToSeries. One can use
any Mathematica expression for argl and arg?2.

— SetOPEOptions[NOOrdering, n_] : if n is negative, order higher
derivatives to the left (default), if n is positive, order them to the
right.

— SetOPEOptions [ParityMethod, 0[1] : makes it possible to use
operators of an unspecified parity. When the second argument
is 0 (default), all operators have to be declared to be bosonic or
fermionic. When the argument is 1, OPEOperator can be used
with a symbolic parity. Note that in this case, powers of —1 are
used to compute signs, which is slightly slower than the boolean
function which is used by the first method.

This option is not normally needed as the use of OPEQperator
with a non-integer second argument sets this option automati-
cally.

— SetOPEOptions [0PESaving, boolean_] : if boolean evaluates
to True (default), OPEdefs stores the intermediate results when
computing OPEs of composites and when reordering composites.
This option is useful if Mathematica runs short of memory in a

11

large calculation, or when computing with dummy indices®*.

— SetOPEOptions [0PEMethod, method_] : with the parameter method
equal to QuantumOPEs enables normal OPE computations (de-
fault setting), while ClassicalOPEs enables Poisson bracket com-
putations. Using this option implicitly calls ClearOPESavedValues[].

4 Example : The conformal anomaly in super-
string theory

We consider only one free boson field X and one free fermion field ¢ because
additional free fields will have exactly the same OPEs and commute with
each other. We denote 0X with J and ¢ with psi (we normalise them such
that they have a 4+1 in their OPEs. The ghosts are a fermionic b, ¢ system
(operators b, c) and a bosonic 3, v system (operators B,G). b has conformal
dimension 2 and /5 has 3/2. It is now a trivial task to compute the conformal
anomaly:

In[l] ;== <<OPEdefs.m

In[2] ;= Bosonic[J,B,G]; Fermionic[b,c,psil;
OPE[J,J] = MakeOPE[{One, 0}];
OPE[psi,psi] = MakeOPE[{One}];
OPE[b,c] = MakeOPE[{One}];
OPE[B,G] = MakeOPE[{One}];
Tb = 1/2 NO[J,J]; Tf = -1/2 NO[psi,psi’];
Tbc = -2 NO[b,c’] - NO[b’,c];
TBG = 3/2 NO[B,G’] + 1/2 NO[B’,G];

In[3] ;== OPESimplify[OPE[Tb,Tb]]

Out[3] = << 4[| One/2 [I3]] 0 [I2]] NO[J, J] [I1]]
NO[J’, JI >>

In[4] := OPESimplify[OPE[Tf,Tf]]

Out[4] = << 4|| One/4 |1311 0 Il2]] NO[psi’, psil |I1]]|
NO[psi’’, psil/2>>

In[5] := OPESimplify[OPE[Tbc,Tbc]]

Out[5] = << 4|| -13 One |3]] 0 [I2]]|
-4 NO[b, c’] - 2 NO[b’, c]lI1]]
-2 NO[b, c¢’’] - 3 NO[b’, c’] - NO[b’’, c] >>

“No mechanism to use dummy indices is built-in in OPEdefs. I wrote a separate
package Dummies to handle this.

12

In[6] :=
Out[6] =

We see that each bosonic (fermionic) field will contribute a central charge 1
(1/2) to the total central charge of the theory. The b, ¢ system contributes
—26, and the 3, v system 11. This gives the well known relation for the
critical dimensions of the bosonic string D, — 26 = 0 and the superstring
3/2Dg — 26 + 11 = 0. Moreover, we can easily verify that the energy—mo-
mentum tensors obey the Virasoro algebra .

The reader without experience in CFT is invited at this point to take out
some time and compute the OPE for Ts¢, for instance, by hand. Although
this computation is rather trivial with OPEdefs, the same calculation was
attempted in [6] using the mode—algebra. There it proved not to be possible
to compute the Virasoro algebra automatically due to difficulties with the
infinite sums in the normal ordered products.

OPESimplify [OPE[TBG,TBG] - MakeOPE[{2 TBG,TBG’}]
<< 4| 11 One/2 [I311 O [I211 O [I1]] O >>

5 Performance

In [3], a free field realization for B, level k using (bosonic) 3, v systems
was constructed. In Table 1, we tabulate CPU times for computing an
OPE of two of the currents, and the Sugawara tensor for this realization.
The first time given in the table is the time for evaluating the statement
after loading the package and defining the realization. The time between
brackets is measured when the statement is repeated. Note that version 2.0
of Mathematicais roughly 1.4 times slower than version 1.2!

Table 1: CPU time for the computation of the OPE of the currents corre-
sponding to the positive simple root of By (statement 9) and the computa-

tion of the Sugawara tensor (statement 11) (see Ref. [3]) for Mathematica
running on a PC 386 (25 Mhz).

Mathematica-version 1.2 1.2 2.0
OPEdefs-version 2.0 3.1 3.1
In[9] 23.5(4.5)s | 149 (2.8) s | 19.3 (3.8) s
In[11] 43.2 (11.6) s | 31.3 (9.4) s | 40.7 (12.1) s

13

6

How to get it, and the future

If you are interested in OPEdefs, you can get it by Email from the author.
Please put a reference to [3] in your paper when you use it. Questions, re-
marks and improvements are welcome. Already in testing-phase is OPEconf,
a package which enables you to work with (quasi-)primaries and conformal
blocks.

7

Acknowledgements

Many improvements implemented in OPEdefs 3.0 are suggested by K. Horn-
feck, who also helped me testing this version.

References

1]

F. Bais, P. Bouwknegt, M. Surridge, K. Schoutens, Nucl. Phys. B304
(1988) 348.
A. Sevrin, W. Troost, A. Van Proeyen, P. Spindel, Nucl. Phys. B311
465 (1988).

Mathematica, A system for Doing Mathematics by Computer, S. Wol-
fram, Addison-Wesley Publishing Company, Inc.

K. Thielemans, Int. J. Mod. Phys. C Vol. 2, No. 3, 787 (1991).

K. Thielemans, New computing techniques in Physics Research II, pro-
ceedings of the Second International Workshop on Software Engineering,
Artificial Intelligence and Expert Systems in High Energy and Nuclear
Physics, ed. D. Perret-Gallix, World Scientific (1992).

K. Thielemans, An Algorithmic Approach to Operator Product Expan-
sions, W-algebras and W -strings, PhD thesis KU Leuven, june 1994.

W.M. Seiler, SUPERCALC, a REDUCE Package for commutator calcu-
lations, Karlsruhe preprint KA-THEP-20/90.

14

